An introduction to induction!

Daniel Rui

1 Whaaaaat?!?

Induction is an extremely powerful way of verifying/proving formulae. It lies on the basis of the domino effect: push over the first one, prove that any domino will push over the next in line, and you end up with an infinite number of toppled rectangles.

2 What next?

Let's say you are given this to prove:

$$
1+2+3+4 \ldots+n=\frac{n(n+1)}{2}
$$

The first step is to push over the first domino: show that it works when $n=1$. This is the base case.

$$
1=\frac{1(2)}{2}
$$

Now assume it works for any domino: assume it works when $n=k$

$$
1+2+3+4 \ldots+k=\frac{k(k+1)}{2}
$$

Now use the assumption above to prove it works for the next domino: when $n=k+1$

$$
1+2+3+4 \ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)
$$

Commonalize the denominator and factor out a $k+1$.

$$
\begin{gathered}
\frac{k(k+1)}{2}+\frac{2(k+1)}{2} \\
\frac{(k+1)(k+2)}{2}
\end{gathered}
$$

which is what we get if we plug in a $k+1$ into $\frac{n(n+1)}{2}$! And we are done!

3 Practice

3.1

Prove that:

$$
1+3+5+\ldots+(2 n-1)=n^{2}
$$

3.2

Prove that:

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

3.3

Prove that:

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=(1+2+3+\ldots+n)^{2}
$$

3.4

Prove that:

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}
$$

