
521 Homework 10
Daniel Rui - 12/4/19

Problem 1
We have independent X1, X2, . . . with P ([Xn = 1]) = pn and P ([Xn = 0]) = 1− pn.

(i) We want to show that Xn →p 0 ⇐⇒ pn → 0.

( =⇒ ) From the definition of→p, we know that ∀ε1, ε2,∃N s.t. n ≥ N =⇒ P ([|Xn| > ε1]) < ε2.

So then n ≥ N =⇒ pn = P ([Xn = 1]) ≤ P ([|Xn| > ε1]) < ε2, or in other words, ∀ε2 > 0,∃N
s.t. n ≥ N =⇒ pn < ε2, which is exactly the definition of pn → 0.

( ⇐= ) Again from definition, we know that ∀ε,∃N s.t. n ≥ N =⇒ pn < ε ⇐⇒ −ε < −pn
and so 1 − ε < 1 − pn = P ([Xn = 0]) ≤ P ([|Xn| ≤ ε′]), for all ε′ > 0, which means that

1− P ([|Xn| ≤ ε′]) < ε ⇐⇒ P ([|Xn| > ε′]) < ε and so by definition Xn →p 0.

(ii) We want to show that Xn →a.s. 0 ⇐⇒
∞∑
n=1

pn <∞.

( =⇒ ) Assume not. Then,
∞∑
n=1

pn =
∞∑
n=1

P ([Xn = 1]) = ∞, and so Borel-Cantelli tells us that

P (A := {ω ∈ Ω : Xn(ω) = 1 for infinitely many n}) = 1. But from the definition of →a.s., we

know that P (B := {ω ∈ Ω : limn→∞Xn(ω) = 0}) = 1 as well. But A and B are disjoint sets,

because if ω ∈ A, then Xn(ω) could not possibly converge to 0 because for every N , there’s

n′ ≥ N s.t. Xn′(ω) = 1! Similarly, ω ∈ B =⇒ ω /∈ A. Thus, P (A ∪ B) = P (A) + P (B) = 2,

which is clearly impossible.

(⇐= )
∞∑
n=1

pn =
∞∑
n=1

P ([Xn = 1]) <∞, and so by Borel-Cantelli, we have that

P ({ω ∈ Ω : Xn(ω) = 1 for infinitely many n}) = 0

=⇒ P ({ω ∈ Ω : Xn(ω) = 1 for finitely many n}) = 1

=⇒ P ({ω ∈ Ω : ∃Nω s.t. n ≥ Nω =⇒ Xn(ω) = 0}) = 1

=⇒ P ({ω ∈ Ω : Xn(ω)→ 0}) = 1

=⇒ Xn →a.s. 0

Problem 2
We have X1, X2, . . . i.i.d. Exponential(1) so fixing an ε > 0, we have that P ([Xn > (log n)(1 + ε)]) =

e−(logn)(1+ε) = n−(1+ε) and so

∞∑
n=1

P ([Xn > (log n)(1 + ε)]) =

∞∑
n=1

1

n1+ε
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which we know converges (by say the integral test). Thus, Borel-Cantelli says that

P ({ω ∈ Ω : Xn(ω) > (log n)(1 + ε) for infinitely many n}) = 0

=⇒ P ({ω ∈ Ω : Xn(ω) > (log n)(1 + ε) for finitely many n}) = 1

=⇒ P ({ω ∈ Ω : ∃Nω s.t. n ≥ Nω =⇒ Xn(ω) ≤ (log n)(1 + ε)}) = 1

=⇒ P ({ω ∈ Ω : ∃Nω s.t. n ≥ Nω =⇒ Xn(ω)

log n
≤ (1 + ε)}) = 1

=⇒ lim sup
n→∞

Xn

log n
≤ 1 + ε a.s. (∀ε > 0)

=⇒ lim sup
n→∞

Xn

log n
≤ 1 a.s.

Similarly, fixing an ε > 0, we have that P ([Xn > (log n)(1− ε)]) = e−(logn)(1−ε) = n−(1−ε) and so

∞∑
n=1

P ([Xn > (log n)(1− ε)]) =

∞∑
n=1

1

n1−ε

which we know diverges (by say the integral test). Thus, Borel-Cantelli says that

P ({ω ∈ Ω : Xn(ω) > (log n)(1− ε) for infinitely many n}) = 1

=⇒ P ({ω ∈ Ω : ∀N, ∃n ≥ N s.t. Xn(ω) > (log n)(1− ε)}) = 1

=⇒ P ({ω ∈ Ω : ∀N, ∃n ≥ N s.t.
Xn

log n
> (1− ε)}) = 1

=⇒ lim sup
n→∞

Xn

log n
> 1− ε a.s. (∀ε > 0)

=⇒ lim sup
n→∞

Xn

log n
≥ 1 a.s.

and so the two directions tell us that lim sup
n→∞

Xn

logn = 1.

Problem 4
We are given ξ1, ξ2, . . . and Θ1,Θ2, . . . are all independent and i.i.d. Uniform(0,1), and a continuous

function h : [0, 1]→ [0, 1].

(a) Then, Xn := 1[h(ξn)>Θn] are independent and

E [Xn] = P ([h(ξn) > Θn]) =

∫ 1

0

P ([h(ξn) > Θn]|Θn = x)fΘn(x)dx

=

∫ 1

0

P ([h(ξn) > x])dx =

∫ ∞
0

P ([h(ξn) > x]) dx = E [h(ξn)]

=

∫ 1

0

h(x)dFξn(x) =

∫ 1

0

h(x)dλ(x) =

∫ 1

0

h(x)dx

where the second equality follows from the law of total probability (or expectation). I don’t think
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we covered it in class, so I don’t know the proof, but I suppose I will just use it here. The sixth

equality follows from the law of the unconscious statistician. Thus, by the strong law of large

numbers,

X̄n →a.s.

∫ 1

0

h(x)dx

(b) Defining Yn := h(ξn), we see that E [Yn] = E [ξn] which we saw from above to be
∫ 1

0
h(x)dx.

Thus again by SLLN,

Ȳn →a.s.

∫ 1

0

h(x)dx

(c) First we evaluate Var [Xn] and Var [Yn]:

Var [Xn] = E
[
X2
n

]
− (E [Xn])2 = E [Xn]− (E [Xn])2 := µ− µ2

(because Xn is only 0 or 1, Xn = X2
n) and so

Var
[
X̄n

]
=

1

n2

n∑
i=1

Var [Xi] =
1

n
Var [Xn] =

1

n
(µ− µ2)

Similarly

Var [Yn] = E
[
Y 2
n

]
− (E [Yn])2 = E

[
h2(ξn)

]
− (E [Yn])2 = E

[
h2(ξn)

]
− µ2

and so

Var
[
Ȳn
]

=
1

n2

n∑
i=1

Var [Yi] =
1

n
Var [Yn] =

1

n
(E
[
h2(ξn)

]
− µ2) =

1

n

∫ 1

0

h2(x)dx− µ2

n

But because h only goes to [0, 1], h2(x) ≤ h(x), and so
∫ 1

0
h2(x)dx ≤ µ and so Var

[
Ȳn
]
≤

Var
[
X̄n

]
.
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521 Homework 9
Daniel Rui - 11/27/19

Problem 1
(a) We want to show that A and B are independent events ⇐⇒ σ[A] and σ[B] are independent

sigma algebras, i.e. P (A ∩ B) = P (A) · P (B) ⇐⇒ P (A′ ∩ B′) = P (A′) · P (B′) for all

A′ ∈ σ[A] = {∅, A,A{,Ω} and B′ ∈ σ[B] = {∅, B,B{,Ω}.

( =⇒ ) If one of the sets in question is ∅, then for any set S, P (∅ ∩ S) = 0 = P (∅) · P (S);

similarly if one of the sets in question is Ω, then for any set S, P (Ω ∩ S) = P (S) = P (Ω) · P (S).

This leaves three cases:

• Reminder: P (A∩B)+P (A∩B{). Thus, P (A∩B{) = P (A)−P (A∩B) = P (A)−P (A)·P (B) =

P (A)
(
1−P (B)

)
= P (A) ·P (B{). The case P (A{ ∩B) = P (A{) ·P (B) follows by symmetry.

• P (A{∩B{) = P (A{)−P (A{∩B) = P (A{)−P (A{)·P (B) = P (A{)
(
1−P (B)

)
= P (A{)·P (B{),

where the second equality follows from the above bullet point.

(⇐= ) In particular, A ∈ σ[A] and B ∈ σ[B], so obviously P (A ∩B) = P (A) · P (B).

(b) We again want to equate two definitions of independence: for every k ∈ {2, . . . , n}, P (the inter-

section of any k of {A1, . . . , An}) = the product of the corresponding {P (A1), . . . , P (An)} ⇐⇒
σ[A1], . . . , σ[An] are independent sigma fields, i.e. P (A′1 ∩ . . . ∩ A′n) =

∏n
i=1 P (A′i) for all

A′i ∈ σ[Ai].

( =⇒ ) Like above, the cases when A′i = ∅ are trivial, and the cases where A′i = Ω just simplify

to proving the statement for any k sets A′i = Ai, A
{
i for all k ∈ {2, . . . , n}, i.e. proving that for

every k ∈ {2, . . . , n}, P (the intersection of any k of {A′1 := A1 or A{
1, . . . , A

′
n := A′n or A{

n}) =

the product of the corresponding {P (A′1), . . . , P (A′n)}.

we proceed by induction: we can apply the argument from (a) that for any two (distinct) indices

1 ≤ i1, i2 ≤ n, P (A′i1 ∩A
′
i2

) = P (A′i1)P (A′i2). Now we assume the statement holds for any k − 1

sets. The key observation is that if we have k sets A′1, . . . , A
′
k that satisfy P (A′1 ∩ . . . ∩ A′n) =

P (A′1) · · ·P (A′n), then replacing any A′i with A′{i preserves the equality:

P (A′1 ∩ . . . ∩A′{i ∩ . . . ∩A′k) = P (A′1 ∩ . . . ∩ Ω ∩ . . . ∩A′k)− P (A′1 ∩ . . . ∩A′i ∩ . . . ∩A′k)

= P (A′1 ∩ . . . ∩A′i−1 ∩A′i+1 ∩ . . . ∩A′k︸ ︷︷ ︸
k−1 sets

)− P (A′1) · · ·P (A′k)

= P (A′1) · · ·P (A′i−1) · P (A′i+1) · · ·P (A′k)− P (A′1) · · ·P (A′k)

=
(
P (A′1) · · ·P (A′i−1) · P (A′i+1) · · ·P (A′k)

)
·
(
1− P (A′i)

)
= P (A′1) · · ·P (A′i−1) · P (A′{i ) · P (A′i+1) · · ·P (A′k)

Thus given any configuration of k sets with k′ of them being A′i = Ai and k − k′ of them being

A′i = A{
i , we can always start from our given: P (Ai1 ∩ . . . ∩Aik) = P (Ai1) · · ·P (Aik) and toggle

each of the k − k′ sets to its complement to get the desired equality.
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(⇐= ) Given any set I of k indices from [n] := {1, . . . , n}, denoting I{ := [n] \ I, then we know

from the independence of the sigma fields that

P

(⋂
i∈I

Ai

)
= P

⋂
i∈I

Ai ∩
⋂
i∈I{

Ω

 =
∏
i∈I

P (Ai) ·
∏
i∈I{

P (Ω) =
∏
i∈I

P (Ai) · 1n−k =
∏
i∈I

P (Ai)

Problem 2
Take Ω = {1, 2, 3, 4}, A1 =

{
{1, 2}, {1, 3}

}
, and A2 =

{
{2, 3}

}
(and of course P = #/4). Then,

P ({1, 2} ∩ {2, 3}) = P ({3}) = 1
4 = 1

2 ·
1
2 = P ({1, 2}) · P ({2, 3}), so {1, 2} and {2, 3} are independent

events. A similar process yields that {1, 3} and {2, 3} are independent; thus, A1 and A2 are indepen-

dent collections.

However, {2} =
(
{1, 3} ∪ {1, 2}{

){
is in σ[A1], and P ({2} ∩ {2, 3}) = 1

4 6=
1
4 ·

1
2 = P ({2}) · P ({2, 3}),

so σ[A1] and σ[A2] are not independent.

Problem 3
We have a sequence of random variables Xn (we will assume that past a certain point C, all the Xn

are only infinite on a set Nn of measure 0 — otherwise e.g. you could just take X1, X2, . . . =∞ and

there would exist no such cn). We prove a quick lemma first: given X ≥ 0 s.t. X is infinite only on

a set N of measure 0, for every ε > 0, we can find K s.t. P ([X > K]) < ε. Define An = [X > n];

then the An form a monotone decreasing sequence. Thus, we can use the limit-measure interchange

theorems to see that

lim
n→∞

P (An) = P
(

lim
n→∞

An

)
= P

( ∞⋂
n=1

An

)
= P (N) = 0

which concludes the proof.

Now for any Xn (for n > C, the “certain point” mentioned above), choose εn = 2−n, and find the

associated Kn. Define Yn =
Xn

nKn
. Then,

P

([
|Yn| >

1

n

])
= P

([∣∣∣∣ Xn

nKn

∣∣∣∣ > 1

n

])
= P ([|Xn| > Kn]) < εn =

1

2n

With this construction, we now see that

∞∑
n=1

P

([
|Yn| >

1

n

])
<

C∑
n=1

P (Ω) +

∞∑
n=C+1

1

2n
= C +

1

2C
<∞

and so by Borel-Cantelli, we know that P

( ∞⋂
m=1

∞⋃
n=m

[|Yn| > 1
n ]

)
= 0, which leads to the following
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implications:

=⇒ P ({ω ∈ Ω : |Yn(ω)| > 1

n
for infinitely many n}) = 0

=⇒ P ({ω ∈ Ω : |Yn(ω)| > 1

n
for finitely many n}) = 1

=⇒ P ({ω ∈ Ω : ∃Nω s.t. n ≥ Nω =⇒ |Yn(ω)| ≤ 1

n
}) = 1

=⇒ P ({ω ∈ Ω : Yn(ω)→ 0}) = 1

=⇒ Yn →a.s. 0

Thus, the cn s.t.
Xn

cn
→a.s. 0 is simply the nKn from above.

Problem 5
We have independent X1, X2, . . ., and we want to prove that supn∈NXn(ω) < ∞ for almost every

ω ∈ Ω ⇐⇒
∑∞
n=1 P ([Xn > M ]) < ∞ for some M < ∞ (assuming that all the Xn are only infinite

on a set An of measure 0 — otherwise e.g., if X1 =∞ and X2, X3, . . . = 0, the result is clearly false).

( =⇒ ) Define Bk = {ω ∈ Ω : supn∈NXn(ω) ≤ k}; then the Bk form a monotone increasing sequence,

and so we can apply the limit-measure interchange theorems:

lim
k→∞

P (Bk) = P

({
ω ∈ Ω : sup

n∈N
Xn(ω) <∞

})
= 1

so in other words, fixing an ε > 0, there exists some K s.t.

k ≥ K =⇒ P (Bk) > 1− ε =⇒ P (B{
k) < ε =⇒ P

([
sup
n∈N

Xn > k

])
< ε

and in particular for k = K,

P ({ω ∈ Ω :∞-many Xn(ω) > K}) ≤ P
([

sup
n∈N

Xn > K

])
< ε

Now assume for sake of contradiction that
∑∞
n=1 P ([Xn > K]) is actually infinite; then Borel-Cantelli

would tell us that P ([Xn > K i.o.]) = 1, which is incompatible with our finding above that it’s less

than the fixed ε; therefore,
∑∞
n=1 P ([Xn > K]) <∞.

(⇐= ) Stealing one of the implications from the end of Problem 3, Borel-Cantelli gives that

∞∑
n=1

P ([Xn > M ]) <∞ =⇒ P (A := {ω ∈ Ω : ∃Nω s.t. n ≥ Nω =⇒ Xn(ω) ≤M}) = 1

Notice that P (A{∪A1∪A2∪. . .) < P (A{)+P (A1)+P (A2)+. . . = 0, and so P
(
(A{∪A1∪A2∪. . .){

)
=

P (A ∩ A{
1 ∩ A{

2 ∩ . . .) = 1. Thus, for every ω ∈ (A ∩ A{
1 ∩ A{

2 ∩ . . .), i.e. almost surely, supn∈NXn(ω)

is simply max{X1(ω), . . . , XNω−1(ω),M}, where we can take the maximum because we only have a

finite number of values (Nω many, to be exact) to deal with. Because these values themselves are all

finite, we have that supn∈NXn(ω) is finite (almost surely).
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521 Homework 8
Daniel Rui - 11/20/19

Problem 1

(a) We know that P (X > x) =

∫
Ω

1[X>x] dP and that for any f ≥ 0,

∫
R
f(ω)dλ =

∫ ∞
−∞

f(x)dx, so

∫ ∞
0

P (X > x)dx =

∫
R

1[x>0]P (X > x)dλ(x) =

∫
R

1[x>0]

[∫
Ω

1[X>x] dP

]
dλ(x)

And by Tonelli (which we can apply because indicator functions are ≥ 0), we can interchange

integrals. Up to this point, we’ve been defining our indicator functions in a manner that seems

to suggest that we are fixing x and considering sets of ω ∈ Ω, so we will now explicitly write out

the two-variable function inside the double integral:

Y (ω, x) =

1 if X(ω) > x > 0

0 otherwise

and so the computation is as follows:∫ ∞
0

P (X > x)dx =

∫
R

∫
Ω

Y (ω, x)dP (ω)dλ(x) =

∫
Ω

∫
R
Y (ω, x)dλ(x)dP (ω)

=

∫
Ω

∫ X(ω)

0

1 dλ(x)dP (ω) =

∫
Ω

X(ω)dP (ω) = E [X]

Finally, because P (X > x) = 1 − F (x), we can replace P (X > x) with 1 − F (x) in the above

integrals.

(b) Because we have that E [|X|] < ∞, E [X+] < ∞ and E [X−] < ∞, so we can safely say that

E [X] = E [X+]− E [X−]. From part (a), we know that

E
[
X+
]

=

∫ ∞
0

P (X+ > x)dx =

∫ ∞
0

P (X > x)dx

and similarly

E
[
X−
]

=

∫ ∞
0

P (X− > x)dx =

∫ ∞
0

P (X < −x)dx =

∫ 0

−∞
P (X < x)dx

Thus, taking the difference yields

E [X] =

∫ ∞
0

P (X > x)dx−
∫ 0

−∞
P (X < x)dx =

∫ ∞
0

(1− F (x))dx−
∫ 0

−∞
F (x)dx
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Problem 3
We know that F (x+ t) = P (X ≤ x+ t) and F (x) = P (X ≤ x). Hence,

F (x+ t)− F (x) = P (x < X ≤ x+ t) =

∫
Ω

1[x<X≤x+t] dP

Similar to Problem 1, define

Y (ω, x) =

1 if x < X(ω) ≤ x+ t

0 otherwise

and because x < X(ω) ≤ x+ t ⇐⇒ X(ω)− t < x < X(ω), have that∫
R
P (x < X ≤ x+ t)dx =

∫
R

∫
Ω

Y (ω, x)dP (ω)dλ(x) =

∫
Ω

∫
R
Y (ω, x)dλ(x)dP (ω)

=

∫
Ω

∫ X(ω)

X(ω)−t
1dλ(x)dP (ω) =

∫
Ω

X(ω)− (X(ω)− t)dP (ω)

=

∫
Ω

tdP (ω) = t · P (Ω) = t
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521 Homework 7
Daniel Rui - 11/13/19

Problem 1

We have the “prototypical” signed measure φ(A) =

∫
A

X dµ (with the restriction that X− ∈ L1).

Define Ω+ to be {ω ∈ Ω : X(ω) ≥ 0}, and similarly Ω− to be {ω ∈ Ω : X(ω) < 0}. Clearly,

Ω+ ∪ Ω− = Ω and Ω+ ∩ Ω− = ∅, and for any A ∈ Ω+,
∫
A
X dµ will obviously be ≥ 0. Likewise for

A ∈ Ω−,
∫
A
X dµ will be ≤ 0. From this, we can say that

φ+(A) = φ(A ∩ Ω+) =

∫
A∩Ω+

X dµ =

∫
A

X+ dµ and similarly φ−(A) =

∫
A

X− dµ

and so

|φ|(A) = φ+(A) + φ−(A) =

∫
A

X+ +X− dµ =

∫
A

|X|dµ =⇒ |φ|(Ω) =

∫
Ω

|X|dµ = E [|X|]

Problem 2
We are given a σ-finite measure µ and a finite measure ν. We then define a function φ : A → (−∞,∞]

as φ(A) = µ(A)− ν(A). Note in particular that we defined ν to be finite in order to exclude −∞.

(a) φ is a signed measure: φ(∅) = µ(∅)− ν(∅) = 0− 0 = 0; and for disjoint sets, {An},

φ

( ∞⋃
i=1

Ai

)
= µ

( ∞⋃
i=1

Ai

)
− ν

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai)−
∞∑
i=1

ν(Ai) =
∞∑
i=1

(µ(Ai)− ν(Ai)) =
∞∑
i=1

φ(Ai)

where we can pull in the ν sum because it is convergent. All the more reason to throw out −∞!

(b) If we have that [µ + ν](A) = 0, then µ(A) and ν(A) must both equal 0. This means that

µ � µ + ν and ν � µ + ν. Furthermore, having both µ(A) and ν(A) be 0 would imply that

φ(A) = µ(A) − ν(A) = 0, so φ � µ + ν. By the Radon-Nikodym theorem, we have that there

exists f, g, where g ∈ L1 w.r.t. [µ+ ν], such that

µ(A) =

∫
A

f d[µ+ ν] and ν(A) =

∫
A

g d[µ+ ν] =⇒ φ(A) =

∫
A

(f − g)d[µ+ ν],

but also that there is also some measurable X such that φ(A) =

∫
A

X d[µ+ ν]. Radon-Nikodym

assures us that X = f − g a.e. w.r.t. [µ+ ν].

(c) From Problem 1, we have that φ+(A) =

∫
A

(f−g)+ d[µ+ν], φ−(A) =

∫
A

(f−g)− d[µ+ν], |φ|(A) =∫
A

|f − g|d[µ+ ν], and in the case that µ is finite, f ∈ L1[µ+ ν], so |φ|(Ω) = E [|f − g|] <∞

9

https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem#Proof


Problem 3
We define the total variation distance between two probability measures P,Q as

dTV (P,Q) = sup
A∈A
|P (A)−Q(A)|

Now if we have any measure µ that satisfies P � µ and Q � µ, then (by Radon-Nikodym) there is

some measurable p, q s.t.

P (A) =

∫
A

p dµ and Q(A) =

∫
A

q dµ

(a) We want to prove that the following identity holds (for any µ dominating P,Q)

dTV (P,Q) =
1

2

∫
Ω

|p− q|dµ

Let a set G = [p− q ≥ 0] (G for “greater than”) and a set L = [p− q < 0] = [q − p > 0]. Then,∫
Ω

|p− q|dµ =

∫
G

(p− q)dµ+

∫
L

(q − p)dµ

≤ sup
A∈A

{∫
A

(p− q)dµ
}

+ sup
A∈A

{∫
A

(q − p)dµ
}

≤ sup
A∈A

{∣∣∣∣∫
A

(p− q)dµ
∣∣∣∣}+ sup

A∈A

{∣∣∣∣−∫
A

(p− q)dµ
∣∣∣∣}

= 2 sup
A∈A

{∣∣∣∣∫
A

(p− q)dµ
∣∣∣∣}

Now notice that ∫
Ω

(p− q)dµ =

∫
Ω

pdµ−
∫

Ω

q dµ = P (Ω)−Q(Ω) = 1− 1 = 0

which implies that∫
G

(p− q)dµ+

∫
L

(p− q)dµ = 0 =⇒
∫
G

(p− q)dµ =

∫
L

(q − p)dµ

And thus for any A ∈ A, we know that∣∣∣∣∫
A

(p− q)dµ
∣∣∣∣ = max

{∫
A

(p− q)dµ,−
∫
A

(p− q)dµ
}

= max

{∫
A

(p− q)dµ,
∫
A

(q − p)dµ
}

≤ max

{∫
A∩G

(p− q)dµ,
∫
A∩L

(q − p)dµ
}

≤ max

{∫
G

(p− q)dµ,
∫
L

(q − p)dµ
}

=

∫
G

(p− q)dµ =

∫
L

(q − p)dµ =
1

2

∫
Ω

|p− q|dµ

10



Because this holds for all A ∈ A, it holds for the supremum as well, so

1

2

∫
Ω

|p− q|dµ ≤ sup
A∈A

{∣∣∣∣∫
A

(p− q)dµ
∣∣∣∣} ≤ 1

2

∫
Ω

|p− q|dµ

which means they are equal. Again, the proof holds for any arbitrary measure µ that satisfies

P,Q� µ.

(b) Trivially from the above definitions of P,Q, we have that

[P −Q](A) =

∫
A

(p− q)dµ

From part (b), we know that

dTV (P,Q) =
1

2

∫
Ω

|p− q|dµ =
1

2
E [|p− q|] =

1

2
|[P −Q]|(Ω)

where the third equality follows from Problem 2 part (c).

Problem 4
Let A = [X ≥ 0] and B = [X < 0]. Note that on A, X = |X| and on B, X = −|X|; and on Ω+,

φ = |φ|, and on Ω−, φ = −|φ|. Now observe:∣∣∣∣∫
Ω

X dφ

∣∣∣∣ =

∣∣∣∣∫
A∩Ω+

X dφ+

∫
B∩Ω+

X dφ+

∫
A∩Ω−

X dφ+

∫
B∩Ω−

X dφ

∣∣∣∣
=

∣∣∣∣∫
A∩Ω+

|X|dφ+

∫
B∩Ω+

−|X|dφ+

∫
A∩Ω−

|X|dφ+

∫
B∩Ω−

−|X|dφ
∣∣∣∣

=

∣∣∣∣∫
A∩Ω+

|X|d|φ|+
∫
B∩Ω+

−|X|d|φ| −
∫
A∩Ω−

|X|d|φ| −
∫
B∩Ω−

−|X|d|φ|
∣∣∣∣

=

∣∣∣∣∫
A∩Ω+

|X|d|φ| −
∫
B∩Ω+

|X|d|φ| −
∫
A∩Ω−

|X|d|φ|+
∫
B∩Ω−

|X|d|φ|
∣∣∣∣

≤
∣∣∣∣∫
A∩Ω+

|X|d|φ|+
∫
B∩Ω+

|X|d|φ|+
∫
A∩Ω−

|X|d|φ|+
∫
B∩Ω−

|X|d|φ|
∣∣∣∣

=

∫
A∩Ω+

|X|d|φ|+
∫
B∩Ω+

|X|d|φ|+
∫
A∩Ω−

|X|d|φ|+
∫
B∩Ω−

|X|d|φ|

=

∫
Ω

|X|d|φ|

Problem 5
If we have random variables U ∼ Unif(0, 1) and P ∼ Poisson(λ), the the distribution functions are:

FU (x) =


0 x < 0

x 0 ≤ x < 1

1 x ≥ 1

and FP (x) =


0 x < 0

e−λ
bxc∑
i=0

λi

i!
x ≥ 0

11



Now if we define a random variable X to be U if a coin is heads and P if a coin is tails, then

P (X ≤ x) = 1
2P (U ≤ x) + 1

2P (P ≤ x) or in other words FX(x) = 1
2FU (x) + 1

2FP (x) so explicitly we

have:

FX(x) =



0 x < 0

x+ e−λ

2
0 ≤ x < 1

1

2
+
e−λ

2

bxc∑
i=0

λi

i!
x ≥ 1

Finally we define the corresponding measure φ((a, b]) = FX(b) − FX(a) (that we then extend with

Carathéodory and then complete).

(a) We want to find the Lebesgue decomposition φ = φac + φs w.r.t. Lebesgue measure λ. First

consider this example — define the decreasing sequence of intervals Ik = (1 − 1
k , 1] and so

lim
k→∞

Ik = {1}. Then as long as the measure of the sets in question are not infinite, limits of of

decreasing sets and measures commute, so

λ

(
lim
k→∞

Ik

)
= lim
k→∞

1

k
= 0 and φ

(
lim
k→∞

Ik

)
= φ({1}) = lim

k→∞
F (1)− F (1− 1

k ) =
λe−λ

2
6= 0

Based on this, we see that in order to construct φac � λ, we should avoid all the jump points.

Additionally, we see that

• for n ∈ {0, 1, 2, . . .} = Z≥0, φ({n}) =
e−λλn

2(n!)
(while λ({n}) = 0 sadly)

• for (a, b] ⊆ (0, 1), φ((a, b]) =
b− a

2
≤ b− a = λ((a, b])

• for any intervals J s.t. J ∩ (Z≥0 ∪ (0, 1)) = ∅, we have that φ(J) = 0 (obviously ≤ whatever

λ(J) is).

With all this in mind, set φac(A) = φ
(
A \ Z≥0

)
(justification from the above bullet points) and

φs(A) = φ
(
A∩Z≥0

)
(where we can let N = Z≥0 so that λ(N) = 0, and φs(N

{) = φ(Z{
≥0∩Z≥0) =

φ(∅) = 0).

(b) Now considering the counting measure # over Z≥0; if #(A) = 0 for some set, then A = ∅ because

if A had just one element from Z≥0, the counting measure would return something greater than

0. φ(∅) = 0 obviously, so φ� # so φac = φ.

Problem 6
We have a bounded, increasing, right-continuous function F on R where F (−∞) = 0. Define

µF ((a, b]) = F (b) − F (a). We want to prove that µF � λ (Lebesgue measure) ⇐⇒ µF is ab-

solutely continuous, where absolutely continuous (on R) is defined as for all ε > 0, there is δε s.t.

n∑
k=1

(bk − ak) < δε =⇒
n∑
k=1

|F (bk)− F (ak)| < ε

12
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for any finite sequence of disjoint subintervals (ak, bk]. Because F is increasing, we can get rid of the

absolute values. Furthermore, we can rephrase this definition of absolute continuity to be that for

every ε > 0, there is δε such that

λ(A) < δε =⇒ µF (A) < ε for any A =

n⋃
k=1

(ak, bk].

So our problem is equivalent to proving µF � λ ⇐⇒ [λ(A) < δε =⇒ µF (A) < ε] (where the sets A

are described above).

We will actually prove a more general result first: if µ, ν are measures, and µ is finite, then

µ� ν ⇐⇒ [∀ε > 0,∃δ > 0 s.t. ν(A) < δε =⇒ µ(A) < ε] (where A ∈ A)

( =⇒ ) Suppose not. Then, ∃ε > 0 s.t. ∀δ > 0, ∃A ∈ A s.t. µ(A) ≥ ε and ν(A) < δ. More specifically,

∀k ∈ N,∃Ak ∈ A s.t. ν(Ak) <
1

2k
and µ(Ak) ≥ ε. Define the decreasing sequence of sets Bk =

∞⋃
i=k

Ai.

From that definition, we can say that

ν(Bk) ≤
∞∑
i=k

ν(Ai) <
2

2k
=

1

2k−1
.

Then, define B = lim
k→∞

Bk =
∞⋂
k=1

Bk. Then because limits of monotone decreasing sets and measures

commute (again, as long as the measure of the sets in the sequence are not infinite), we know that

ν(B) = ν

(
lim
k→∞

Bk

)
= lim
k→∞

ν(Bk) = lim
k→∞

1

2k−1
= 0

However, µ(Bk) ≥ µ(Ak) ≥ ε, so by limit-measure commutativity (and that µ is finite), we know that

µ(B) = µ

(
lim
k→∞

Bk

)
= lim
k→∞

µ(Bk) ≥ ε

But by �, ν(B) = 0 =⇒ µ(B) = 0; hence, contradiction.

( ⇐= ) This direction is quite simple: assume ν(N) = 0 for some N ∈ A. Then, we know that

∀ε > 0,∃δ > 0 s.t. ν(A) < δ =⇒ µ(A) < ε. Well, ν(N) = 0 which is less than δ for any δ, so

∀ε > 0, µ(N) < ε =⇒ µ(N) = 0 and so µ� ν.

Finally, we are given that F is bounded, so µF is finite. We can use the Carathéodory extension

theorem and completion to extend µF (only defined for A =
n⋃
k=1

(ak, bk], i.e. a field) to an actual

measure (also finite), denoted µF . Then the general lemma above proves the result for all A ∈ A,

and of course in particular A of the aforementioned form (because the extension agrees with the

pre-measure on the field). QED!
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521 Homework 6
Daniel Rui - 11/6/19

Problem 1

(a) Consider the probability space
(

[0, 1],B[0,1], P
)

and the random variables Xn =
1

nx
. Then,

Xn →a.s. 0. But E [Xn] =∞ for all n ∈ N whereas E [0] = 0.

(b) Again on the probability space
(

[0, 1],B[0,1], P
)

, take Xn =
(
1 + 1

n

)
1[0, 12 ] and X = 1[ 12 ,1]. Then

E [Xn]→ 1
2 = E [X] but obviously Xn 6→a.s. X.

(c) Again on
(

[0, 1],B[0,1], P
)

, let’s define Xn(ω) = 1
nω + 1 − ω and X ′ = ω. Denote X = 1 − ω.

Then Xn →p X. Because Xn →p X =⇒ Xn →d X (from the midterm!), and we know that

both X and X ′ have distribution function: 0 (if x ≤ 0), x (if 0 < x < 1), 1 (if x ≥ 1). Thus,

Xn →d X
′.

However, Xn 6→p X ′ (obviously), and Xn 6→a.s. X
′ (also obviously), and E [Xn] = ∞ while

E [X ′] = 1
2 , so Xn 6→r=1 X

′.

Problem 2
Consider functions f, f1, f2, . . . ≥ 0.

(a) For this part, we have that fn →a.e. f and additionally that
∫

Ω
fn dµ = 1 and

∫
Ω
f dµ = 1. We

want to prove that sup
A∈A

∣∣∫
A
fn dµ−

∫
A
f dµ

∣∣ → 0. Define the sequences mn = min{f, fn} and

Mn = max{f, fn}. Because fn →a.e. f , we know that mn →a.e. f and Mn →a.e. f .

Now note that mn ≤ f (everywhere), where f is clearly integrable (with integral 1). So by the

DCT,

lim
n→∞

∫
Ω

mn dµ =

∫
Ω

f dµ = 1

Furthermore, we see that because mn +Mn = f + fn,∫
Ω

Mn dµ =

∫
Ω

f + fn −mn dµ =

∫
Ω

f dµ+

∫
Ω

fn dµ−
∫

Ω

mn dµ = 1 + 1−
∫

Ω

mn dµ

and thus the limit as n→∞ of
∫

Ω
Mn dµ is 1 + 1− 1 = 1. Thus,∫

Ω

|f − fn|dµ =

∫
Ω

Mn −mn dµ =

∫
Ω

Mn dµ−
∫

Ω

mn dµ

which goes to 1− 1 = 0 as n→∞. Finally, for any A ∈ A,∣∣∣∣∫
A

f dµ−
∫
A

fn dµ

∣∣∣∣ ≤ ∫
A

|f − fn|dµ ≤
∫

Ω

|f − fn|dµ→ 0

as desired.
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The conclusion above in fact holds if we just assume that fn →a.e. f and that
∫

Ω
fn dµ→

∫
Ω
f dµ:

we again have that

lim
n→∞

∫
Ω

mn dµ =

∫
Ω

f dµ

and that ∫
Ω

Mn dµ =

∫
Ω

f dµ+

∫
Ω

fn dµ−
∫

Ω

mn dµ

and so

lim
n→∞

∫
Ω

Mn dµ =

∫
Ω

f dµ+

∫
Ω

f dµ−
∫

Ω

f dµ =

∫
Ω

f dµ

and lastly∣∣∣∣∫
A

f dµ−
∫
A

fn dµ

∣∣∣∣ ≤ ∫
A

|f − fn|dµ ≤
∫

Ω

|f − fn|dµ =

∫
Ω

Mn dµ−
∫

Ω

mn dµ→ 0

(b) For this part, we are given that fn →µ f and that
∫

Ω
fn dµ→

∫
Ω
f dµ. Because the fn converge

in measure to f , we know that for every subsequence fnk
, we can find a subsubsequence fnki

that

converges pointwise almost everywhere to f . Convergence a.e. and convergence of the integrals

over Ω means that we can use the general result from the end of part (a):∣∣∣∣∫
A

f dµ−
∫
A

fnki
dµ

∣∣∣∣ ≤ ∫
A

|f − fnki
|dµ ≤

∫
Ω

|f − fnki
|dµ→ 0.

Denote the sequence of real numbers an =
∫
A
fn dµ. Then, we just proved that for every subse-

quence ank
, the subsubsequence anki

converges to a =
∫
A
f dµ. Given only this, it turns out that

an must converge to a. We prove this by contradiction: suppose that an does not converge to a.

That means that for every ε > 0 and k ∈ N, we could find nk > k s.t. |ank
− a| ≥ ε. Then by

construction, the subsequence ank
would not have a convergent subsubsequence; contradiction.

Thus, an → a, or in other words, for all A ∈ A,∣∣∣∣∫
A

f dµ−
∫
A

fn dµ

∣∣∣∣ = |a− an| → 0.

Because this holds for all A ∈ A, it holds for the supremum and so the result follows.
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521 Homework 5
Daniel Rui - 10/30/19

Problem 1
We define Pearson’s correlation coefficient (where µX = E[X]) as

ρ = Corr[X,Y ] =
Cov[X,Y ]√

Var[X]Var[Y ]
=

E[(X − µX)(Y − µY )]√
E[(X − µX)2]E[(Y − µY )2]

We have that

ρ = ±1 ⇐⇒ E[(X − µX)(Y − µY )] = ±
√

E[(X − µX)2]E[(Y − µY )2]

⇐⇒
(
E[(X − µX)(Y − µY )]

)2

= E[(X − µX)2]E[(Y − µY )2]

This is the equality case of the Cauchy-Schwarz inequality, which we know is satisfied if and only if

(Y − µY ) = a(X − µX) a.e. for some a 6= 0. (Note that all the above implications are double sided,

so everything so far is “if and only if”)

Multiplying both sides by the random variable (X−µX), we get (X−µX)(Y −µY ) = a(X−µX)2 a.e.

⇐⇒ E[(X−µX)(Y −µY )] = aE[(X−µX)2]. E[(X−µX)2] > 0, so a > 0 ⇐⇒ E[(X−µX)(Y −µY )]

(the numerator of ρ) is positive ⇐⇒ ρ must be positive and hence equal to 1. Similarly, if a <

0 ⇐⇒ ρ must be negative and hence must equal −1.

Problem 2
Let µr = E[|X|r]. We want to show that for r ≥ s ≥ t ≥ 0, µs−tr µr−st ≥ µr−ts , or more transparently,(

E[|X|r]
)s−t

·
(
E[|X|t]

)r−s
≥
(
E[|X|s]

)r−t
Hölder’s inequality gives that for X1, X2 ≥ 0 and a, b > 1 s.t.

1

a
+

1

b
= 1,

E[X1X2] ≤
(
E[Xa

1 ]
)1/a(

E[Xb
2]
)1/b

To fit our problem to something Hölder’s inequality could help with, we definitely want the outer

exponents to match, so we want that

1

a
=
s− t
r − t

and
1

b
=
r − s
r − t

Note that s − t ≤ r − t. In the case that r > s, then
1

a
< 1 =⇒ a > 1 so we can use Hölder’s

inequality. In the case that r = s, then the problem statement is trivial: µs−tr = µr−ts . So for further

analysis, let’s just focus on a > 1 (and similarly b > 1).
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Now given these values for a, b, we now want the inner exponents to match by setting X1 = |Xc| = |X|c

and X2 = |Xd| = |X|d:

|X|r = Xa
1 = |X|ca =⇒ c =

r

a
=
r(s− t)
r − t

and |X|t = Xb
1 = |X|db =⇒ d =

t

b
=
t(r − s)
r − t

Very fortunately, we see that c+ d =
r(s− t) + t(r − s)

r − t
=
rs− st
r − t

= s, so X1X2 = |X|c+d = |X|s.

Thus, setting a, b, c, d,X1, X2 as described gives that Hölder’s inequality is equivalent to the desired

result.

Problem 3
Define random i.i.d. variables ε1, . . . , εn with P (εi = ±1) = 1

2 , and a, b, ai ∈ R. Note that E[εi] =

1 · 1
2 + (−1) · 1

2 = 0 for all i. We want to prove one particular case of Khintchine’s inequality (the case

where p = 1):

a

√√√√ n∑
i=1

a2
i ≤ E

[∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
]
≤ b

√√√√ n∑
i=1

a2
i

The right inequality is relatively straightforward: using Minkowski’s inequality (with r = 1) and

Cauchy-Schwarz, we see that

E

[∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
]
≤

n∑
i=1

E[|aiεi|] =

n∑
i=1

E[|ai||εi|] ≤

√√√√ n∑
i=1

E[|ai|2]E[|εi|2] =

√√√√ n∑
i=1

a2
1

The left inequality is much more non-trivial: we first observe two facts. Define Z to be the random

variable
n∑
i=1

aiεi. Mini-lemma: E[Z2] =
n∑
i=1

a2
i , proof as follows:

E[Z2] = E

 n∑
i=1

n∑
j=1

aiajεiεj

 =

n∑
i=1

n∑
j=1

aiajE[εiεj ] =

n∑
i=1

a2
i

where the last equality holds because if i 6= j, then εi and εj are independent so E[εiεj ] = E[εi]E[εj ] = 0,

and if i = j then E[εiεj ] = E[ε2i ] = 12 · 1
2 + (−1)2 · 1

2 = 1.

Our second fact is more substantial, so lemma: E[Z4] ≤ 3(E[Z2])2 = 3

(
n∑
i=1

a2
i

)2

. We prove this by

induction. For the base case, n = 2,

E[(a1ε1 + a2ε2)4] = E[a4
1ε

4
1 + 4a3

1ε
3
1a2ε2 + 6a2

1ε
2
1a

2
2ε

2
2 + 4a1ε1a

3
2ε

3
2 + a4

2ε
4
2]

= a4
1E[ε41] + 4a3

1a2E[ε31ε2] + 6a2
1a

2
2E[ε21ε

2
2] + 4a1a

3
2E[ε1ε

3
2] + a4

2E[ε42]

= a4
1 + 6a2

1a
2
2 + a4

2

≤ 3a4
1 + 6a2

1a
2
2 + 3a4

2 = 3(a2
1 + a2

2)2
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Now assume that the inequality holds for n = k − 1. Denote S = a1ε1 + . . .+ ak−1εk−1. Then

E[(a1ε1 + . . .+ akεk)4] = E[(S + akεk)4]

= E[S4 + 4S3akεk + 6S2a2
kε

2
k + 4Sa3

kε
3
k + a4

kε
4
k]

= E[S4] + 4akE[S3]E[εk] + 6a2
kE[S2]E[ε2k] + 4a3

kE[S]E[ε3k] + a4
kE[ε4k]

= E[S4] + 6a2
kE[S2] + a4

k

≤ 3(a2
1 + . . .+ a2

k−1)2 + 6ak(a2 + . . .+ a2
k−1) + a4

k

≤ 3(a2
1 + . . .+ a2

k−1)2 + 6ak(a2 + . . .+ a2
k−1) + 3a4

k

= 3((a2
1 + . . .+ a2

k−1) + a2
k)2

Our final piece of information will be derived from Problem 2; setting (r, s, t) = (4, 2, 1), we have that

(
E[Z2]

)3

≤
(
E[|Z|]

)2

E[Z4] =⇒ E[|Z|] ≥

√
(E[Z2])3

E[Z4]

Using our lemma, E[Z4] ≤ 3(E[Z2])2 =⇒ 1

E[Z4]
≥ 1

3(E[Z2])2
, on this most recent inequality, we get

E[|Z|] ≥

√
(E[Z2])3

E[Z4]
≥

√
(E[Z2])3

3(E[Z2])2
=

√
E[Z2]

3
=

√
3

3

√√√√ n∑
i=1

a2
i

and so in conclusion
√

3

3
·

√√√√ n∑
i=1

a2
i ≤ E

[∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
]
≤ 1 ·

√√√√ n∑
i=1

a2
i

Problem 4
(a) Consider a random variable X ≥ 0, which has a distribution function F (x) = P ([X < x]). We

want to show that

E[X] =

∫
Ω

X dP =

∫ ∞
0

P ([X ≥ x])dx

Of course, we proceed using the standard method of starting with indicator functions and working

upwards.

(i) For a set A ∈ A, take X = 1A (notice that X never exceeds 1, and that [X = 1] = A and

[X = 0] = Ω \A). Then,∫
Ω

X dP = 1 ·P (A) and

∫ ∞
0

P ([X ≥ x]) dx =

∫ 1

0

P ([X ≥ x])dx =

∫ 1

0

P (A)dx = P (A)

(ii) Now we look at simple functions: X =
n∑
i=1

ci1Ai
for (pairwise) disjoint Ai and ci ∈ R such

that ci 6= cj when i 6= j. Furthermore, let’s order the terms so that the ci are increasing.
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Then, ∫
Ω

X dP =

n∑
i=1

ciP (Ai)

and

∫ ∞
0

P ([X ≥ x])dx

=

∫ cn

cn−1

P (An)dx+

∫ cn−1

cn−2

P (An−1 ∪An)dx+ . . .+

∫ c1

0

P (A1 ∪ . . . ∪An)dx

=

∫ cn

cn−1

P (An)dx+ . . .+

∫ c1

0

P (A1) + . . .+ P (An)dx

=

∫ cn

0

P (An)dx+

∫ cn−1

0

P (An−1)dx+ . . .

∫ c1

0

P (A1)dx

= cnP (An) + cn−1P (An−1) + . . . c1P (A1) =

n∑
i=1

ciP (Ai)

(iii) Finally, we know that for any random variable X ≥ 0, Xn =

n2n∑
k=1

k−1
2n ·

(
1X−1([k−1

2n ,
k

2n ))

)
+

n ·
(
1{ω:X≥n}

)
is a monotone increasing sequence converging pointwise everywhere to X.

Additionally, because the Xn are increasing, [Xn ≥ x] ⊆ [Xn+1 ≥ x], so the P ([Xn ≥ x]) are

also monotone increasing to P ([X ≥ x]) (?). From part (ii), we know that∫
Ω

Xn dP =

∫ ∞
0

P ([Xn ≥ x])dx

for any n ∈ N, and so by the monotone convergence theorem,

lim
n→∞

∫
Ω

Xn dP = lim
n→∞

∫ ∞
0

P ([Xn ≥ x]) dx =⇒
∫

Ω

X dP =

∫ ∞
0

P ([X ≥ x])dx

Last word: 1− F (x) = P ([X ≥ x]) so we can put 1− F (x) in the above integrals.

(b) ∫
[X≥λ]

X dP = λP ([X ≥ λ]) +

∫ ∞
λ

P ([X ≥ x])dx

−10 −5 5 10

2

4

6

8
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The proof is as follows:

∫
[X≥λ]

X dP is equivalent to

∫
Ω

1[X≥λ] ·X dP . Denote X ′ = 1[X≥λ] ·X,

and observe that P ([X ′ ≥ x]) = P ([X ≥ λ]) for all x ∈ (0, λ] (by definition of X ′). By part (a)

we know that ∫
[X≥λ]

X dP =

∫
Ω

X ′ dP

=

∫ λ

0

P ([X ′ ≥ x])dx+

∫ ∞
λ

P ([X ′ ≥ x])dx

=

∫ λ

0

P ([X ≥ λ])dx+

∫ ∞
λ

P ([X ≥ x]) dx

= λP ([X ≥ λ]) +

∫ ∞
λ

P ([X ≥ x])dx
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521 Homework 4
Daniel Rui - 10/23/19

Problem 1
Important theorem from class/the book: if µ(Ω) < ∞, Xn →µ X ⇐⇒ for every subsequence Xn′ ,

there is a further subsequence Xn′′ that converges a.e. to X.

(a) We are given that µ(Ω) < ∞ and that g is continuous a.e. w.r.t µX , i.e. g is continuous on a

set S{ where µX(S) = µ(X−1(S)) = µ([X ∈ S]) = 0, and that Xn →µ X. Consider now the set

N1 of all ω0 s.t. we can always find ω arbitrarily close to ω0 s.t. |g(X(ω)) − g(X(ω0))| > ε for

some ε > 0. Because S is the set of all points where g is discontinuous, X(N1) ⊆ S. In other

words, N1 is precisely the set of all points that X maps to S, or [X ∈ S]. But we know this set

has measure zero, so µ(N1) = 0.

Our final piece of information is that Xn →µ X, which we know from the theorem above to mean

that for every subsequence Xn′ , we can find a subsubsequence Xn′′ →a.e. X, i.e. Xn′′ converges

to X on a set N{
2 where µ(N2) = 0.

Now for all ω ∈ N{
1 ∩ N{

2 , we see that Xn′′(ω) → X(ω) (pointwise convergence) and that g

is continuous. From the definitions of convergence and continuity, we know that ∀ε > 0,∃δ >
0,∃ε′ < δ and ∃N ∈ N s.t. for all n′′ ≥ N ,

|Xn′′(ω)−X(ω)| < ε′ < δ =⇒ |g(Xn′′(ω))− g(X(ω))| < ε

This is true for all ω ∈ (N1 ∪N2){, so g(Xn′′(ω)) does not converge to g(X(ω)) only on N1 ∪N2.

But µ(N1 ∪ N2) ≤ µ(N1) + µ(N2) = 0, so in fact g ◦ Xn′′ →a.e. g ◦ X. We can find such a

subsubsequence for all subsequences Xn′ , so g ◦Xn →µ g ◦X.

(b) For part (b), we allow µ(Ω) = ∞. g is now uniformly continuous on R, and Xn →µ X. From

uniformly continuity, for every ε we can find one δε s.t. for all x, y on the real line, |x−y| < δε =⇒
|g(x) − g(y)| < ε. By definition, Xn →µ X ⇐⇒ for all ε′ > 0, we can find arbitrarily small δ′

such that for n beyond some Nε′,δ′ , µ(Aε′) < ε′, where Aε′ = {ω ∈ Ω : |Xn(ω) − X(ω)| ≥ δ′}.
Note that A{

ε′ = {ω ∈ Ω : |Xn(ω)−X(ω)| < δ′} (for n ≥ Nε′,δ′ and arbitrarily small ε′ and δ′).

Because δ′ is arbitrarily small, we can always let δ′ < δε, so by uniform continuity, |Xn(ω) −
X(ω)| < δ′ < δε =⇒ |g(Xn(ω)) − g(X(ω))| < ε (again only for n ≥ Nε′,δ′). In other words,

A{
ε′ ⊆ B{

ε where B{
ε = {ω ∈ Ω : |g(Xn(ω))− g(X(ω))| < ε}. Thus, Bε ⊆ Aε′ so µ(Bε) < ε′.

Tying everything together, we just proved that for all ε′ > 0, we can find an arbitrarily small ε

s.t. if n ≥ Nε′,δ′ (the exact same Nε′,δ′ we found from the definition of Xn →µ X which we know

to exist), then µ(Bε) < ε′. Hence, by definition, g ◦Xn →µ g ◦X.
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Problem 2

We are given a measurable function X ≥ 0 and that

∫
Ω

X dµ = 0. Now define a sequence of sets

{An} where An = [X > 1
n ] = {ω ∈ Ω : X(ω) > 1

n}. This sequence satisfies An ⊆ An+1, so it is

monotonically increasing. Now note that

0 =

∫
Ω

X dµ ≥
∫
An

X dµ ≥
∫
An

1

n
dµ =

1

n
· µ(An) ≥ 0

which means that µ(An) = 0 for all of our sets An. Then because An is increasing we get that

µ ([X > 0]) = µ

( ∞⋃
n=1

An

)
= µ

(
lim
n→∞

An

)
= lim
n→∞

µ (An) = 0

Problem 3

We are given an arbitrary measurable function X that satisfies

∫
A

X dµ = 0 for all A ∈ A.

(a) Define the increasing sequence of sets {An} where An = [X < − 1
n ] ∪ [X > 1

n ]. Because X is

A-measurable, all the An = X−1(B) — where B is the Borel set (−∞,− 1
n ) ∪ ( 1

n ,∞) — are in

A, so by the given,
∫
An

X dµ = 0 for all An. Using the same argument as from Problem 2, we

see that µ(An) = 0 for all An and hence again µ(
⋃∞
n=1) = µ([X 6= 0]) = 0, i.e. X 6= 0 only on a

set of measure zero, so X = 0 a.e.

(b) Define the increasing sequence of sets {An} where An = [X < − 1
n ]. Similar to part (a), we note

that
∫
An

X dµ ≥ 0 for all An. But now

0 ≤
∫
An

X dµ ≤
∫
An

− 1

n
dµ ≤ − 1

n
µ(An)

but µ can never be negative, so − 1
nµ(An) ≤ 0. We’ve sandwiched − 1

nµ(An) between 0 and 0, so

µ(An) = 0 for all An. Thus, like above, we can say that µ([X < 0]) = 0, i.e. X ≥ 0 a.e.

Problem 4
The theorem of the unconscious statistician:∫

X−1(g−1(B))

g(X(ω))dµ(ω) =

∫
g−1(B)

g(x)dµX(x) =

∫
B

y dµY (y)

where X : (Ω,A, µ) → (Ω′,A′, µX); µX(A′) = µ(X−1(A′)) = µ([X ∈ A′]); and g : (Ω′,A′) → (R̄, B̄);

define Y := g(X(ω)), and µY (B) = µg◦X
(
B
)

= µ
(
(g ◦X)−1(B)

)
= µ

(
X−1 ◦ g−1(B)

)
= µX

(
g−1(B)

)
.

The first equality is covered in the book. Like in the book, we split up the proof into four steps:

(i) Is y a function? In the preceding integrals ω, x were not ... :(
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521 Homework 3
Daniel Rui - 10/16/19

Problem 1
We have measurable functions X1(x, y) = x and X2(x, y) = y (for all (x, y) ∈ R2), and Z1(x, y) =√
X2

1 +X2
2 and Z2(x, y) = sign(X1 − X2). Define F(X) = X−1(B̄) (where B̄ = σ

[
B, {∞}, {−∞}

]
)

to be X−1(B̄) =
{
X−1(B) : B ∈ B̄

}
=
{{

(x, y) ∈ R2 : X(x, y) ∈ B
}

: B ∈ B̄
}

or in English, the set

of all the sets of points that X sends to a Borel set, for all Borel sets.

(a) Consider F(Z1) = Z−1
1 (B̄) =

{{
(x, y) ∈ R2 : Z1(x, y) ∈ B

}
: B ∈ B̄

}
. Let’s start simply

and consider what happens when B = {r} for some r ∈ R. If r < 0, then Z−1
1 (B) = ∅. For

r ≥ 0, Z−1
1 (B) is a circle centered at (0, 0) with radius r. Now if B is some interval (r1, r2) with

r2 > r1 ≥ 0, then Z−1
1 (B) is an open torus.

We can see that for whatever B is, Z−1
1 (B) is some combination of circles, balls (filled in circles),

and tori. But all of these can be generated by countable unions, intersections, and complements

of plain old open balls, so F(Z1) is the σ-algebra of the open balls in R2. Just for fun, a circle

with radius r can be represented as
∞⋂
n=1

B
(
r + 1

n

)
\
∞⋃
n=1

B
(
r − 1

n

)
where B(r) denotes the open

ball centered at (0, 0) with radius r.

(b) F(Z2) =
{{

(x, y) ∈ R2 : Z2(x, y) ∈ B
}

: B ∈ B̄
}

is considerable easier — if {−1} ∈ B,

then Z−1
2 (B) will contain the lower right half of the plane, or y < x; if {0} ∈ B, then Z−1

2 (B)

will contain the line y = x; and if {1} ∈ B, then Z−1
2 (B) will contain the upper left half of

the plane y > x. Any Borel set B will either contain or not contain any one of these three

points, so F(Z2) will just be the set of all combinations of (a.k.a. the (σ-)algebra containing)

{(x, y) ∈ R2 : y < x}, {(x, y) ∈ R2 : y = x}, and {(x, y) ∈ R2 : y > x}.

(c) The σ-algebra of the union of F(Z1) and F(Z2) is just the σ-algebra containing all half open

balls (upper left and lower right) and all sets of two points on y = x equidistant from the origin.

Problem 2
Let C be a π̄-system of subsets of Ω (closed under finite intersections, and Ω ∈ C). Then let V be a

vector space (X,Y ∈ V =⇒ X+Y ∈ V and αX ∈ V) such that the characteristic function 1C ∈ V for

all C ∈ C and that if {An} is a sequence of monotonically increasing sets (An ⊆ An+1) s.t. 1An
∈ V,

then A =
∞⋃
n=1

An ∈ V.

(a) For all A ∈ σ[C], 1A ∈ V — we prove this by proving that the set S of all sets S s.t. 1S ∈ V
contains λ[C], which in conjunction with Dynkin’s π − λ theorem gives that S ⊇ λ[C] = σ[C]:

[Ω :] Ω ∈ S obviously because 1Ω ∈ V; [B \ A:] if we are given that A,B ∈ S and A ⊂ B, then

1B , 1A ∈ V so 1B\A = 1B − 1A ∈ V =⇒ B \A ∈ S; and [monotone unions:] if we are given that
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monotone increasing sequence of An is in S, then 1An
∈ V =⇒ 1∪An

∈ V =⇒
∞⋃
n=1

An ∈ S.

Hence, S is a λ-system, as desired.

(b) By the axioms of vector spaces, for a partition Ai of Ω where 1Ai ∈ V, the finite sum
m∑
i=1

xi1Ai

will also be in V.

(c) Some motivation for the nice construction in the book; for any measurable function X(ω) we are

given (further assuming that X ≥ 0 for all ω ∈ Ω, because for any general X = X+ −X− can

be represented as a linear combination of non-negative functions), let us define a sequence

Xn(ω) =

n2∑
k=1

k−1
n ·

(
1X−1([k−1

n , kn))

)
+ n ·

(
1{ω:X≥n}

)
For every ω ∈ Ω, there will be some N s.t. for all n ≥ N , X(ω) < n, which will imply that

|Xn(ω)−X(ω)| < 1
n , which means that Xn → X. However, Xn does not increase monotonically

(which we need), because Xn(ω) basically returns the largest multiple of 1
n less than or equal

to X(ω), and the largest multiple of 1
n ≤ X(ω) may in fact be less than the largest multiple of

1
m ≤ X(ω) for n > m. Thus, we change our tactic a little bit to fix this error:

Xn(ω) =

n2n∑
k=1

k−1
2n ·

(
1X−1([k−1

2n ,
k

2n ))

)
+ n ·

(
1{ω:X≥n}

)
It’s easy to check that similar to above, for every ω ∈ Ω, there will be some N s.t. for all n ≥ N ,

X(ω) < n, which will imply that |Xn(ω)−X(ω)| < 2−n. Now we have an monotone increasing

sequence of Xn converging to X for any given ω, so by the given in the problem, X ∈ V.

Interlude
Just a copy of the definitions of convergence almost everywhere:

µ({ω ∈ Ω : lim
n→∞

|Xn(ω)−X(ω)| 6= 0}) = 0

and convergence in measure

(∀ε > 0) lim
n→∞

µ({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε}) = 0.

Problem 4
(a) From the above definitions, convergence in measure has the limit outside, so it only needs that

the points where Xn is far from X to be few. This means that I can choose some points wher-

ever to be far away, and it would still be convergent in measure. However, convergence a.e.

has the limit inside, so having bursts of points far away would destroy the convergence of Xn to

X, because we can always choose the bursts so that infinitely often Xn would again be far from X.
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For an explicit construction, consider X1 = 1[0,1], X2 = 1[0, 12 ], X3 = 1[ 12 ,1], X4 = 1[0, 13 ], X5 =

1[ 13 ,
2
3 ], . . . and so on. These Xn clearly converge in measure to 0 because 1

n eventually gets below

any ε, but Xn to not converge a.e. to 0 because for every ω ∈ [0, 1], Xn = 1 infinitely often.

(b) An example where infinite measure causes problems: consider Xn = ω1/n on [1,∞). The Xn

converge a.e. to 1 (for every ω, it’s possible to find N s.t. when n ≥ N , |ω1/n − 1| < ε),

but there will always be a set of infinite measure that where |Xn(ω) − X(ω)| ≥ ε, and hence

lim
n→∞

µ({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε}) =∞ 6= 0.

Problem 5
One direction: for any ε > 0, consider the sets A = {ω ∈ Ω : |Xm − X| < ε

2}, B = {ω ∈ Ω :

|X − Xn| < ε
2}, and C = {ω ∈ Ω : |Xm − Xn| < ε}. We are given that the Xi converge in

measure to X, which means that µ(A{) → 0 and µ(B{) → 0. Now for all ω ∈ A ∩ B, we know that

|Xm−Xn| ≤ |Xm−X|+|X−Xn| < ε by the triangle inequality. Thus, A∩B ⊆ C =⇒ (A∩B){ ⊇ C{.

But µ(C{) ≤ µ((A ∩ B){) = µ(A{ ∪ B{) ≤ µ(A{) + µ(B{) = 0. Hence, the Xi converge mutually to

X.
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521 Homework 2
Daniel Rui - 10/9/19

Problem 1
Before we begin (the proof of the actual question is on the next page), I would like to give some of

the basic definitions as an aid to my current learning and future referencing:

lim inf
n→∞

An is defined to be
∞⋃
n=1

∞⋂
k=n

Ak. In English, this is interpreted as: all ω ∈ Ω that are in all the

Ak for k ≥ N for some N ∈ N, or: all ω ∈ Ω that are in all but finitely many of the Ak.

lim inf
n→∞

xn for a sequence of numbers is defined to be lim
n→∞

(
inf
k≥n

xk
)

lim sup
n→∞

An is defined to be
∞⋂
n=1

∞⋃
k=n

Ak. In English, this is interpreted as: all ω ∈ Ω that are in infinitely

many Ak, or: all ω ∈ Ω such that ω ∈ Ak infinitely often (abbr: i.o.).

lim sup
n→∞

xn for a sequence of numbers is defined to be lim
n→∞

(
sup
k≥n

xk
)

For the motivation/intuition behind these particular definitions, see this MSE post and in particular

Hans Lundmark’s answer (quoted below with addendums by me):

For an increasing sequence of sets L1 ⊆ L2 ⊆ . . ., it’s intuitive that the limit Ln → L should be defined as the

union of all sets in the sequence, L =
⋃∞

n=1 Ln. Similarly, for a decreasing sequence U1 ⊇ U2 ⊇ U3 ⊇ · · · , it’s

natural to define the limit as the intersection: Un → U as n→∞, where U =
⋂∞

n=1 Un.

Now, for an *arbitrary* sequence of sets {A1, A2, A3, . . . }, we can squeeze it between an increasing sequence

{Ln} (a “lower bound”) and a decreasing sequence {Un} (an “upper bound”), like this:

L1 = A1 ∩A2 ∩A3 ∩ · · · ⊆ A1 ⊆ U1 = A1 ∪A2 ∪A3 ∪ · · ·
L2 = A2 ∩A3 ∩ · · · ⊆ A2 ⊆ U2 = A2 ∪A3 ∪ · · ·
L3 = A3 ∩ · · · ⊆ A3 ⊆ U3 = A3 ∪ · · ·

and so on. Moreover, {Ln} is the largest increasing sequence s.t. Ln ⊆ An for all n, and {Un} is the smallest

decreasing sequence s.t. An ⊆ Un for all n, so it makes sense to define

lim inf
n→∞

An = lim
n→∞

Ln, lim sup
n→∞

An = lim
n→∞

Un.

[Comment:] “largest increasing sequence” =⇒ if {L′
n} is an increasing sequence such that Ln ⊆ L′

n ⊆ An for

all n, then L′
n = Ln for all n. [...] Suppose that {Ln} fulfills the assumptions, but Lm ⊂ L′

m (strict inclusion)

for some m, i.e. L′
m contains some x s.t. x /∈ Lm = Am ∩Am+1 ∩ . . .. This means that for all k ≥ m we have

x /∈ Ak. Then, since the sequence {L′
n} is increasing, that element x has to belong to L′

k as well, but then

L′
k ⊆ Ak fails; contradiction.

Furthermore, we know that for increasing Dn and decreasing En (this is proven literally everywhere,

but I’m most familiar with the explanation in Axler’s book Chapter 2C):

µ
(

lim
n→∞

Dn

)
= µ

( ∞⋃
n=1

Dn

)
= lim
n→∞

µ(Dn), µ
(

lim
n→∞

En

)
= µ

( ∞⋂
n=1

En

)
= lim
n→∞

µ(En)
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521 Homework 1
Daniel Rui - 10/2/19

Problem 1
(a) We want to show that if {An} is an increasing sequence of algebras, then

⋃∞
n=1An is an algebra.

Thus we need to see if that countable union satisfies the three properties of an algebra:

• ∅ ∈
⋃∞
n=1An because ∅ is an element of every An

• if A ∈
⋃∞
n=1An then ∃ be some i ∈ N s.t. A ∈ Ai. Hence Ω \A ∈ Ai =⇒ Ω \A ∈

⋃∞
n=1An

• if A,B ∈
⋃∞
n=1An, then again ∃i, j ∈ N s.t. A ∈ Ai and B ∈ Aj . Take k = max{i, j};

then because An ⊂ An+1 for all n ≥ 1 (by definition of increasing sequence), A,B ∈ Ak =⇒
A ∪B ∈ Ak =⇒ A ∪B ∈

⋃∞
n=1An

(b) The above result does not necessarily hold true for σ-algebras {An} — in essence, the property

that σ-algebras are closed under countable unions generates more than what the countable union

of increasing σ-algebras can hold:

Let’s denote A =
⋃∞
n=1An. Take Ω = N and An to be the σ-algebra on Ω generated by the

power set of the natural numbers {1, 2, . . . , n}. It is clear that An ⊂ An+1 for all n ≥ 1 because

P({1, . . . , n}) ⊂P({1, . . . , n+ 1}), and also that every even natural number {2k} is an element

of A =
⋃∞
n=1An (because {2k} ∈ A2k). Now if A were to be a σ-algebra, then

⋃∞
k=1{2k} = 2N

would be in A. However, 2N is not an element of any of the An (it may be a subset of some

element of An, but it isn’t exactly equal to any one of the elements of An), and hence it can not

be an element of the countable union of such An, namely A.

Problem 2
1. If the intersection (denoted

⋂
A) of all possible algebras generated by a collection C of subsets of

Ω is an algebra, then it is the minimal algebra generated by C. We prove this by contradiction:

suppose that there was a smaller algebra than
⋂
A, denoted A′. That would mean that there

exists some set in
⋂
A not contained in A′. But that’s impossible, because to be in

⋂
A, a set

must be in ALL possible algebras generated by C, including of course A′. Now we prove that the

intersection is an algebra:

• ∅ ∈
⋂
A because ∅ is an element of every algebra A.

• Denote {A} as the set of all possible algebras generated by C. Then, A ∈
⋂
A =⇒ A ∈ A

for all A ∈ {A} =⇒ Ω \A ∈ A for all A ∈ {A} =⇒ Ω \A ∈
⋂
A.

• A1, A2 ∈
⋂
A =⇒ A1, A2 ∈ A for all A ∈ {A} =⇒ A1 ∪ A2 ∈ A for all A ∈ {A} =⇒

A1 ∪A2 ∈
⋂
A.

2. Likewise, if the intersection
⋂
A of all possible σ-algebras generated a collection C of subsets of Ω

is a σ-algebra, then it is the minimal σ-algebra generated by C, with the proof exactly the same
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as above. As before, we just need to prove that
⋂
A is actually a σ-algebra (using all the same

notation but just referring to σ-algebras instead of algebras):

• ∅ ∈
⋂
A because ∅ is an element of every σ-algebra A.

• A ∈
⋂
A =⇒ A ∈ A for all A ∈ {A} =⇒ Ω \A ∈ A for all A ∈ {A} =⇒ Ω \A ∈

⋂
A.

• A1, A2, . . . ∈
⋂
A =⇒ A1, A2, . . . ∈ A for all A ∈ {A} =⇒

⋃∞
i=1Ai ∈ A for all A ∈ {A} =⇒⋃∞

i=1Ai ∈
⋂
A.

3. And finally, if the intersection
⋂
M of all possible monotone-classes generated by a collection C of

subsets of Ω is a monotone-class, then it is the minimal monotone-class generated by C, with the

proof exactly the same as the previous cases. And like before, we just need to prove that
⋂
M

is actually a monotone-class (using all the same notation but just referring to monotone-classes

and M’s instead of (σ-)algebras and A’s):

• M1,M2, . . . ∈
⋂
M and M1 ⊂ M2 ⊂ M3 ⊂ . . . =⇒ M1,M2, . . . ∈ M for all M ∈ {M} =⇒⋃∞

i=1Mi ∈M for all M∈ {M} =⇒
⋃∞
i=1Mi ∈

⋂
M.

• M1,M2, . . . ∈
⋂
M and M1 ⊃ M2 ⊃ M3 ⊃ . . . =⇒ M1,M2, . . . ∈ M for all M ∈ {M} =⇒⋂∞

i=1Mi ∈M for all M∈ {M} =⇒
⋂∞
i=1Mi ∈

⋂
M.

Problem 3
Because σ[C] for any collection C is defined as the minimal sigma-algebra (i.e. σ[C] is the intersection

of all sigma-algebras containing C =⇒ if something is in σ[C] then it must be in all other σ-algebras

containing C), we see that C1 ⊂ σ[C2] =⇒ σ[C1] ⊆ σ[C2] and symmetrically C2 ⊂ σ[C1] =⇒ σ[C2] ⊆
σ[C1], so σ[C1] = σ[C2].

Problem 5
The binomial distribution is

Binom(n, pn) : P (Xn = k) =

(
n

k

)
(pn)k(1− pn)n−k

We are given that lim
n→∞

npn = λ > 0. I’ll write down the limit properties I’ll be using, just for sake of

completeness. If lim
x→c

f(x) and lim
x→c

g(x) exist, then:

• The limit of the sum, difference, product, quotient is the sum, difference, product, quotient of

the limit (limx→c g(x) can’t equal 0 in quotient rule). I’ll mainly be using the product rule.

• lim
x→c

[f(g(x))] = f [ lim
x→c

g(x)] if f(x) is continuous at lim
x→c

g(x). Below I use the fact that exp(x)

and x−k for any k ∈ N is continuous at whatever point is being considered at the time.

Below, I also use the Taylor expansion of ln(1− x) = −x− x2

2 −
x3

3 −
x4

4 − · · · .
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A final note: we fix some finite constant k before we take the limit of n.

lim
n→∞

[(
n

k

)
(pn)k(1− pn)n−k

]
= lim
n→∞

[(
n

k

)(
pn

1− pn

)k
(1− pn)n

]

= lim
n→∞

[(
n

k

)(
pn

1− pn

)k]
· lim
n→∞

[(
1− npn

n

)n]
= lim
n→∞

[(
n

k

)(
1

pn
− 1

)−k]
· lim
n→∞

[
exp

(
ln
[(

1− npn
n

)n])]
= lim
n→∞

[(
n

k

)(
n

npn
− n

n

)−k]
· lim
n→∞

[
exp

(
n ln

[(
1− npn

n

)])]
= lim
n→∞

[(
n

k

)
· n−k

(
1

npn
− 1

n

)−k]
· exp

(
lim
n→∞

[
n ln

(
1− npn

n

)])
= lim
n→∞

[(
n
k

)
nk

]
· lim
n→∞

[(
1

npn
− 1

n

)−k]
· exp

(
lim
n→∞

[
n

(
−npn

n
− (npn)2

2n2
− (npn)3

3n3
− · · ·

)])

= lim
n→∞

[(
n
k

)
nk

]
·
(

lim
n→∞

[
1

npn
− 1

n

])−k
· exp

(
lim
n→∞

[
−npn −

(npn)2

2n
− (npn)3

3n2
− · · ·

])

= lim
n→∞

[(
n
k

)
nk

]
·
(

1

λ

)−k
· e−λ =

1

k!
lim
n→∞

[
n · (n− 1) · · · (n− k + 1)

nk

]
· λk · e−λ

=
1

k!
lim
n→∞

[(n
n

)
·
(
n− 1

n

)
· · ·
(
n− k + 1

n

)]
· λk · e−λ

=
1

k!

[
lim
n→∞

(n
n

)]
·
[

lim
n→∞

(
n− 1

n

)]
· · ·
[

lim
n→∞

(
n− k + 1

n

)]
· λk · e−λ =

λke−λ

k!

and finally, we are done.
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