Emperor Penguins, Part 2

Daniel Rui

Part 2 will go over the solutions to Part 1, and those solutions will be extremely useful in the problems that will be listed below, so better get bright-eyed and bushy-tailed!

With one penguin, obviously there is one emperor; that penguin pecks 0 other penguins, which in this case, is all other penguins.

With two penguins, there can only be one emperor penguin. Either penguin A pecks penguin B, or vice versa.

With three penguins, there can be 1 or 3 emperors. It can look like this (where A is emperor):

or this (where all 3 are emperors):

For 4 penguins, there can also be 1 or 3 emperors. It can be this (with A as emperor):

or this (where A, B, and C are emperor penguins):

For 5 penguins, there can be $1,3,4$, or 5 emperor penguins. penguin A is the one emperor penguin:

Penguins A, E, and C are the three emperor penguins:

$\mathrm{B}, \mathrm{A}, \mathrm{E}$, and D are emperors:

All penguins are emperors:

For a six flock, there can be one emperor, aka penguin A:

A, B, C are emperor penguins:

$\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}$ are emperors:

A, B, C, D, E are emperors:

All six are emperors:

1. Give an intuition/explanation as to why the penguin who pecks the most penguins directy is a emperor penguin.
2. How come no penguin flock can have two emperors?
3. How can you build a n -flock with k kings given that there is an $n-1$-flock with k kings?
