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DANIEL Rur - 3/17/20

Problem 1

Let X7, X5, ... be independent r.v.’s satisfying

v n? —1 with probability n—lz
=
-1 with probability 1 — #

and let S, = X1+ ...+ X,,.

(a)
(b)

For any n € N, E[X,,] = (n2 = 1)5 4+ (-1)(1 - L) =251 _nol —,

n n2 n2

We proceed by Borel-Cantelli (similar to 521-hw10-p1): Y07 | P(X,, # —1) = Y77 | 1 < oo,

so P(X, # —11i0.) =0 = P(X,, # 1 finitely often) = 1, which means that for almost every
w € Q, there is some N, s.t. n > N, = X,,(w) = —1. Thus, at a fixed w, for all n large,

Shn _X1+~--+XNW +XNW+1++XTL <Nw(N3_1)+_1(n_Nw) N3

cno_ — w9
n n n - n n n
which tends to —1 as n — oco. Thus, for almost every w, ST(“) — —1, i.e. % —as —1.

Defining #,, = 0[X1, ..., X,], we have that E(S,41|4,) = E(Sp + Xnt1|9n) =as. Snt+E[Xnt1] =

Spy 50 {Sn, A tnen is a martingale. By Jensen’s inequality, {S2, o, }nen is a submartingale.

We want to find a (#,,_1-measurable) predictable variation process (S,) s.t. {S2 —(Sy), ¥n nen

is a martingale:

E(S7 11 — (Snt1)l9tn) = E(SE 425, Xnt1 + X211 — (Sny1)|n)
—a.s. SZ + QSnE[Xn+1] + E[XELJrl] - <Sn+1>
= 5721 + IEI:X’I’2L+1:| - <Sn+1>

We want this to equal S2 — (S,), and so (Sp41) = E[X2, ] + (S,). This implies that (S,) =
E[XZ] + ...+ E[X?] (note that this formula is still consistent for n = 1: E(S? — (S1)|do) =
E(X? -E[X?]{2,9}) =0-0= S, — (S)).

First, observe that E[X2] = (n? — 1)?5 +1(1 — &) = (n? - 1)(%) =n%? -1 and so

(Sp) = Zzzl]E[X,f] =3 (kK*-1) = 771("“)6(2”“) — n. Taking b, = n>, we get that %

converges everywhere (and hence in probability) to %

Problem 2

Let Y1,...,Y, be iid. with E[Y;] = 0 and Var[Y;] = 02, and set X,,; = a,;Y; for i € {1,...,n} and
constants a,;. As always, S, = > 1" | X,;.


https://danielrui.com/papers/521hw.pdf

(a) The expectation and variance are respectively E[S,] = ZZ LE[X] = >0 anElY;] = 0 and

~

Var[S,] = Y0, Var[X,,;] = Y a2, ElY;] = 02> 1 | a2, =: 02 (linearity of variance by inde-

=1 nz
pendence of the X,,;).
) .12 2 .
Let A2 = w = 2 maxi<i<n lani|?. We want to show that if A2 — 0, then % —4

i=1 %

Z ~ Normal(0,1). This immediately rings a bell for the Lindenberg-Feller CLT, which tells us
that for X/ s.t. ]E[X, ] =0 and Z?:l Var[X,’”] = 1, Ln( ) Zz 1E[( nz) 1[|X7’”\>e]] — 0 for
anye>0=>221 ni —rd 2

In our case, take X, = U—’: and S, = Y0 X], = g—z = E[X],] = 0,Var[S]] = ZZL = 1.
Then,
1
Ln(e) =) —E (X 1 X i[>0l
i=1 7
= E|{Y?21 1
2 Z 2 €Eon
7 [var>ez2]
<L Zn: E|Y?1
T =1 ' [|Y1| maX1<€ia<nn \am\}
1 n
= —K Y121 eon ] Zail
n [|Y1|>max1gi§n \am\] i=1
1 2
= FE v 5]
2 €0\ __ 2 202 E[Y1] —_ g A
We assumed that A7 — 0 = P(|Y1| > %) = P(Y > 55) < Eroyy i 6 —3 (by Markov)

— 0, and we know that Y121[|y1|>270] < Y2, which is integrable (E[Y?] = 62 < 00) and so by
the DCT, .

. 2 _ : 2 —
Jim B[V Ly o g ] = B[ lim B[YELpy; s g ] =0
Thus, for any € > 0, we see that L, (¢) — 0, and so by Lindenberg-Feller, S/, = i—" —q Z.

As an explicit example, take a,; = ﬁ(%)a for o € R, s0 02 = 023" a2, = L3 (L)%

This is a Riemann sum (MSE), and so

n

LN\ 2 1 . 1
lim lz L a:/lt%‘dt: gt ‘1: w1 Ha>-—3
n—oo N £\ 0 20+1 /o i

00 otherwise

Also, maxi<i<y, |ani|? = 1(2)2* = L 5o for all a, A2 — 0 (and so (b) applies). We want to find
all the values « s.t. S,, — v,Z ~ Normal(0,v2) for v2 < oco. I claim that o, — v, for some
Vo #0,%00 (le. 2= = 1) <= S, =4 vaZ:

Proof: perhaps a little non-rigorously, ( = ): 2= — 1 and f—” =g 7 = 2o 7 —

On Vo

Sp = vaZ,and (=) 32 w5y Zand 5n 4 Z = Snfn = Sate 7 — 2o — 1. See

Vo Onp Vo Onp

here (MSE) and here (Billingsley) for a more rigorous treatment.

1

Thus finally, o > -1 <= S,, =4 v,Z, where va = Za+1"

2
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Problem 3

Consider a bounded continuous function f on [0,00), and define L(\) := fo e M f(z)dx for \ €
(0,00). Let X1, X, ... be i.id Exp(}) so E[X;] = §, Var[X,] = 15, and let S, => 1" X

(a)
(b)

The distribution of S,, is Gamma(n, A) (equiv. Erlang(n, X)) (Wiki), w/ p.d.f. %1(0 o)

We want to show that
_ n—1 AnL(n_l) (A)

Observe that

)\nxnflef)\z

> )\n > n—1_—Ax
E[f(S,)] = / @) ey o = oo / f(@)anle>e dy

and so showing that [;° f(z)z" le ** dz = (—=1)""'L("=V(\) will suffice. We proceed by
induction: base case n =1: [;° f(z)e ™ dz = L(\) v

Now assume n works and so [~ f(z)z" e ** dz = (—=1)"~*L(=1()\). Differentiating both
sides w.r.t. A and pulling it under the integral (which we can do because f(z)z" le™* is
continuous on {(z,t) : [0,00) x (0,00)}, and the A-partial is also continuous on that region),

yielding

/0°° f@)(~=1D)a"e " de = (~1)"LLM(N)

and rearranging the (—1) gives the desired result.

With parameter % we have

Jrgn (/)
Enylf / fz (n—1)! dr

while with parameter 1,

o pn—le—x n 1 7(”/9)“
YSn y '
E = — —
] = o) e [
(where we made the substitution u = 22 = du = ¥ dx). This matches with E,, ;,[f(S,)] from
above, 50 B,y [f(Sn)] = Ex[f(452)]

Finally, observe the following:
lim E,/,[f(S,)] = lim E; {f(ysn)] = lim f(ySn> dP = / lim f<y5> dpP

:/Qf<ynh_>n;os)dP /fy E([X1]) dP = /f )dP = f(y)

where we pulled the limit inside the integral by the DCT (f is bounded = DCT applies),

inside f by continuity, and used E[X;] =1 < o0 = % —as. 1 (SLLN). Thus, we have the


https://en.wikipedia.org/wiki/Relationships_among_probability_distributions#Sum_of_variables
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following formula for f in terms of the derivatives of its Laplace transform:

Problem 4

Let Z1, Zs, ... be iid. Normal(0,1) and S, = Z; + ...+ Z,, (= S, ~ Normal(0,n); see Wiki) , and

define Y;, = ¢®Sn—btn,
(a) Forr >1:Y, =, 0 < r < 2. using the MGF E[e*5"] = ent+o’ /2 — ent?/2 (Wiki), we have

1 1 ra?
|Yn _ 0|T dP = eﬂlsn*rlm dP = : E[erasn] _ 7enr2a2/2 _ en'r( & —b)
Q Q eTbn

erbn

which goes to 0 iff r < 2—2 (i.e. iff the exponent is negative).

a2
(b) For b = %,

e®Sn n

Yo = ea’n/2 = ea?/2
i=1

eaZi

zZ

where X; := L7 E[X;] =

ea2/2

eo~t+1.a2/2

oy = 1, and i.i.d. because the Z; were.
€

(c) Kakutani’s martingale theorem tells us that for independent non-negative mean-1 X, Xo, ...,
{M,,dn}n>1 is a mean-1 martingale (where M, = [[/_, X;), and M,, —,s M. € £; (this
part is actually given by the (sub)-martingale convergence theorem). Furthermore, among many
other things, it says that if [];°, E[X1/2

; } is NOT > 0, then necessarily M., = 0 almost surely.
Well, our X; (defined above) satisfy these conditions, but have

(a2/4)1
eaZﬂ,/2:| €0+ 5

oo
2/a 2/4 = = HE{Xl/Q} =0
e e

%
=1

IE[X}/Q} - E{
and so Y,, = M,, =, 0.

Problem 5

(a) Suppose that Y is a r.v. with values in [—c,c] with E[Y] = 0. For any 6 € R, fs(z) = €% for
z € [—c¢, ] is convex, and so fy(y) < ly(y) on [—c, ] where £y(y) is the line between (—c, fo(—c))
and (¢, fo(c)). Then, we have E[fp(Y)] < E[ly(Y)] = £p(E[Y]) (by linearity of expectation)
= ly(0). 0 is the average of —c and ¢, and so £y(0) will be the average of fo(—c) and fy(c), i.e.
E[e?Y] < # = cosh(fc).

Furthermore, noting that 2"n! = (2n)(2n —2)---(2) < (2n)(2n — 1) ---(2)(1) = (2n)!, we have

DN R o P SR

cosh(z) = 5
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and so
E[e‘gy] < cosh(fc) < e /2

Suppose we have a martingale {M,,, o, } >0 with My = 0 satisfying |M,, — M,,—1| < ¢,, for some
constants ¢, > 0 for all n > 1. By Doob’s maximal submartingale inequality, we know that

E[erM]
P max M, >z | < inf
0<k<n r>0 err

Now we could use the triangle inequality to get that [M,| < >°" | ¢;, but this bound is not sharp
enough. Instead, let’s take the following approach (notice that we are not given the independence

of the M,,):
]E[STM"} _ E[GT(M,L*M7L71)6TM”—1:|

—E [E (er(]\/lnan_l)erMn_l

— E [erMnflE (67'(Mn_Mn71)

)
)

We can’t directly use (a), but we can quickly prove a conditional version of that inequality:

E(fo(Mn — Ma1)|stn-1) Sas. E(Co(My = My-1) st 1 )
=as. Lo(E(M, — Mn_1’94n_1)) =as. £o(0) = cosh(fc,,)

Thus, continuing our chain of equalities above,

E [erMn] —F [6TM7L,1E(GT(M,L—MH,1)

< E[e"™" cosh(rc,)]

)

< E{eTM"*l exp(r 20")} = exp(rzci)]E[eTM”*l]

Continuing inductively, we get that

E[erMn] < exp( e, ) exp( 2?“) . ~exp<¥)E[erM0] = exp(é S cf)

Plugging this into Doob’s inequality, we have

2 n
exp(% Dim1 C?)
P< max M > x) < inf

0<k<n r>0 eres

To minimize the RHS, let’s calculate the first and second derivatives w.r.t r:

0,[RHS] = < zn: )exP(E 2im Cg)

e’l”I

0y, [RHS] = (zn:c )eXP( %f | f) (TZ”:QQ >2exp(r22€§?=lcf)
1=1

i=1



http://danielrui.com/texts/pfs.pdf#page=203

The first derivative is 0 at r = Z”l > and the second derivative is always > 0, so we’ve found r

Ci

that minimizes the RHS. Plugging it in yields

22 22 22
P M, > < — =
(Oglkaé{” b= $> N exp(2 Z?:l c; Z?:l C%) exp< 2 Zz 16 >

Problem 6

S, —n

Let X1, Xs,... be i.i.d. Poisson(1l), S, = X7 + ... + X, and Z,, = NG
n

i,—A

(a) The distribution of S, is Poisson(n) (Wiki), with p.d.f. fori € Ng :={0,1,...}.

(b) The expectation of Z, is

E[Zﬂ_\lf [(Sn—n)"] = ngﬁ—m %:% _O(n—l)q;l
L —in' e nOt -0 it n'
\fz n( 0! +;( il (2_1)|)>
efnnn+1

which telescopes to leave just E[Z, ] =

(c) Take X] = X; — 1, so E[X/] = 0 and Var[X]] = 1. The classical CLT gives that S':TLL = S
Zn —a Z ~ Normal(0,1).

(d) Per the definition of convergence in distribution, Z,, —¢ Z <= E[f(Z,)] — E[f(Z)] for any
J € Cy(R). In particular, consider the sequence of functions f,(z) := m - 1(_o —m) + (—2) -
L—m,0 + 0 1(0,00), all of which are in Cy(R). Let us denote foo := (=) - L(—oc,0) + 0 1(0,00)
(which unfortunately is not in C,(R)). Now,

|E[Z7] —E[Z7]| = [Elfx(Z0)] - Elfo(2)]]
< |Elfoo(Zn)] = Elfin(Zo)]| + [Elfm(Z0)] = Elfn(2)]] + [E[fin(2)] — Elfoc (2)]]

Let’s look at the first term first:
|]E[foo(Zn)} - E[fm(Zn)” = |]E[<_Zn - m)l[Zn<—mﬂ ’ = |]E[‘Zn + m| ) 1[Zn,<—m]]|

The r.v. |Z, +m| is integrable, because | Z,, + m| < |Z,,| +m < max{1,|Z,>*} +m < Z2 +1+m
(MSE), and we know E[Z2 + 14 m| =1+ 1+ m < oco. Furthermore, P(Z,, < —m) < P(|Z,| >
m) = P(Z% > m?) < -3 — 0 as m — oo (Markov). Thus, by the DCT,

lim E[|Zy +m| -1z, < ] =E[ lm_|Zy +m] -1z, < )] =0
m— 00 m—r oo

and so the first term gets arbitrarily small for large enough m. The third term is dealt with

in exactly the same way. The second term gets arbitrarily small for large enough n because


https://en.wikipedia.org/wiki/Relationships_among_probability_distributions#Sum_of_variables
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Elfm(Zn)] = E[fm(Z)] by weak convergence. Thus, E[Z,] - E[Z7]=1,/2 = \/% (Wiki).

(e) Finally, putting parts (b) and (d) together we have
e " pntl 1 2rnn"e” ™ ny\n"

—_— — E —1 = nl~ 27rn(7)
e

\/ﬁ n! 2T n!
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522 HOMEWORK 8
DaANIEL Rur - 3/11/20

Problem 1

For real-valued {X, X,,}, we want to prove that F,,(z) = P(X,, < z) — P(X < z) = F(x) for all z s.t.
P(X =2x) =0 (ie. for all z in the continuity set Cr) <= E[f(X,)] = E[f(X)] for all f € C>*(R).

(=) Fix any f € C*°(R) and € > 0. Now observe that for a non-negative r.v. X s.t. E[X] < oo,
and g s.t. ||g|]eo and ||¢'||cc are both < co (where ||g]|oo := inf{c € R : |g| < c a.e.}), we have that

/ ( ) X > .’1? dP / / 1[X>z] dP dx = // 1[X>a: dx dP
0

-/ / 2)dedP = [ (%)= 9(0) dP = Bls(X)] - 50)

where the integral interchange is justified because

o X
// |g’1[X>x]|ddes// 1 lloe dx dP = ||g/| o EIX] < o0
QJO QJo

In general, we have that

/g'( JP(X > x)d /g /1x>z]dde
b 0 Q

X
— [ 1o [ 9'@) dedP = E[g(0) 1] — 9(BIP(X > )
Q b

and

/ lix<al / 2) e dP = g(a)P(X < a) - E[g(X)11x<a]

where the integral interchanges are justified in much the same way as in the X > 0 case. Setting

a = b = 0 and subtracting the bottom from the top, we get

[eS) 0
Elg(X)] = 9(0) + / ¢(@)P(X > z)dr - / §(@)P(X < 2)do
0

— 00

and so



Now in the context of this problem, f € C*°(R) (bounded C'*° functions on R) obviously satisfies the

above conditions ||g]]ec, ||¢]|cc < 00, SO We can say

e - BN =| [ @ (- ) - - Fe))ar - [ @) (R - F@) ds

+ ' [ Ooo (2) (Fn(x) - F(z)) da

| r@(F@ - Fuw)

We somehow need to make both these integrals arbitrarily small (e.g. by pulling the limit inside),
but at this point, there’s not really a way forward. However, as is often the case when dealing with
infinite bounds, we should look to restrict ourselves to a compact set. A nice one to consider would
be [a,b] where a,b € CrN(,—; CF, (still R minus a null set), F(a) < € and F(b) > 1 — € (such points
exist because F'(—oco+) = 0, F(co—) = 1, and F' is increasing and thus is only discontinuous on a null
set). Then,

[ELf (X)) - ELF(X)]] = / f dF, - / de‘ _

Afmm—Fﬂ

=/ Jd(F, - F)+ fd(Fn—F)+/ fd(F, — F)
(—o0,a]

(a,b] (b,00)
< Ifllso d(F, — F)+ d(F, — F)) + fd(F, - F
I (/(m] (F, — F) /(m) (F, ) [ FAE)
< 1Nl (P = F) (@) = (Fu = F)®)) + A=)
where
far,-r) = [ par- [ gar= [ geeyae- [ peode
(a,b] (a,b] (a,b] Xn (a,b] X~ 1(a,b]

= E[f(Xn)lja<x,<t)] = E[f(X)1facx <]
— f(a) (p(x <a)— P(X, < a)) + f(b) (P(X >b)— P(X, > b))

+/Ob 1'@) (P(X0 > 2) = P(X > ) + /ao 7'(@) (P(X < 2) = P(X, < 7))
= F@)((Fa = F)(@) + SO ((F = F)(0))

+/Ob 7@ ((Fa = F)(@)) do + /ao 7@)((F = Fo)(@)) do

Now as n — oo, (F,, — F)(a) and (F'— F,,)(b) both go to 0 because we chose a, b to be in the continuity
sets of the distribution functions. The integral terms (i.e. fob f(x)(F, — F)(z)de + f; f(x)(F —
F,)(x)dx) go to 0 by the DCT: |f'(x)(F, — F)(x)| < 2||f||lo (because |F,|,|F| < 1) which yields
a finite integral over bounded sets (e.g. [0,b] and [a,0]). Thus, |E[f(X,)] — E[f(X)]| — 0, and so
B[f(Xa)] = ELf(X)]



( <= ) It would be very easy if we had access to fi(v) = 1(_s4(x) because then we could just say
E[fi(X,)] = P(X, <t) = E[fi(X)] = P(X < t). We can’t do this, but we can do something very
similar; consider the C*°(R) function

1 1
B fx e a0 dt

- for0<z <1, =1forxz<0, and =0forz>1

v(@ Jy e Tmn dt

Then, ¥ (%=%) is very close to fi(x) in the sense that

x—t

fi(z) Sd)( > < filz =€) = fiqe()

€

Thus, defining v; .(7) = ¥(Z=L), we have that

€

lim sup £, (¢) = lim sup E[f: (X,)] < limsup E[to,. (X,)] = E[d(X)] < Elfeye(w)] = F(t + )

n— oo n— oo n—roo

and

lim inf F (1) = lim inf E[f, (X)) > liminf By o(X,)] = B, o(X)] 2 Elfi—e(a)] = F(t — o)

n— oo

which when put together, becomes

F(t—e€) <liminf F,(¢) < limsup F,,(t) < F(t +¢€)

n—00 n—oo

For all t € Cp, the left and right sides go to F(t), and so for all ¢ € C, the F,(t) have a limit, and
that limit equals F'(t).

Problem 2
Suppose that log X ~ Normal(0,1).
(a) We know that

eft2/2 T ef(logu)2/2 1

—dt = _
V2T oo V2T U

log x
P(X <z)=P(logX <logz) = / du

e—(logw)?/2

uV2mw

t

(by making the substitution u = ¢! <= ¢ =logu), and so fx(u) =

(b) Now if we have a random variable Y, with density f,(v) = fx(y)(1 + asin(2wlogy)), we want
to show that E[X*] = E[Y}] for all integers k > 1 and a € [—1,1] (|a| < 1 because densities are

> 0). In order for this to be true, we must have that

/Oo ¥ fx () de = /00 2 fx (2)(1 + asin(2rlog z)) dx
0 0

10



This is equivalent to showing that

/ az® fx (x)sin(2r log ) dz = 2 e (logm)?/2 sin(27 log ) dx
0

“/2 sin(27u) du = 0

:\/ﬂ

which is trivial because e¥“~4"/2 is even centered at k (because ku —u?/2 is even centered at u),
and sin(27k) is odd centered at k, leaving us with an integrand which is is odd centered at k,

yielding an integral of 0.

Problem 3

Let X, Y and W be random vectors € R¥ (i.e. X = (X1,..., X)) s.t. X and Y are independent and
X and W are independent, and where E[|[Y[|*], E[[W[*] < oo

E[Y1] E[W1]
EY]=| : [=| : |=EW],
E[Yz] E[W]
and
COV[Yl, Yl] e COV[Yl, Yk} COV[Wl, Wﬂ e COV[VVl7 Wk]
CovlY]=| ¢ . i |= s ; = Cov[W]
COV[Yk, Yl] NN COV[Yk, Yk] COV[VVk7 Wﬂ PN COV[VV]€7 Wk]

which means that E[Y;Y;] = E[W;W;] for all ¢,j € {1,...,k} because
CovlY;, Yj] = E[(Y; — E[Yi])(Y; — E[Y;])] = E[Y:Y;] — E[VZ]E[Y]]

Now for any f : R¥ — R in C3(R¥) (i.e. f, its 1st, 2nd, and 3rd-order partials all exist and are

continuous everywhere), Taylor’s theorem says that

oty = 3 el 0 5 Bl tcy)

! al
<2 la|=3

for some ¢ € (0,1), where o = (aq,...,a) for a; € Z>o, |a| = a1 + ... + ax, a! = ai!---ail,

lol ¢ . . .
vy =yt -yk, and Oaf = Lk. Writing things out more explicitly,

~y - D fl(x+ cy)
f(X+Y)Zf(X)+Z[3¢f](X)Z/i+ZZ yzyj ZZZTM%M

i=1 j=1[=1

11


https://sites.math.washington.edu/~folland/Math425/taylor2.pdf

k
But [0 f](x+ey)| < max sup [0 f](x)] =: Coand 30 30 3 |yiysul = (lyal+. . +lyel)* =

(,5,0)€{1,....k}3 xR i=1j=11=1
Il so
- - 105)(X) Co |y
E[fX+Y)]-E[f(X)]+E|>_[BifiX)Yi| +E|> Y ==Yy || < LY
i=1 =1 j=1
and so
k k k
B+ )] - B O0]+ Y Elouf001e] + 3 3ok [P mpvivs) < v

by independence of X and Y. We can do the exact same argument for X and W, and subtracting

and using the triangle inequality, we get that

k k k
BL/OC+ )] - Bl 0]+ 3Bl AIC0ED] + Y > [0 gy

i=1 i=1 j= 2
~E[CC+ W)L+ B0 - Y B0 - Y 30| B0 e

C
= [E[F(X +Y)] - E[fX + W) < 2 (Y11 + W)
Finally, Cauchy-Schwarz tells us that

Y[ = (Y1) + .o+ [Ya)? = (Vi (1) + ..+ Vi (£1))2
< (Y24 +YH((ED?+ ...+ (D) = K||Y])2 = kY2

and so o
(X +Y)] - E[f(X+ W)|| < 242 (|Y[* + [WI*)
Problem 4
The classical multivariate CLT is as follows: for X,...,X,, ii.d. random vectors in R* (i.e. X; =

(Xi1,..., X)) with E[X;] = p and E[|X;]?] < 00, and X, := 2(X; +... + X,,), we have that
Vn(X, —p) =4 X = (X1,...,Xk) ~ Normaly (0, Cov[X4])

Cramér-Wold tells us that this happens if and only if a- /n(X,, — ) —4 a- X for all a € R*. Define
Y; =a- (X; — ). Note that the Y; are i.i.d., with variance

Var[Y1] = Var[ ai( X1 — Mi)} = > > Elai(X1i — pi)aj(Xaj — pj)] = >0 > aia;Cov|Xqi, Xij]
i=1 i=1j=1 i=1j=1
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Similarly, the variance of a- X = a1 X1 + ... 4+ ap Xy is

k ko k k
Var[z ain} = > > a;a;Cov[X;, X;] = >
i=1 j

k
i=1j=1 i=1j=

aiajCov[Xli, le]
1

because Cov[X] = Cov[Xy] by definition of X. Furthermore, a - X is normally distributed (uniquely

determined by the values of the covariance matrix above), and so the single variable CLT gives that
_ _ ko k
a-vn(X, —p)=vnY,—0)—a-X~Normal| 0, > > a;a;Cov[Xy;, X1,]
i=1j=1

Because a € RF was arbitrarily chosen, we satisfied the conditions of Cramér-Wold, and so the
multivariate CLT holds.

13



Problem 5

The Lévy metric for distributions F, G is defined to be
MF,G)=inf{e>0: F(x —¢) —e < G(z) < F(z+¢€) + ¢V € R}

We first want to verify that this is indeed a metric:
e \(F,G) > 0 obviously because we are only looking at € > 0.

e A\(F,G) = MG, F): note that G(z) < F(x +¢€)+eforallz e R < Gz —¢€) —e < F(x) for all
x € R and similarly F(x —¢) —e < G(z) forallz e R < F(z) < Gz +¢€)+eforallz e R
(just a variable change).

e \M(F,G) =0 < F = G: ( < ) is obvious because distribution functions are increasing,
and so always F(z —¢€) < F(z) < F(e). ( =) follows by right continuity and monotonicity of
distribution functions (i.e. at any fixed x € R, Ve, 30 s.t. F(x + ) — F(x) < €), which together
with G(z) < F(x + 6) + § yields that G(x) < F(z) + €+ J. € is arbitrary and ¢ can be as small as
we want it to be, so G(z) < F(x) for all z € R. For the > direction, just use symmetry (proven
above) to switch F' and G.

e MF,G) < A(F,H)+ \H,G): for any € s.t. F(z —€1) —e; < H(z) < F(x +€1) + €1 and €3 s.t.
H(z —e2) —ea < G(z) < H(x + €2) + €3, we have that
Flz—(e1+€))—(e1+€) < H(x—c)—e

G(x)
SH(I’-I—GQ)-FEQ SF(.’E+(62+61))+(61+62)

IN

i.e. that (€1 4+ e2) works for F,G, Ve; that work for F, H and Ve, that work for H, G, implying
that the infimum of the € for F, G must be < the infimum of the sum of the €’s for F, H and H,G.

Now that we know A is a metric, we want to prove that going to 0 in the metric corresponds exactly

to convergence in distribution, i.e. AM(F},, F') - 0 < F,, —4 F.

( = ) for € > 0 fixed and n sufficiently large, A\(F,,F) < e. Similarly to our argument of
AMF,G) =0 = F = G, we use right continuity of d.f.’s to get that F,(x) < F(z) + e+ 4 (at
some fixed x). Similarly, for the other direction, F,(z) > F(x) — € — d, (this J,, is based on the
right continuity of the F),, and so they might not be the same for all n). Thus, |F,(z) — F(z)| <
e+ max{d,0,} < e+sup,cn{dn}. The ¢’s can be made arbitrarily small (because if § works, so do all
0< 4’ <9),and so |F,(z)— F(z)| <e. Thus F,(x) — F(z) at all continuity points, and so F;,, =4 F.

(<) fix any € > 0. Looking on any compact set [a,b], find x1,...,2y in the continuity set of F'

(which is almost every point) s.t. x;11 — x; < e. Now for all n large enough, |F,(z;) — F(z;)| < € for

all i € {1,...,N}. Thus for any z € [a,b], it is between some z;_1 and z; and so F,(z) < F,(x;) <

14



F(z;) + e < F(z + €) + € and similarly F,(x) > F,(z;—1) > F(z;—1) — € > F(z — €) — e. Doing this
on all compact sets, we get that for n sufficiently large A(F,,, F') <e¢ = A(F,,F) — 0.

15



522 HOMEWORK 7
DANIEL Rut - 3/4/20

Problem 1

Let S be a standard Brownian motion on [0, 00), and let 7, := inf{t > 0 : S(¢t) = b} (for some fixed
b > 0). 7, is of course a stopping time, and we want to use optional sampling of the exponential
martingale Y, (t) := e"S()=""t/2 {5 show that:

(a) P(mp < o0) = 1: {Y,,, 94 }n>0 is a martingale, and 7, Am := min{r,, m} (for some fixed m € N) is
a stopping time < m, and so by the simple optional sampling theorem, E(Y,.(7, A m)|o) = Y,.(0)
as. = E[Y.(r, Am)] = E[Y,(0)] = E[e"5] = E[e’] =1 (because S(0) = 0 by definition of
Brownian motion). But we know 7, Am < 7, and 7, = inf{t > 0: S(¢) = b}, and so S(m, Am) < b.
Thus (for r > 0),

rS(Tp Am rb rb
erS( ) e e b

A2 = g mam2 = g0 ¢

Y. (s Am) =
We've just bound a sequence (in m) of random variables by a constant e™ (constant w.r.t. w),
so we can use the dominated convergence theorem, which tells us that

E[Y, ()] :Eugnooy,(TbAm)} = lim E[Y,(n Am)] = lim 1=1

m— oo m—r00

This is very helpful, because now we can say that
E[Y, ()] = E[erb—TQTb/2] -] — E[e_r%—bﬂ] _ b

Now as r \( 0, on [1, = o0, ﬁ — 0 (obviously), but on [7, < 0], ﬁ 1. On the other
hand, e — 1, and so heuristically e~ /2
rigorously, if P([, = o0]) = ¢ > 0, then ]E{e‘rzﬁ’/?] is at most P([r, < x0]) -1 =1 — ¢ (for all

r > 0). This contradicts that e=™ 1, and so P([r, = oc]) must be 0.

must go to 1 a.s., i.e. P([7, < o0]) = 1. More

(b) E[e=*™] = e~"V2* (for s > 0): defining s = é (<= r = /2s) and observing that the random
variables S(7,) = b and 7, are independent (obviously because one is constant w.r.t. w), we see

that
eb\/ﬂ

eSTb

1=E[Y,(n)] =E

] _ E[ebx/%}]E[e—sn] — B[] = R Ven

(¢) E[rp] = oo: with the moment generating function above, we just differentiate once (w.r.t. s) to

see that E[7,] is the negative of the function —%17(28)_1/26_1“/g evaluated at s = 0, which is oco.

(d) E[rf] < oo for r € (0,1/2) and = oo for r = 1/2, using the fact that the density of 7, is
2
fTb (t) = t3b/2¢(%) : 1(0,00)(t) = 721;t3 6_% . 1(0,00)@):

0o 1y —b%/2 < if r<1/2
E[rs] =/ LI - dtZ/ be” sz gy <00 <l
0 V23 0 2m =00 ifr>1/2
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Problem 2

Because F' and F;, are all continuous and monotonically increasing (0 at —oo and 1 at co), we can
find (for any N € N) N + 1 points zo,...,zn s.t. F(zy) = & (where 29 = —o0 and zy = o0
for convenience). Now for any z € R, there is exactly one interval (z;,z;41] that it lies in, and

furthermore, because F' is increasing,
F(x) = Fo(2) < F(zi41) = Fa(w:) = F(z:) + 5 — Fa(2)

and
Fo(2) = F(x) < Fo(zig1) — F(23) = Fu(@it1) = F(i) + 5

and so |F(z) — F,(z)| < max{F,(zi41) — F(2i41), F(z;) — F,(x;)} + . This bound is dependent on

which interval the x is in, but we can easily tweak this to be a uniform bound for all z € R:

1
sup|Pla) = Fu(o) € 1P(e) = Fula)] +
Because F,, -4 F < F,, — F pointwise everywhere (because the F,, are all continuous, and by
the portmanteau theorem: P, =4 P <~ ILm P, (B) = P(B) for all P—continuity sets B € g 1],
namely B = [0,z]), the max over finitely nrllanzfo things goes to 0 for n large enough, and 3 goes to
0 for N large enough. A rather easy consequence of this (i.e. uniform convergence and continuity)
and the triangle inequality applied to |F,(z,) — F(2)| = |Fn(zn) — F(2,) + F(x,) — F(z)| is that
Tn = = Fp(z,) = F(z),

Problem 3

(b) F, = F = {F,}n>1 is tight: fix e > 0. We know F(R) = P([X € R]) = 1, and because
R = Uy ,(—n,n) is a union of increasing sets, we can interchange measures and limits to get
that lim F((—n,n)) = 1. Thus, there is some N s.t. F((=N,N)) >1—e.

n—oo

The portmanteau theorem gives us that F,, - F <= F, —»¢ F <= liminf F,,(B) > F(B) for
n— o0

all open sets B, which in our case means that lirginf F.,((-N,N)) > F((—N,N)) > 1 —e. The
strict inequality here allows us to say that for some K, Fi((—N,N)) > 1 — e for all k > K.

For Fi,..., Fg, just use the same argument we used on F to find Ny,..., Nk s.t. F;((—N;, N;)) >
1—e. Taking Ng = max{Ny,..., Nk, N}, we get that VF;, F;([—No, Ng]) > F;((—No, No)) > 1—e.
Le., for any fixed € we’ve found K compact s.t. F;(K) > 1 — ¢, VE;; thus {F,} is tight.

(a) limsupE[|X,|"] = M < oo = {F,} is tight: to translate this assumption into a statement

n—oo
regarding probability measures, observe that

lim sup F), ((—o00, —A) U (A, 00)) = limsup P(|X,,| > A)
n—r oo

n—oo
1 1
— —limsup A P(|X,,| > A) < — limsup E[|X,,|" - 1x, 5]
)\'r n—oo )\T n—oo "
1 M
= o P Rl = 5
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and so lim sup F, ((—o0, —A)U(A, 0)) — 0 as A — oco. Thus, there is some A s.t. lim sup F, ((—oo, —A)U

n—o00 n—oo
(A, 0)) < € for any fixed € > 0. Then,

lim inf F, ([—A, A]) = liminf (1 — F,,((—o0, —A) U (A, 0)))

n— oo n—oo
=1 —liminf F, ((—o0, —A) U (A, 0))
n—oo

>1—limsup Fy,((—o0, —A) U (A,00)) > 1—¢

n—00

This means that for all large enough n, F,([—A, A]) > 1 — ¢, and so similarly as above in (b), we
just find the corresponding A; for all the F; for ¢ not “large enough”, and then take the max to
find a compact set that works for all the Fj.

Problem 4

2
n

2

Suppose that we have Z ~ Normal(0,1) and g, — p < oo and o7 — 0 < oo. Then, defining

Xn =q pn +0nZ and X =4 u+ o7, we get:

(b) [E[f(Xn)] = ELf(X)]| < IfllpE[min {1, |un — p| + |on — o] -|Z]}] (for any f € BL(R)):

|E[f(Xn)] = E[f(X)]] = [E[f(Xn) = F(X)]| = [E[f (1 + 00 Z) = f(n+ 0 2)]|
<E[|f(pn +0nZ) — f(p+0Z)]]
<E[||fllpr min{1, |(z + 0Z) = (i + 0uZ) |}]
< || fllBLE[min {1, |pn — p| + o — o] - | Z]}]

where we used the fact that X =4 Y = E[f(X)] = E[f(Y)] (could be proven with the law of

the unconscious statistician), the BL-inequality, and the triangle inequality.

(a) X,, —4 X: this is equivalent to showing E[f(X,)] — E[f(X)] for any f € BL(R). From (b), we
know that

B[ ()] — L (X)]| < [1£1]52E[min {1, | — ] + low — o] - |21}]
< fllBLEllpn = pl +lon — ol - | Z]]
= 11l (i = 1l + low = o] - E|Z])
For large enough n, we can easily bound this by any ¢ > 0, because p,, — ¢ and o, — o (||f||BL

and E[|Z]] are just constants here). We’ve just found that for any f € BL(R), we can find N s.t.
n>N = ‘E[f(Xn)] —E[f(X)]|, and so E[f(X,)] — E[f(X)] for all f € BL(R).
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522 HOMEWORK 6
DANIEL Rut - 2/26/20

Problem 1

Polyé’s urn: initially at ¢ = 0, we have 1 black and 1 white ball. At each time ¢t = 1,2,..., a ball is
chosen randomly and is replaced together with a new ball of the same color. Thus, immediately after
t = n, there are n+ 2 balls total and B,, + 1 black balls, where B,, is the number of black balls chosen
by time n and the 1 is from the initial one. Define M, := Bn"j;, i.e. the fraction of the balls that are
black immediately after ¢ = n. Then, with «,, := o[M, ..., M,], {Mp, 4, }n>0 is a martingale:

Bpy1+1 1 1
E(M, d4,) =E 7‘ = — _E(B, B
(M a]sin) ( n+3 n) n+3 (Bn1|Bn) n—+3

= %H((Bn+1)Mn+Bn(lfM ))+L

n+3
N n+3 n+3 42 "

Furthermore, notice that P(B; = k) = § for k € {0,1}. Assuming that P(B, = k) =
k €{0,...,n}, we inductively get that

— +1 for all

PUByia =) = ELP(Baia = HB)] = B| & P(Brs = B, =) s,y
=0

E[P(Bnt1 =k|Bn =k) -1, =) + P(Buy1 = k|By =k — 1) - 1ip, —_1]]
P(Bpy1 = k|By, = k)P(By = k) + P(Bpy1 — k| By = k — 1)P(By = k — 1)

(1 jf;;). (Bp = k) + S04 p(B, =k —1)

= 25 ((n =k + 1)P(B, = k) + kP(B, = k - 1))

which equals m in all three cases: k = n + 1, for which the first term is 0; £k = 0, for which the

second term is 0; and k € {1,...,n}, for which the terms cancel neatly. Thus P(B, = k) = P(M,, =
% forall k € {0,...,n} (a discrete uniform distribution), and so © := li_>m M,, ~ Unif(0, 1).
n oo

k
) =
Lastly, {N¢, d,,}n>0, where N := %93 (1 — )"~ B is a martingale:
+2)! B
E N9 eﬁn =K (n 0Bn+1 1—0 n+1—By 41 Bn>
(¥ ale) =B B 0P - 0)
(n + 2).93,&1( _ Q)n—B" (n + 2)!9Bn(1 _ 0)n+1—B"

S e ey Ly prare ey TR G

picked black, prob.M,, = B,11=B,+1 picked white, prob.1-M,, = B,11=B,
)!98~ (1 — g)n=Bn 2)6 2)(1 -0

e DWR O (20 0420-0)
B,l(n— B,)! B, + 1 (n+1— B,)

— NO.

n
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Problem 2

We want to prove Doob’s £,-inequality: for a martingale {X,,, ¢, }n>0 and r > 1, the following are

equivalent:
(i) {|X,|"} is integrable
(i) X e Xoo
(iii) {X,} is uniformly integrable and X,, =, Xoo € £,
(iv) {|X,|"} is uniformly integrable
(v) {IXnl" Antnepo,00) is @ submartingale and E[| X,,|"] ~ E[|X|"] < 0o

Just from the initial assumption (that {X,,, %, },>0 is a martingale and r > 1), we get that g(z) = |z|
is convex = {|X,|,4,}n>0 is a submartingale. Furthermore g(z) = |z|" is also convex, so

{|Xn|", dn}n>o0 is also a submartingale.

Immediately, we see that {|X,,|, ¥y }rn>0 issubmg = [(i) < (iv)] (by HW#5P5), and {|X,,|", Ay }n>0
is submg = [(iv) < (v)] (by part (B) of the (sub-)martingale convergence theorem).

(i) = (iii): also, in HW#5P5, we proved as an intermediary step that {|X,|"} integrable —
{|X»|} uniformly integrable, which of course is iff {X,,} uniformly integrable. Part (A) of the s-
mg convergence theorem gives us that X,, =, Xo € £, and Fatou tells us that E[|X|"] =
E[llnrglgf |Xn\r} < linrgingHXnV] < srtlepEHXnV] < 00, and so Xoo € £,

{|Xn|} being uniformly integrable implies that {X,,} is uniformly integrable, and because we are on a
finite measure space that implies that {X, '} is integrable. Hence, by part A of the (sub-)martingale
convergence theorem, (ili) = X, —as Xoo € £1 = X,, =p X, which by Vitali’s theorem,
means that (iii) = ((iv) <= (ii)). Because (iii) can be deduced from (iv), this proves (iv) =
(ii). The other direction (ii) = (iv) is given by one of the big theorems from chapter 3 (Theorem 5.7).

Lastly, (iii) == (i): part Paul Vondiziano B of the s-mg convergence theorem gives that {| X[, %5 }ne0,00]
is a submartingale, and so |X,| < E(|Xx||d,) = [X,|" < E(|Xoo||4]) < E(|Xo|"|dn) =
E[|X,]"] E[|[Xs]"] < 00 = supE[|X,,|"] < oo (because X € £,).

neN

Problem 3

'Warning!: I've switched the use of Y and X because I borrowed some notation from homework #4.
Also, as written, the problem statement looks like it’s saying that P and @ are measures on the real
line, which would imply that g—g is a function of the real line, while Y7, ... are functions on (€, &).
Immediately this seems incompatible, so I've tried my best to interpret the problem in such a way

that the types match up.
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Let Y1,Y5,... be independent on some probability space (2, %4, P), and suppose ( Paul Vondiziano
assume?) they have density py (w.r.t. some measure p), i.e. Fy, (B) = Pi(B) = [gpipdp, ie.

Pr = @ the Radon-Nikodym derivative. Now suppose that we have some other candldate density

qr (W.r.t the same measure p) s.t. Qp < Py < p. Define X, = & g’“g (which is > 0 because densities

are > 0).

(a) Defining M,, := [[,_; Xi and o) = o[Y1,...,Ys], {M,, di}x>1 is essentially Kakutani’s mar-

tingale. Note our usage of the law of the unconscious statistician and of the change of variables

theorem:
nt+1(Yn 1 (Yo
E( n+1|g1n) (q +1( +1) Mn ﬁn) —a.s. MnE |:q+1(+1):|
Prt1(Yni1) Prt1(Yog1)
In+1(Yng1) / Gnt1(T
= M, / dP = M, 7dF (z
" Ja Prnt1(Yns1) " Jo ppga(z) (=)
a1 (t) dF n
:Mn/ In+1(t) Yot ( - M, /q a(t Pt (1) du(?)
R Pnr1(t)  du Py (t

:Mn/anJrl(t)d/i() My Qu41(R) = M,

n
Lastly, regarding the mean: E[M,] = {H Xk] = H H Ja ]'i’;(i/,’;; dP=J]1=1
k=1 k=1

Regarding the likelihood ratio interpretation: note that the P, and Qi are all measures on the
real line; i.e. Py, Qp : B — R. Define of), = o[Y;] = Yk_l(%). Then for any Ay € oy, there
is some B € % s.t. kal(B) = Aj. Thus for every A € o) and its corresponding B, we can
define ]Sk(Ak) = P;(B), meaning that 13;C : A — R. We can similarly do this to @ to get
Qr : dy, = R, Qu(B) = Qu(Ap).

Now because Qp < Py, there is some function dQ’“ s.t. Qr(B ) B ‘é%” dP,. The law of the
unconscious statistician gives that this integral is = fY 1(B) de (V) de = fA fi%’: (Yx) dﬁk

(because Py(B) = ISk(Yk_l(B)) is in fact the induced measure). But Qz(B) = Qr(Ax) so
Qr(Ar) = [, 93=(Vr) dPy!

Furthermore Q) < Py (b/c Pe(Ax) =0 <= Pu(B) =0 = Qx(B) =0 <= Q.(Ax) =0),

meaning that there is a unique (a.s.) % s.t. @k(Ak Ay de dp,. Thus, dQ’“ =, ?1%: (V).
k
This relates to the X} above because the chain rule for Radon-Nikodym derlvatlves tells us that,
_dQr  dQp dP,  dQg dQr
qr = —a.s. ' = ‘P —> —a.s. —_
du de d,u de de Pk

and hence @k(Ak) = fAk X d]Sk, VA, € A. We are now ready to define the product measure
P, = [[}_; Pi, where Pp(A; X Ay x ... x A,) = Py (A1) - Py(A) -+~ P, (A,) (similarly Q,,). Be-

cause the Radon-Nikodym derivative of a product measure is the product of the R-N derivatives,
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we have that

/ H X, dP,

A =1

for any A € o, :=o[{A1 x...x A, : A; € d;}]. Thus, M,, = [T;_, Xk is equal (a.s.) to dg:. If
we think of the infinite dimensional o-algebra o := o[{A4; X Ay X ...: A; € ;}] and the infinite
product measures P := [T, P, and Q == [T, Qr (both measures : o — R), then P, = P|y..
(restriction to a sub-o-field #4,,, where we tweak o, to be := o[{A1 X...x A, xQx...: A; € 9,}]
and so 4, C Apy1), and same for én. Thus {M,,, dn}n>1 fits the form of a likelihood ratio
martingale: for any A € o, (m < n),

/AMndﬁ:/AMndﬁn:@n(A):()m(A):/AMmdﬁ :/AMmdﬁ

implying that [, M, — M, dP =0 for all A € o,
Not quite sure what’s going on here...if we don’t know that Q < P, how do we even define dQ ?

From Kakutani’s martingale theorem, {M,,} uniformly integrable <= []}" E[\/Xn] > 0; thus

we just need to prove the following equality:

TTE[vV%] =TT [ Vo o >0

Under my interpretation, we would have that

-/ \/;?Z(Yn)dP— / \/;fm dFy, (z)

which doesn’t get us to Lebesgue measure/regular integration on the real line...

If p, = ¢, then fR /PnQn dr = fR pn dz will be 1 (integrating a density function on R always
yields 1 and so the product in (c¢) will be 1 > 0. Now for example take p,, to be the density of
Unif(0,1) and ¢, to be the density of Unif(0,2). Then [, \/Pndndz = [5 /10,1 5 - Ljo,2) dz =

fo \/j dr = \/j which would go to 0 in the infinite product. Similarly if we take ¢, to be
the density of Unif(0,1), we would get [; \/Pndn dz = [ /1j01] 2" lig, 1 dv = 1/2 V2dx =

which would also go to 0. Thus, the condition (c) is satisfied in the case of uniform r.v.’s when the
distributions are exactly the same each other. In general, the statistical meaning when it holds
will be if the distributions are similar, and the meaning when it fails will be if the distributions

are different.
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Problem 4

Let X and Y be random variables > 0 where AP(X > ) < IE[Y . I[sz]] for every A > 0. We know
that for any p > 1,

E[X?] = /0 P(XP > x)dx = /0 P(X > z'/P)dx = /0 puP " P(X > u) du

(where these equalities hold even if the integrals end up being oo — i.e. one diverges <= the other
diverges, and one converges <= the other converges to the same value). The following (in)equalities

use Fubini-Tonelli (because every function involved here is > 0) and Hoélder’s inequality:

E[X?] = / puP ' P(X > u) du < / pu?? E[Y - Lix>y] du
0 0

:/ E[pul™? Y x> du:E[/ PP Y (@) Iy () dU}
0 0

X(w)
pY(w)/ uP~2 du

0

Blov x| = Lomlyx) < L@ (s|oo TR )

]E{pY(w) /OOO P2 s (w) du] =FE

1—1
I3

P PI)F (E[XP])
= o1 EVP)*(EXT])

p
Rearranging yields that E[X?] < (p%l) E[Y?], as desired. Lastly note that E[X?] =0 or E[Y?] = o0

don’t affect this inequality, because everything here is > 0 and < oo respectively.
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522 HOMEWORK 5
DANIEL Rur - 2/19/20

Problem 1

We have a martingale {X,,, %, }»,>0, a predictable process {H,,, &, }n>0 (i.e. Hy, is o,,_1-measurable,
and Hy is constant i.e. {0, Q}-measurable) and W,, := (H - X),, := > 1 _; HxAXy := >} Hp(X) —
Xk_1)-

(a) Assuming that the H,, are bounded (for ease I guess?) and keeping in mind that H,1 is o,,-

measurable,

IE[VVn+1 - Wn|~%n] = IE(}In-i-l()(n+1 - Xn)|=94n) =a.s. Hn+1E(Xn+1 - Xn|&¢n)
== n+1 (E(Xn+l|94n) - Xn) —a.s. Hn+1(Xn - Xn) =0

and so clearly {W,,, 4, }n>0 is a martingale.

(b) We want to show that L, = W2 — (W),, is a 0-mean martingale w.r.t. o,, where Lq := HZ (X3 —
E[XZ]) and

(W ZHk (AXy)?|ety—1) + HIE[X]]

= HnE((Xn - Xn—l) |an—1) +

A, _1-msble

First, we compute
E(Wpi1lsdn) = E(Wai1 — Wi + Wa)?|dd)

E((Whs1 = Wa)? 4 2Wo(Whg1 — Wy) + (Wn)?| )

_ E((HnH(XnH — X)) sdn) AW E(Wot — Wilddy) + (Win)?

_ HfLHE(((XnH - Xn))z‘gﬁn) + oW, (W — W) + (Wi)?

= H: E((AXn41)?|dn) + (W,)?

2

Then,
B(Lnsy — Lalsl) = E(W2 (W) — W2+ (W) s
= E(Wisr = Wi = (W + (W)nlstn)
= HyE((AXp11)? | ) + (Wn)? = (W) = (Wnia + (W)
= H E((AXi1)?|d) + (Wa)* = (Wa)? = HY GE((AXi0)?|od) =
Because { L, oy }n>0 is now a martingale, E[L,11] = E[L,] = ... = E[Lo] = E[H}(X¢ - E[XZ])] =

HZE[XE —E[X3]] = 0 (recall that Hy is constant). Thus {L,,d, }y>0 is also O-mean; this in

combination with the predictable process (W), is Doob’s decomposition of {W2, o, },,>1
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Problem 2

We suppose that {X,,, «,,} and {Y,,, 4,,} are submartingales. Then by the definition of submartingale
and that X <Y = E(X|9) <us. EY9), X, <as EXpnt1]dn] < Emax{X, 11, Yni1}|dn)]-
Likewise, Y, <.s E[YVh41]|9s] < Emax{X,41, Yni1}Hn], and so max{X,,Y,} <.s E[Yni1|d,] <
Emax{X,+1, Yn+t1}|4y], which of course means that {max{X,,Y,}, 4.} is a sub-martingale.
Problem 3
Let X,Y € Ly(2, o4, P) and @ a sub-o-field of /. Then because E(Y|9) is @-measurable, E[E(Y|9)] =
E[Y], and E(XY|9) = YE(X|9) when Y is @-measurable,

E[XE(Y|2)] =E []E (XIE(Y|@)‘QZ)} = E[E(X|2)E(Y|D)]

We can switch the X and Y to get that E[XE(Y|92)] = E[E(X|2)E(Y|92)] = E[YE(X|9)].

Problem 4

Let Ty, Ts,... (> 0) be (extended) stopping times (w.r.t. a filtration @, of &, i.e. all o, sub-o-fields
of of and A; C A, for s <t);ie. [T; <t] € oy for all ¢ > 0.

(a) If the o, are right-continuous (i.e.
then T} + 15 is also a stopping time:

i>i dj = o for all i or equivalently N1 i1 ym) = 4i),

T+ T <tl={weQ:YmeN,JaeQst. T1(w) <a+ L and Th(w) < (t—a) + =}

ﬁ U[Tlfa“r%]ﬂ[’fzg(t_a)_’_%}

m=1a€cQ

but a < =L ora>t+L = [[1 <a+ =]N[T2 < (t—a)+ 1] =0, so for any a € Q,
[Ty <a+ L]N[Th < (t —a) + 1] is definitely in ;1 (2/m). Thus the sets that remain after

intersecting over all m € N must be in the 9, (2/,,) for all m € N, which by right-continuity
means that [T7 + T < t] € o;.

(b) Define o, :={Aed : AN[T1 <t] € A, for all ¢t > 0}; similarly «dp,. Now if A € o, then
AN[Ty < Ty € dr, because
[T1§Tg§t]:{wEQ:VmEN,EIaEQ[Oi_#] s.t. T1§a+ianda—%<T2§t}

m

where Qy, := Qo ;17 :=QNI0, — Lyu{t— L1} andso

Am[TlgTQ}m[TQSt]:(Am[Tlgt])m< ﬁ U [T1§a+%]ﬁ[a—%<T2§t]>egdt
m=1a€Q,,

Taking A =Q, [Th < Ts] € Ay, = [T1 > Ts] € Ap, and by symmetry [T> < T3] € dp, =
[TQ > Tl] € QdTl- Furthermore, [T2 < Tl] S QdTl — [TQ < Tl] n [T1 < TQ] = [Tl = TQ] € 91T2
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and so it is clear that [T7 < T3], [Th = T3], and [T} > Ty] are all in both oy, and dr,.

(¢c) Ty <Tpthen [Ty < Tp] =Qand so A € A, = A € drp,, i.e. dp, C dp,. Therefore,
Amin{ry, 1y = A1, N A, because min{T1,To} < Ty and Ty = Apingr,, 1) € 7, and A,
and because AN [min{T}, T2} < ] = AN ([I1 < JU[T> <)) = (AN <) U(AN[T; <
t]) = (AeTinTy, = A€ duyinir, 1))

Additionally A € dpy, = AN[T1 <Ty] € Ay, but also [T1 <Ty] € Ay, so Ae Ay, — A€
[Ty < Ts] € dp, Ndr,.

(d) If we have {T,,} such that T;, > Tpy1 > ... > T and lim, o T, = T, then we know that
dp C...Cdr,, Cdp, and so dp C (.2, dr,. For the other direction, it would be easy if
[T < t] = Ns=,,[T; < t]; this of course does not work because all the T}, could be > ¢ while still
having their limit be T" = t. The fix is to write

T<t]={weQ:YmeN,ANeNst. Vi>N, T;<t+ 1}

N UNE<t+ile () doam
m=1

m=1N=1i=N

We are allowed right-continuity, so [T’ < t] € «f;. Adding back an A € (=, <,

i=n

oo 0 XX

Anr<f=An () U NI <t+ 2]

m=1N=1i=N

= n mAﬂ[E§t+%]€ n dt—}—(l/nb)
m=1 N=1i=N m=1

and so AN[T <t] € oy forall t > 0.

Problem 5

Let {X,,, 4y }n>0 be a submartingale with X,, > 0. Then for any r > 1, {X/ } is uniformly integrable
if and only if {X} is integrable:
( = ) recall that being uniformly integrable on a finite measure space (u(2) < o) implies being

integrable:

/IfIdu=/ Ifldu+/ ldu < e+ 2 (@) < o
Q [1£1>A] 1fI<A]

for a sufficiently large .

(<) g(z) = |x|" is convex, and so {X, A, }n>0 is also a submartingale. The (sub)-martingale con-
vergence theorem tells us that X] —,s X2 € £1 (everything still > 0), and that {X]} is uniformly
integrable <= {X} is integrable and limsup E[| X |] < E[| X%, |] < co and so we just need to show
limsupE[X"] < E[X7] < cc. e

n— oo

First we show that {X,} is uniformly integrable (and hence that X,, converges a.s. to an X, € £
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that closes the martingale which would give that E(Xoo|dy) >as. Xn, Vn € N):

)\r—l X;il . Xn -1 X, >\
X" : 1[Xn>>\] = Ar—an ’ l[Xn>A] < Ar—l [ 22
1 r 1 r r
B[, o] € BN L] € e BIXT] < 1y supELXY
A A A neN

which goes to 0 as A — oo. Then as advertised E(Xoo|dy) >as. Xo = E(Xoo|dy)" >as. Xi =
E[X"] <E[E(Xw|n)"] < E[E(XT|4,)] = E[XZ] for all n, and so clearly limsup E[X”] < E[X7].

n— oo

Finally, Fatou (which only requires f > 0) tells us that

E[X"] = E[ lim X,ﬂ - E[limian,ﬂ < liminf E[X"] < sup E[X7] < oo

n—oQ n—oo n—oo neN

and we are done.

Problem 6

Let’s start at generation zero with a single individual, who then produces some individuals in the first
generation, and so on. Let Z, be the number of individuals from the n-th generation (so Zy = 1).
Let X,,; denote the number of offspring of the j-th individual of the n-th generation (so Xo1 = Z1).
Then Zp+1 = Zf;l Xn; (for n > 0). Furthermore, all the X’s are i.i.d., and py = P(X = k) for
ke{0,1,2,...}, and m :=E[X] = > ;"  kpr < o0 and py > 1 and po + p1 < 1.

(a) Define W,, := Z,/m™ and o, := o[Wi,...,W,]. Then {W,,d,},>0 is a martingale with
E[W,,] = 1. Furthermore, if 02 := Var[X] < oo, we can calculate Var[W,,]:

e When m =1, W,, = Z,, and so Var[W,,] = Var[Z,,] where

Var|Zns1] = E[Var(Zns1|Zn)] + Var[E(Zps1|Z0)]

Zn
Z,,) E ( S X Zn>
j=1

= E[Z,Var[X,,]] + Var[Z,E[X,,]] = ¢°E[Z,] + Var[Z,,]

=K + Var

Jj=1

Z’Vl
Var| > X,

Notice that in the computation above we said that E[Z,,+1] = E[E(Z,+1|Z,)] = E[Z,E[X,.j]] =
E[Z,], and so all the E[Z,,] = E[Z,] = 1. The formula then becomes Var([Z,, ;1] = 0>+ Var|Z,)],
where Var[Zp] = 0, and so Var[Z,.1] = (n + 1)o?. More beautifully that’s Var[W,,] = no?.

o For m # 1, note that E[Z, 1] = E[E(Zn41|Zn)] = E[Z,E[X,j]] = mE[Z,] = E[Z,] = m™.
Var|Zns1] = E[Var(Zni1|Zn)] + Var[E(Zps1|Z0)]

Then,
Zn Zn,
Var Z an Zn E Z an Zn
j=1 j=1

= E[Z,Var[X,,;]] + Var[Z,E[X,,;]] = 0*E[Z,] + Var[mZ,]

= o?m" + m*Var[Z,]

=E + Var
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Listing the first couple Var[Z,] out we get that

Var[Z,]
0

a2mP+m20=0

2

o2m! + m2(02) = o2m! + o2m?2
o2m? + m2(a2m1 + gzmz) = o2m2 + o2m3 + o2m?
a?m? + o?m?* 4+ o?mb + o2mS

o?m? + o2mP + o2mS + o?m7 + o?m8

U W N = O3

. 2 - - _ayntl
and so it is clear that Var[Z, 1] = 02> ;" m' = o*m" Y. m’ = g?mniz2 —

1-m °

Thus,

Zn+1 1
Var[W, 1] = Var |:mn+1:| = n2n+2 Var[Zn1]
a?m™(1 —mntt) , mttl—1 y 1 —m~(+D)
= =0 =0
(1 — m)m?n+2 mrt+2(m — 1) m(m — 1)

and so Var[Wn} =o? 71;?1?;—_:) .

(b) If we define generating functions f and f, of X and Z, resp. by f(s) := > oo, sFpp and
fn(s) =10y s"P(Z, = k).

i

f(fn(s))zz ZSjP(Zn:j) y2

i=0 \ j=0
> i
= Z Z ;5a1+2a2+...])(zn _ 1)a1 ~P(Zn — 2)(12 s
— _aq!--ayl
i=0 \ai1+az+...=%

The coefficients of s* will be :(
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522 HOMEWORK 4
DANIEL Rur - 2/12/20

Problem 1

Let X1, Xo,... be independent r.v.’s with X}, > 0 and E[X] = 1, and let M,, := [[,_, Xx with M; :=
1. Then — recalling that E(XY|9) =, YE(X|®) if Y is 9-measurable, and E(Y|9) =, E[Y]
if #(Y) and 9 are independent — {M,,, Ay, }rn>0 (Where &, := o[X7,...,X,]) is a martingale with
E[M,] = 1 for all M,:

]E(Mn—&-ﬂdn) = E(X7L+1 . Mn‘dn) = Mn]E(Xn—&-l‘ggn) =a.s. Mn . ]E[Xn-i-l] =a.s. Mn

Problem 2

Recall from class that M := N, — At (for {N,} a Poisson process with A > 0) and M? — X\t are both
martingales. We want to recover both of these (and more!) from the exponential martingale
eth(w) ecNt (w)/ec)\t ecNt (w)

Y(e, t,w) = E[eCM‘(“)] = E[ecNt(w)]/ec)\t - E[eCNt(W)]

Note that N; ~ Poisson(At), so the induced measure is Fy,(A4) = > jcanz., ()‘t);i,e_m Thus by the

law of the unconscious statistician,

= Mt > C)\t . .
E[GCNt:I _ / ecT dFNt(x) _ Z ck( ) )\tz _ ef)\tee At e(e —1)At
R k=0
ecNt(w)
Therefore, Y(c,t,w) = e Ve To verify that these Y do indeed form a martingale, observe that
e\e

1 1 . .

E(Y(c,t)|ds) = e ( cNt|Qg ) WE(ecNt Ny | goN, S)
e N¢—cN, ectte cN¢ —cN;

s WE(B s) =as. WE [6 ]

N; — N; counts the number of things that happen between s and ¢, so this is also ~ Poiss(A(t — s)),

and so
e e Da(t-s) e
E(Y(Ca t)|gj€) —a.s. me = M = Y(C, S)
Lastly, we just do some differentiation:
%Y(c, t) = (N; — e°At)eNe— (" DAt
D Y(e,t) = (N; — e“at)2eNem(TmDA _ geyp . oeNem(em =Dt

and so [%Y} (0,t) =Ny — Xt and = [%Y] (0,t) = (N; — At)2 — At. See Problem 6 (now commented

out) for higher derivatives.
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Problem 3

For Xi,...,X,, independent with mean 0, Sy = X1 + ... + X, and Ay = o[Xy,..., Xi], observe
that (because E(Y|9) =, Y if Y is @-measurable, E(XY|9) =, YE(X|9) if Y is @-measurable,
E(Y|9) =as. E[Y]if F(Y) and 9 are independent, and linearity):

E(Spd;) =E((Sk — Si)* +28:(Sk — Si) + S7| ;)

= E((Sk — Si)?|sds) + 2E(Si(Sk — Si)|sds) + E(S7| ;)
=as. E[(Sk — Si)?] + S;E[Sk — Si] + S}

=E[S7] — 2E[SkSi] + E[S?] + 0+ 57

=E[S7] — 2E[(Sk — 5)S; + S7] + E[S7] + 0+ 57
=E[S;] — 2E[Sk, — S;JE[Si] — 2E[S]] + E[S7] + S7
=E[S{] + 57 - E[S7]

and so E[Sﬁ — ]E[S,%] Mi} =52 - E[Sﬂ, implying that {S? — E[S,f],gik}lgkgn is a martingale.

Problem 4

Defining T}, := % + ZZH %, where 0 < by < --- < by, {Sk, Ak} 1<k<n is a martingale, E[S;] = 0,
and Xy := Sy — Sk—1 (and X7 := S1), we have that for any j s.t. n <j <k,
. Wj) +T;

k
E(Ty|sd;) = B(Th — T + Tj|sd;) = B(Ty — Tj|sd;) + E(T;|s4;5) =as. E(Z 3

Jj+1

7Z]E(X\94)+T ZE(S|&1)E(11\§1)+T7anS s]JrT T,
Jj+1 Jj+1 j+1

and so {Ty, Ak }n<k<n is a martingale. For the variance, we can just go back to the basic defini-
tion (let’s overwrite by,...,b,—1 to all just be b,; it’s not like they show up anyways), keeping in
mind that Sy is Ag-measureable, the of, are increasing (hence X}, is also Ag-measureable), and that
E(XY|9) =as. YE(X|9) if Y is 9-measurable:
N 2
(4 2%)
n+1

Var[Tw] = E[T%] — E[Tv]* =E[T}] =E =E

N 2
21X X
( T b> ]
n+1

n N 2 2 2
X, X, N X, N X; X X
:E(Eb:+2b5> :E[( : b:)]:E PR
1 n+1 ‘ 1<i#j<N
N E 12 ]E[Xlx] N 2 E|E XiXJ|91]'71
SO 2 T, :Z%JFQZKKJ‘SN[(TJ-)]
1 b; 1§z<j§N 1
N E[XE(X, |, N (g g N2
:Z%+2 Z [ (bl;} J 1)] 22%4_2 Z ]E[XL(SJb:;A SJ 1) Z%
1t 1<i<j<N ’ 1 1<i<j<N ’ 1
n 2 N 2
which when we un-overwrite the by, ..., b,_1, becomes 21: o Z 0—2
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Problem 5

Let Y1,Ys,. .. be independent on some probability space (2, «, P), and suppose (assume?) they have
density py (w.r.t. some measure p), i.e. Fy,(B) = Pi(B) = [pprdu, ie. pp = @ the Radon-
Nikodym derivative. Now suppose that we have some other candidate density gy (w.r.t the same

measure p) s.t. Qp < P < p. Define X = 2 E};"g (which is > 0 because densities are > 0). Then:

(a) defining M,, := [[;_, Xi and o) = o[V1,...,Ys], {M,, di}r>1 is essentially Kakutani’s mar-
tingale. Note our usage of the law of the unconscious statistician and of the change of variables

theorem:

n Y;l
E(Mjy1|st,) = E (q +1(Ynt1) M,

o > — M. E[Qn+1(Yn+1):|

anrl( n+ 1) pn+1(Yn+1)
n Y’I’L n
_y, [ (i) J P = M, /q“ dFy"H(x)
Qpn+1( n+1 pn+1
t) dF:
_ /Qn-i-l ) Yn+1( Mn/ Qn-‘rl pn+1 )d,u(t)
R Prt1(t) Prya(t

= Mn/ Qn+1(t) dﬂ(t) = MnQn-{-l(R) =M,
R

Lastly, regarding the mean: E[M,,] = {H Xk] H E[Xy] = H Jo z’;()}jzg dP = H 1=1.
k=1

(b) note that the P and @ are all measures on the real line; i.e. P, Qr : B — R. Define
dy = o[Yy] = Y, '(®). Then for any Aj, € o, there is some B € B st. Y, '(B) = A
Thus for every Ay € o) and its corresponding B, we can define IBk(Ak) = Pi(B), meaning that
ﬁk : A — R. We can similarly do this to Qj to get @k s, = R, Qr(B) = @k(Ak).

Now because Qi < P, there is some function fi%:‘ s.t. Qk(B) fB de dP;,. The law of the

unconscious statistician gives that this integral is = fY 1(B) de (V) de = fA (:16123: (Yi) dIB;€

(because Py(B) = ﬁk(Y_l(B)) is in fact the induced measure). But Qi(B) = Q(Ay) so

Qu(Ay) = = Ja, z%f Vi) dPy!

Furthermore Qy < Py (b/c Pe(Ay) =0 «= P(B) =0 = Qi(B) =0 < Qn(Ag) = 0),

meaning that there is a unique (a.s.) % s.t. @k(Ak fAk de dP Thus, dQ’f =, ‘f}: (Yi).

This relates to the Xy above because the chain rule for Radon-Nikodym derivatives tells us that,

_dQy _ dQy dPy _ dQy dQr _
qk du a.s. dP, dp dP, Pk dP, a.s. .

and hence Qk(Ak fA X dﬁk, VA € di. We are now ready to define the product measure
=T1Ti, Pk, where P n(Ar x Ay x ... x Ap) = P (A1) -ﬁg(Ag) e ﬁn(An) (similarly Q). Be-

cause the Radon-Nikodym derivative of a product measure is the product of the R-N derivatives,

A) = / 11 xx dPs
Ap=1

we have that
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for any A € o,, :=o[{A1 x...x A, : A; € d;}]. Thus, M,, = []}_, X) is equal (a.s.) to %’:. If
we think of the infinite dimensional o-algebra of := o[{A4; x A3 X ...: A; € ¢;}] and the infinite
product measures P := e, Py and Q := | ) Qr (both measures : @ — R), then P, = P|y..
(restriction to a sub-o-field «,,, where we tweak o, to be := o[{4A1 X... XA, xQx...: A; € A;}]
and so Ay, C 9py1), and same for én. Thus {M,,, 4 n }n>1 fits the form of a likelihood ratio
martingale: for any A € o, (m < n),

/AMndﬁz/AMndﬁ :@n(A)zém(A):/AMmdﬁ :/AMmdﬁ

implying that [, M, — M, dP =0 for all A € o,,.
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522 HOMEWORK 3
DANIEL Rut - 2/5/20

Problem 1

We have X,Y ii.d. with continuous d.f. F, and M = max{X,Y}. We want to verify that

From definition, P(X < z|M) := P(X < z|F(M)) := E(1x<y|F (M)), so the following must hold:
/ E(l[xgm]‘g(M)) dP = / I[XSQ:] dP, VD € g(M)
D D

It suffices to show the equality for all D € {[M < m]:m € R} (cf. Axler MIRA). Note that we are

integrating w.r.t. w € Q here, not x, and so F(z) can be taken out of the integral as a constant.

1 F(z)
/[M<m] (esal# (M) 4P /[M<m] Hrse *z > F(M) Liar>q) dP
1 1
=P([M <m|]N[M < z]) + 3 F(x) /[I<M<m] b AP

If > m, then the 2nd term is 0 and the 1st term is P([M < m]). Furthermore, [M < m] C [X < z]
(b/c for any w, M(w) <m = X(w) <m < z). Thus, P([M <m]) =P([M <m]N[X <z]).
Now for # < m: note that Fys(z) = P([M < z]) = P([X < 2]N[Y < z]) = F%(z). Then, by successive

applications of the law of the unconscious statistician, we get that

aru) = [ -\
/[m<M§m] \/W \/; Fu () \/g

and so the expression just becomes P([M < z]) + 2(/Fa(m) —/Fu(z)) = F2(2) + P([X <
2)(F(m) — F(x)) = P(X < a) P(Y < m]) = P([X < x] v < m]) — P(M < m]n[X < a]).

Problem 2

(a) Defining conditional variance as Var[Y|X] = ]E((Y — E(Y|X))2‘X), denoting Yx = E(Y]X),
and using the properties E[Y] = E[E(Y|9)], E(Y|9) is 9-measurable, E(Yx|D) =, Yx if Yx
is @-msble, E(XY|D) =, YE(X|D) if Y is @-measurable, and linearity, we see that

Varly] = E[(Y — E[Y (Y — Yx + Yx — E[Y))?]
—E[(Y - +2E (¥ = Yx)(¥x — E[Y])] +E[(YX E[y])?]
- IE[IE((Y YX 2| X) Lr 2K ((Y Y)(Yy — ‘X” n IE[(YX —E[vx]) }
= E[Var[Y | X]] + 2E[(vx — EYDE((Y - Yx) ‘Xﬂ + Var[Yy]
E

Var[Y | }]+2]E (Yx — ]E[Y])(YX YX>}+Var[YX]f [Var[Y'|X]] + Var[Yx]
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(b) We want to show that Z := E(Y|%) minimizes E[(Y — Z)?] over all 9-measurable random
variables in L2. Let Z’ be some arbitrary L? %-measurable random variable. Using the same

properties as above, we see that

E[(Y-2Z)]=E[(Y-Z+2Z-2)%
=E[(Y - 2)?] +2E[(Y — mz IN+E[(Z - 2")?]
=E[(Y - 2)*] +2E[E((Y — 2)(Z - 2')|9)] +E[(Z — Z')?]
= E[(Y - 2)?] +2E[(Z - zv << 2)2)] +E[(Z - 2')]
=E[(Y -2 +2E[(Z - Z")EY|2) - Z)] +E[(Z — Z')?]
=E[(Y - 2)’] +0+E[(Z - Z')?]

which means that E[(Y — Z')?] > E[(Y — Z)?], with equality only when Z' = Z (a.s.).

Problem 3

If we assume that Q = | |._; D; for finite or countable I, and let 9 := o[{D;, D3, ...}], then

il

P(AD) =Y Pg‘(gg’m

We verify this by showing that [, P(A|%)dP = [, E(14|%)dP = [}, 14 dP for all D; € % (because
{D;} is a m-system, Dynkin’s m — X\ theorem (4 corollaries) says that two measures that agree on {D;}
agree on 9). Below we probably have to use Fubini-Tonelli (but it’s not that bad because the things

we are integrating are > 0):

AmD) ANDy)
/DZ 1p, dP = ZW/D 1p, dP

i el J

—Z AmD P(D; N D;) = %ﬁ”P(Dj)ZP(Aij)

where the sum collapses because the D; are disjoint = P(D; N D;) = 0. Now for general Y € L,
we want to verify that [, E(Y|?)dP = [, Y dP where E(Y|%) is defined as

E(Y|2) = Z(P(lDi) /DinP) 1p

i€l

We proceed similar to above:

116I<

—Z(

el

YdP>~1D —Z(P(lD)/ YdP)/D 1p, dP
/YdP)P(D nD;) /de
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Problem 4

Given independent X,Y and r > 1, we want to show that E[|X + py|"] < E[|X + Y|"]. Recall the
properties E(Y|9) =, E[Y] if F(Y) and 9 are independent, and g(E(Y|9)) <.s. E(g(Y)|9) for
convex g (for this problem we’ll take g(x) = |z|"). Then,

X +py|" =X +EYX)]" = [E(X +Y)|X)[" <E(|X +Y["[X).
Finally, by monotonicity of expectation and by E[Y] = E[E(Y|9)], we conclude with

E|X + |l <E[E(IX +Y["|X)] =E[|X +Y]"].

Problem 5

C, inequality: E[|X +Y|"] < C,E[|X"|] + C,E[|Y"|], where r > 0, C,. = 2max{r1}-1,
Proof: First recall from the proof of the regular C,. inequality that | X +Y|" < C,|X|"+ C,|Y|". From

monotonicity and linearity of conditional expectation, we can place E(:|%) around this equality to get
E(E[X + Y[')|2) Sas. E(CXI" + CYT|) = CE(IX]'|D) + CE(IY]"]%)

Holder: E[|XY|) < (B[ X[7])"" (B[ X|*])"/* where r > 1, 1/r +1/s = 1.
Proof: Like in the proof of the regular Holder’s inequality, we use Young’s inequality (inheriting our
conditions on r and s):

la[” | [b]*

lab] < — 4+ —  with equality exactly when |a|" = |b]° < |b| = |a
r s

|r71

Now we let a = 7 and b =

x|
(E(xr

7))

% and then take conditional expectations:
E(|Y|s

7))
@) SE(@(:;:;@)\@) ((;gw@)

E(|XY||2) < Eqx1e) | EQYP®) 11,

E(x["2)" ®(Y | |2)* ~ E(X]|2)  SE(Y[F|2) v s

| X| Y|
E<<E<|X|r|@>>l” E(Y*|@))""*

which simplifies down to

Rearranging yields the desired result.

Liapunov: (E[|X|r])1/7‘ is increasing in r for r > 0.

Proof: Let 0 < a < b. By the conditional version of Holder with parameters r = %

r.v.’s | X|% and 1, we get that

and s = bi and
—a

b—a

E(lx|" - 19) < (E((1X1)%(9))F (E(177(2)) T = E(xI"9)"" < E(X]|2))""
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Minkowski: (E[|X + Y[")"" < (B[ X[)"" + E[Y]])"" for r > 1.

Proof: Just like in the proof of regular Minkowski, we start by noting that inequality is trivial for
r =1, and that for » > 1 (and s = -5),

E(IX +Y|"|2) <E((X|+|[YDIX +Y|"92)

=E(X|- [ X +Y["'2) +E((Y]- X +Y|""!2)
(IXI7[2))” (B(X +Y171%[2))" + B(YI|2))7 (B((X +Y)*[2)*

= (E(IXI"|2)) """ (X +YT(2)"" + E(Y]]2))" ©(X +Y]]2)"

= ((E(|X|T|@))1/r + (E(|y|r’@))1/,.) (E(IX + er’@))k(lm

< (E

~—~

IfE(|X +Y|"|2) = 0, the result is trivial, and otherwise we divide to get an exponent of (1/r) on
the left hand side, which is the result.

Jensen: g(E(Y(92)) <as. E(9(Y)|2).

Proof: Tweaking the proof of the regular Jensen inequality a bit (consider a set of lines instead of just
one to account for the fact that we’re dealing with inequalities on r.v.’s and not numbers), observe that
g(x) = sup{l(z) : I € L} where L is the set of lines l(x) s.t. I(z) < g(z) for all x € R. Then, picking
any line ! from L, [(X) < g(X) = E((X)|D) <as. E(g(X)|2). But by linearity of conditional
expectation, E(I(X)|9) = (E(X|D) <as. E(g(X)|9). This is true for any line I, and so we can take
the supremum to get that g(E(X|9)) <as. E(9(X)|92).

A random variable hg (w) =as. E(Y|9) <= E[XY] = E[Xhg] for all @-measurable r.v.’s X (where
E[|XY]] < 00):

(=) For all D € 9, we know that [, hg dP = [, Y dP. Thus, we know that for all X = 1p, the

claim is true. We proceed via the standard machine: for any simple function X := Zi\il ¢ilp,,

N N
/ZCIY 1p, = Ci/ YdPZZCi/ hg dPZ/ZCih@'IDi
=1 D; i=1 D; Q=1

Q51

Now supposing X > 0, we have some sequence X, of simple functions that converge monotonically

to X, and so using the monotone convergence theorem,

E[XY] = E[XY"] ~E[XY"] = lim E[X,Y"] - lim E[X,Y]

n—roo
— i +7 _ — +71 _ -1 =
= lim E[X,h}] - lim E[X,hy] = E[Xohg] - E[Xahg ] = E[X,ho)

Finally, for arbitrary 9-measurable X,

EXY]=E[X"Y] —E[X Y] =E[X*hg] — E[X hg] = E[Xhg]
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(<= ) Take X = 1p for any D and we get that [,1p-Y dP = [,1p -hgdP = [,V dP =
[y hg dP = ho(w) =as E(Y]2).

Problem 6

We have a jar of six identical balls labelled 1, 2, 2, 3, 3, 3. The r.v.’s X; and X5 represent sampling
twice (WITHOUT replacement). The joint probability distribution for (X7, X5) is

X1
1 2 3
1] o |20 3/30 [ 5/30
X, | 2|l 2/30] 2/30 | 6/30 || 10/30
31 3/30 | 6/30 | 6/30 || 15/30
|| 5301030 15730 ] 1 |

Now letting Q be the 3 x 3 grid above, Y = X5, S = X; + X5, and 9 = S~1(%), we want to explicitly
compute the values of the r.v.’s P(Y = 1|9), P(Y =2|9), P(Y = 3|%), and E(Y|9).

Values of S . .
Associated probabilities
2 4
3 ] 2 3 4 5 6
’ P(S=s) | 0] 4/30 | 8/30 | 12/30 | 6/30
6
Using the formula from problem #3, P(Y =i|9) = Z mln, we get the following:
= Py
PY =19)(w) P(Y =2(2)(w) P(Y =3[2)(w)
2/4 | 3/8 2/4 | 2/8 0 | 3/8
2/4 | 3/8] 0 2/4 | 2/8 | 6/12 0o | 3/8 | 6/12
38 0o | 0 2/8 | 6/12 | o0 3/8 | 6/12 | 1

Finally, E(Y|2) = E(ljy=1] + 2 1y + 3 1y=3|2) = P(Y =1|2) +2- P(Y =2|2) +3- P(Y =
3|9):

E(Y|2)(w)

6/4 | 16/8
6/4 | 16/8 | 30/12
16/8 | 30/12 | 3

Problem 7

Supposing that X,Y € LY(Q,%, P) and E(Y|X) = X a.s. and E(X|Y) =Y a.s., we want to prove
that P([X = Y]) = 1. T actually went and hunted down an online pdf of Williams’s Probability
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with Martingales, and so we proceed with his hint (along with the properties E[Y] = E[E(Y|9)] and
E(XY|9) =as. YE(X|9) if Y is @-measurable):

/ (X—Y)dP+/ (X —Y)dP
[X>dn[y <d] [X<dn[y<d]

:/ (XfY)dP:/ Xde/ Y dP
[y<d [y<d [Y<d

=E[ly<gX] —E[ly<qY] =E[E(ly<qX[Y)] —E[ly<gY]

=E[lly < E(X[Y)] —E[ly<qY] :/

E(X|Y)dP — / Y dP =0
[v<e]

v<d
Of course, we can flip the letters around to get: f[Y>c]ﬁ[X<c] (Y -X)dP+ f[

y<anix<q(Y = X) dP =0.

Thus, when we sum the two formulas together we get that

/ (X—Y)dP+/ (X —Y)dP
[X>cn[y <] [X<dn[y <]

+/ (Y—X)dP+/ (Y — X)dP

¥ >dnlX<c] ¥ <dniX<d]

:/ (X—Y)dPJr/ (Y — X)dP
[X>c]N[Y <c] [Y>cN[X <c]

:/ (XfY)dP+/ (Y — X)dP =0
[Y <e<X] [X <e<Y]

We are almost at the point where we are integrating (X —Y) over [X > Y] and (Y —X) over [Y > X];
note that [X > Y] = co[X >c>Y]and [Y > X] =, olY > ¢ > X] (where we use Q because R

is uncountable and we don’t want to deal with uncountable sums). Therefore, we can say that

og/ (X—Y)dP+/ (Y — X)dP
[X>Y] [v>X]

: §</[Y<C<X] (X -¥)dP+ /[X<c<Y] =2 dP) B ZO =0

ceQ

This implies that [, |X —Y|dP = 0, which is only possible if P([|X = Y[ =0]) =1 = X =, Y.
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522 HOMEWORK 2
DANIEL Rur - 1/22/20

Problem 1

We want to prove the equivalence of the following three statements:

) iXk<ooa.s. i{ P(Xy > 1)+ E[X} - ]‘[Xk<1]:| iE[H—XJ

k=1 k=1

We set out to prove that (¢) implies (a) using the 3-series theorem:

(1) Note that X > 1 <= 14+ X; >2 < 1< — %<1f§k — 1<12j§§k.Thus,

1+Xk
3 P(X > 1) ZE (1150 < ZE[ﬁfggk Xk>1]} Zm{lmj
k=1 k=1

<L <1 = X, < 2% <2X;, and so

(2) For the next two, note that 0 < X <1 «— X S X,

1
2
00

ZIE X - 1xk<1 Z [123& Xk<1} ZQE[ Xk}
k=1

(3) Expanding upon the above inequalities, note that Xj < f_ﬁgg together with X < 1 imply that

X,z < X < 1243% , and recall also that Var[Xk . 1[X,€§1]] = E[X,% . 1[Xk§1]] — E[Xk . 1[XkS1]]2 is

always > 0. Thus,

STE[XE 1x,<n] —E[Xk 1x<n]” < Y E[XE 1x,<q)] €Y E[Xk 1y, <y) < o0
k=1 k=1 k=1

Note that our proof in (3) also shows that the two conditions given by (b) imply the variance condition
(because we simply bounded the variance series by the expectation series), and so assuming (b) we
can still fulfill the three conditions set by the 3-series theorem. The 3-series theorem now tells us that
kil Xk —as. S, which trivially gives that kiojl X < o0.

Summarizing, we’ve shown that (c) implies (a) (and hence obviously (b) as well), and also that (b)
implies (a), so all we need to do now is show (a) = (c). We are given that io: X, is finite a.s., so

k=1
let’s say that it is less than M a.s. for some M. Then,

iELf};k] SiE[Xk] <E ixk <E[M]=M < oo
k=1 k=1 k=1
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Problem 2

Let Y7,Ys,... be iid. Cauchy(0,1). From Wikipedia, we know that the characteristic function of the
Cauchy(0,1) distribution is
Py, (1) = E[e"+] = el

Furthermore, Lévy’s continuity theorem gives that ¢g, (t) = @g(t) pointwise for allt € R = [pg(t)
is continuous <= S, —4 S for some S <= S has characteristic function pg|. Let us define

n
Sn = Y. a Yy for some sequence {ay}. Then,
k=1

@5, (t) = E[e"5n] = E[e1 ... ¢itn]
but because the Y, are independent = e®¥* are independent, expectation is multiplicative, so

s, () = E[eitsn] _ E[eitalYl] “.]E[eitanYn] — e—lantl | p—lant] e_|t|,§1|a’“|

oo

If Y |ag| = oo, then for all t # 0, g, (t) — 0; however, for all n € N, pg (0) =1, so ¢g, (0) — 1.
k=1

This of course means that ¢g(t) is not continuous, and so Lévy tells us that the S,, 44 to any r.v.,

and furthermore, theorem 8.1 from PfS says that —4; <= —,., and so S, 5. S for any S.

o0

If > |ak| converges (i.e. is finite) to say a, then pg (t) = ps(t) := exp(—alt|) pointwise for all ¢, so
k=1

Lévy tells us that S,, —4 S where the characteristic function of S is ¢g(t). This of course implies that

S is distributed Cauchy(0,a). Theorem 8.1 again says that convergence in distribution iff convergence

a.s., and so S,, —as. S. In the particular case that a; = Sp —ras. S where S ~ Cauchy(0,1).

2k7

Problem 3

Let a be some fixed value > 0; V, UM U® be independent Brownian bridge processes; and Z be
Normal(0,1) and independent of V. Let us add to the conditions of Brownian bridge processes that
V(0) = V(1) = 0. We want to verify that ...

(a) B(t) = V(t) + tZ is a Brownian motion for ¢t € [0,1]: (1) B(0) = V(0)+0-Z =040 = 0;
(2) E[B(t)] = E[V(£)) + tE[Z] = 0+ 0 = 0; and (3) E[B()B(t)] = E[(V(s) + sZ)(V(t) + t2)] =
E[V(s)V(t) +sZV(t) +tZV(s) + stZ?] = E[V(s)V(t)] + sE[Z]V(t) + tE[Z]V(s) + stE[Z?] =
min{s,t} — st +0+4+ 0+ st -1 = min{s,t}.

(b) BM(t) = B(at)//a is a Brownian motion for ¢t € [0,1/a): (1) BM(0) = B(0)/v/a = 0; (2)
E[BM(t)] = E[B(at)]/va = 0 for t € [0,1/a); and (3) E[BM (s)BY ()] = LEB(as)B(at)] =
L min{as, at} = min{s,t} for s,t € [0,1/a).

(c) BA(t) = B(a + ) B(a) is a Brownian motion for t € [—a,1 —a],a € [0,1]: (1) B®)(0)
B(a) - B(a) = 0; (2) E[B ()] = B[B(a+1)] - B[B(a)] = 0; and (3) E[B(5)BA)(1)] —
EB(a + s)B(a + t)] — EB(a)B(a+1t)] — E[B(a+ s)B(a)] + E[B(a)B(a)] = min{a + s,a + ¢} —
min{a,a + ¢t} — min{a + s,a} + min{a,a} = min{a + s,a + t} — a — a + a = min{s, t}.
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(d) U®) = /T—=aUW £ ,/aU® is a Brownian bridge, ¢ € [0,1]: (1) /T — aU™M(0) + /aU®(0) = 0;
VI=aUM(1) £ /aUP (1) = 0; (2) E[VI—aUW £ /aU?] = /T—aE[UV] £ /aE[UP]
0; and (3) E[U® (s)UP ()] = E[(VI—aUW(s) £ aU® (s)) (vI—aUD(t) £ /aU?(t))] =
(1 — a)E[UND(s)UD(1)] + /a1l — a)E[UD(s)]E[UP (t)] £ /a(l — a)E[UD®)|E[UP (s)] +
aE[UP) (s)UP ()] = (1 — a)(min{s, t} — st) £ 0+ 0+ a(min{s,t} — st) = min{s, t} — st.

(e) Z(t) = [UM(t) + UP (1 — ¢)]/+/2 is a Brownian bridge, ¢ € [0,1]: (1) Z(0) = Z(1) = [UM(0) +
UOW/VE = (0+0)/v2 = 0: (2) B[Z(0)] = (E[UO0)] + E[UE(1-1)])/vVZ = 0; and
) BEEZ0] = JE[UDE) + UD( - ) (U0 + VO ¢ ) = HEOL]
E[U®(1 - s)|E[UD (¢)] +E[UP (1 — t)]E[U(l)( )] +E[U<2>( —t)]) = 2ﬁ(mm{s th—
st+04+0+min{l—s,1—t}—(1—s)(1—t)) = 3 (min{s, ¢} — 25t+m1n{1—s 1—t}—1+s+t) =
1 (min{s,t} — 2st + min{¢, s}) = min{s, t} — st.

Problem 4

(a) Given any two Haar functions g,; and g¢x, we want to show that fol Gnj (t)gmi(t) dX = 0. First,

let us what the set [gn; # 0] is. Well, g,,;(t) = 2"/2[1(0.1/2](2"t — j) — L(1/2,1)(2"t — j)] so it’s

non-zero only when 0 < 2"t—j <1 <= t € [Q—n,jz%l] Ifn—mandwlog j < k; then k could

either be = j, in which case the integral is f FREESY 1d\ = 2n and so fo g2(t)d\ = 22 -1 171
or k could be = j+1, in which case the mtegral would be f{ﬂ —1dX\ = 0; or k could be > j+ 1,
e

in which case the integral would obviously just be 0.

Now w.l.o.g. n < m. Similar to above, the intersection of two intervals H—n, 32%1}, [zim, %]
can only result in @, a singleton, or the smaller of the two intervals, i.e. [;fn , k;;l] If the

intersection is @ or a singleton, the integral is clearly 0. Note that g,; is 1 on [QEH, znil] and

—1 on @Jﬂ, ?ﬁ] and furthermore, that [ k+1] lies cleanly inside exactly one of these two.

27”, b 2‘"L
We will say that it’s 1 w.l.o.g.; then the integral becomes f[i k4] gmk(t) dX\, which is just 0
27T » I

(because of the equal amount of area above and below the x-axis).

(b) Recall from class that we proved that

9 /2 L | Xk (w)] < 272/n almost surely

for all n > N for some N. We want to rigorously justify the following interchange (by thinking

about sums as integrals on N w.r.t. counting measure, where counting measure is sigma finite):

/Q LZO{Z Vo (s, w)V (t,w)“dm”} “dn”} dp

,?::0 [/Q { 2 Vals,w)V (taw)“dm”} dP} “dn”
- ,go Lio [/Q Vi (s, w)Vin (8, 0) dp} “dm”} “dn”

which we can do by showing that [, [ > {

n(8, W)V, (¢, w)“dm”

] “dn”} dP < oo and that
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o]

fsz ngo ’Vn(s’ W)Vm(tv w)

“dm”] dP < oo (for any fixed n). For the first one, note that

/ Z ZV”(s,w)Vm(t,w)“dm” ] “dn”| dP
Q Ln=0 L|m=0
< / I ’Vn(s,w)HVm(t,w) “dm”] “dn” | dP
Q Ln=0 Lm=0
[ oo N-1 )
:/ Z Vn(s,w)‘ Z ’Vm(t,w) “dm” + Z ‘Vm(t,w) “dm"] “dn” | dP
Q Ln=0 m=0 m=N
[ oo N-—1 00 \/’)’H
S/Q Z Vn(s,w)‘ Z ‘Vm(t,w) “dm” + Z m/2 “dm”} “dn” | dP
L n=0 m=0 m=N
But Y (t,w) := Zm 0 |V (t,w)| has
N—1 N—127—
E[Y] = Z E[|Vin(t,w)]] = Zo Z o (O)E[| X (w)]]
= m=0 7=0
2’771 1 —
. 2 2 -m/2 _.
mZO PIRUNCIRVEE \/:mZZOQ .0y < o
for any given t, at most one h,j; is # 0
(using formulas from Wikipedia for expectations of folded normals) and
N—1 N—12"—1 )
Var[Y] = E Var[|[ Ve (t,w)|] = ZO ZO (hm;j (£))* Var[| X (w) ]
- =0 j=
—12m—1 )
- zo 5 g () (B )] ~ E[Xoms (@)]*) < z 2 (1-2) =G <0
m=0 j=

Co=>"_x W@ is clearly finite as well (v/m < 1.1™ for m > M, so the sum is < finite number
of terms + > °_ M(%)m, which is finite). We then continue the above chain of inequalities:

3 ’Vn(s,w)‘[Y(t,w) + Col“dn” | dP

o
S;/\
Q n=0

N-—1
_ / ¥ (t,w) + Co]
Q

Lédnﬂ dP

n(s,w)

“dn” + Z ‘Vn(s,w)
n=N

< / Y (t,w) 4+ Co][Y (t,w) + Co) dP = / Y2(t,w) + 2C,Y (t,w) + Ca dP
Q Q

=E[Y?] + 2C,E[Y] + C? = Var[Y] + E[Y]? + 2C,Cy + C2
=Cy + C? +2C,Cy + C? < 0

The second interchange is now trivial with the above machinery. The rest of the argument given

in the handout is just interchanging integrals and finite sums, and Parseval’s identity.
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Problem 5

Let o := pi]wy, i-e. for any Ag € 9o, we have that po(Ag) = p(Ao). Now for any indicator function,

say on some Ag,
[ Ly s = 40) = o) = [ 1, .
Q Q

n
Bumping up to any simple function ) cxla,, for real numbers ¢, and disjoint Ao,
k=1

/Q chle,k du = Z cep(Aok) = ZCkMO(AO,k) = /QZ ckla,, dio
k=1 k=1 k=1 k=1

Then for any X > 0, we can construct simple functions X,, that monotonically increase to X+

(reference pg. 26 of PfS), and so with the monotone convergence theorem, we have that

n—oo n— oo

/Xeru: lim /Xndﬂ: lim Xnd,uoz-/X+duo
Q Q Q Q

And so finally, for arbitrary X = X+ — X,

/Xduz/X+d,u—/X_duz/X+du0—/X_du0=/Xduo
Q Q Q Q Q Q

Problem 6
Let Zy, Z1,. .. be i.i.d Normal(0,1), and let fy(t) := /2sin(knt), k € N.

(a) Here’s a plot for k =1,2,3:

— h®)
— fa(t)
— f5(t)
1 1
7(}).8 76.6 7(}14 7(5.2 Oj?
1 1
—9 L
Orthonomality:
1 1 1q_ . 1
/ f,f(t)dt:2/ sin2(k7rt)dt:2/ Mdtzlf sin(2kmt) =1
0 0 0 2 2k o

43



and (using WolframAlpha to evaluate the nastier integrals),

1 1
£i @) fr(t) dt = 2/ sin(jmt) sin(knt) dt
0 0

. (ksin(jmt) cos(knt) — jcos(jnt) sin(knt)
= "7 ) )

1
=0
0

(b) Defining U(t,w) := > W for t € [0,1], we want to verify that it is in fact a Brownian
k=1
bridge:

(1) U(0) = io: V/25sin(0) - Z’;‘C(ﬂw) =0; and U(1) = Z V2sin(kr) - Z"(w) =0
k=1

(for Tonelli) that

]E[i

k=1

which seems like it wouldn’t converge because we just have 1/k, which diverges....uh oh....

f: i": f,(s) zkfw)
J=1k=1

(3) E[U(s)U()] = E| Y, 24 57 Zfe0) —
j=1 k=1
would have to verify (for Tonelli) that

o wa ]

] and of course again we

Zifi(s)

o Zifi(s) Zifu(t)
Z 4£5J5(8) ik

T km
=1 7

5| 220)| <o

k=1

|

j=1
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522 HOMEWORK 1
DaANIEL Rut - 1/15/20

Problem 1

We have X1, Xo,... i.i.d with P(X, =0) = P(X, =2) = %, so E[X}] = Var[X}] = 1. Defining

Sni=) on = ElSi]= ZEL%] =2 g VarlSal = ZVarL))k] =D o
k=1 k=1 k=1 k=1 k=1
we see that E[S,] — % and Var[S,] — &, so by the 2-series theorem, there is some r.v. S s.t.
Sn —as. S where E[S] = % and Var[S] = % Furthermore, we know that convergence a.s. implies
convergence in distribution, so to find Fs, we will find Fg, . Observe that (using the law of total

probability) for n > 1

P(S, <z)=P(S,-1<z)-P(X,=0)+ P(Snl <z-— 32”> -P(X,, =2)

or in other words

1 2
P (@) = 3 [P @)+ oy (- )]
Drawing out Fs, and subsequently Fg,, we immediately jump to the conclusion that Fs is the Cantor
function. We will prove this rigorously by induction. First note that we can “extend” the Fg,

backwards to Fs, which is 0 on (—o0,0) and 1 on [0,00). In general, Fs, satisfies a few properties:

e [g is increasing.

Proof:  Fs, is obviously increasing. Assuming that Fs_ _, (x) is increasing, we know that the

_ 2
371,

dividing by 2 doesn’t change that, so Fyg, is increasing.

function Fg,_, (= ) is also increasing. The sum of two increasing functions is increasing, and

(] an < anfl (fOI‘ all .CE)

Proof: Fg,_, is increasing, so we know that Fs,_, (z — ) < Fs,_,(#)Fs,_, (z — 5%) for all z,

implying that Fs,_, (z — %) + Fs,_, (z) < 2Fs,_, (z), yielding the result upon rearrangement.

e Fg only attains finitely many values.

Proof: Base case: Fg, attains 3 values. Assume that Fs,_, satisfies the proposition. Let #,_1

denote the number of values that Fg attains. Fg, can only have values of that are averages

n—1

of the values from Fg and there definitely < (#,_1)? possible averages, which is finite.

n—17

e For any value v that Fys, attains, Fg Ll (v) is an interval T (a set I is an interval if and only if
Ve,yel,z<z<y = z€lI).

Proof: Assume not; then there is x,y € I s.t. there is z € (z,y) s.t. Fgs,(2) # v. Because Fg, is
increasing, © < z <y = Fs (z) =v < Fg,(2) < Fs,(y) =v = Fs,(z) = v; contradiction.
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e [ for all Fg, is (—o0,0).

satisfies this, this would tell us that
> 0 on [0,00). Thus, for any « € [0,00), Fg, (x) is either the average of 2 positive

Proof: Base case: trivially true for Fg,. Assuming Fg
Fg

quantities, of the average of one positive quantity and 0, which is still positive. This implies that

n—1

n—1

Fs, > 0 on [0,00). Finally, for all € (—o0,0), we see that Fg, () is 0, so the result is true.

e Let #,, denote the number of values attained by Fs,. Then there are #,, intervals Ip,...,Ix, 1
s.t. for any ¢, Fg (x) = Fs, (y) for all z,y € I, (define this value to be v; — note that i < j <=
v; < ;). Also denote Fg, (I;) = v;. (We can do all of this is from the above properties). Claim:

AMI;) > 2, and all the I; (i > 1) are of the form [z,y). Note that A(Iy) always = co from above.

Proof: Base case: obviously true for Fg,. Now assume that Fig, , satisfies the proposition. Let

1
I; = [z;,y;) (for i > 1); observe that x; = y;—1 (letting yo = 0). Then, all x € J; := [xl + 3%7%)
satisfy Fs, (z) = Fs,_,(z) = v;, and all x € Jy := [m;,2; + ) satisfy Fg, (z) = U@%ﬂ” Call J;
an old interval because Fg, (J;) = v; is an old value; analogously call J;; a new interval. Because
M[zi, yi)) > 521, we know that A(J;) > 521 — & = zr > =, and A(Jy) = . Because this
holds for all ¢ (# 0), the claim holds. Furthermore, note that when we go from Fg, , to Fg_, the

left bounds of ALL old intervals are moved right by 3%, and ALL new intervals have length 3%

o #,=2"+1forn>1

Proof: Base case: Fg, has 3 pieces. Assuming that #,_; = 2"~! + 1, we know from the above

proof that every interval I;, i € {1,...,2" "1} splits into 2 pieces (while Iy remains (—oo,0)).

e We know that new intervals created by Fg , n > 1, (i.e. intervals corresponding to values that

Fs, is the first to attain) initially have length 3% Claim: Let I = [m,x + 3%) be any such

interval, with v := Fg, (I). As we iterate, the intervals corresponding to v have lengths — %
Proof: Above, we showed that ALL old intervals get their left bound moved by %, so when

Fg
nt1
(N > n), the left bound is moved right by ij:n_H Z,s0as N — oo, FST;(U) = [r+ 32+ ).

we get to Fg ., I's left bound gets moved right by 3,”%, 3"%, .... Thus, in Fs,

n429 "
Furthermore, denote I_; to be the last interval (i.e. the one with value 1, first attained by Fg,
on [0,00)). Although I_; is not of the form covered above, we still know that its left bound gets
moved right with every iteration. Thus, the I_; approach [ZOO 2

n=1 @,OO) = [1700)

e For Fs , y is the right bound of one of the intervals Iy,...,I_2 (where I_o denotes the second
to last interval) <= y=>,_, dk?%k where dj, is 0 or 1. Furthermore, if y is the right bound of
the interval I;, then Fg, (I;) = > _; dir

Proof: Base case: Fg, has Iy = (—00,0),I1 = [0,2),I = [2,00), 50 yo = 0,51 = 3, and Fg, (Iy) =

0,Fs,(I) = % as desired. Now assume Fg, , satisfies the proposition; let the intervals of Fyg, |,

n—1
be denoted I(,_1,0),---, I (n—1,2n-1). We know from the proofs above that any interval from any
interval I(,,_14), 1 <@ < 27~ is split into two intervals In2i-1), I(n,2i), Where Y 2y = Yn—1,)
and Yn,2i-1) = Yn-1,i—1) + % This easily proves ( = ) in the first part; ( <= ) follows

because of the induction hypothesis and the fact that each interval of Fyg splits into 2, one

n—1

where d,, = 0 and one where d,, = 1.
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Finally, the intervals with d,, = 0 are of the form Iy 2i), and we know that y(, 2) = yn—1,;) and
v(n 2i) = V(n—1,i)- The intervals with d,, = 1 are of the form I(,, 2,_1), and Yy, 2i—1) = y(n 1i—1)+
3n and vy 2i—1) = l( V(n—1,i—1) T V(n—1,5)); but we know that v(,_1 ;) = vV(n_1,i—1)+ 2n == (because

the first part implies that Fg, _, attains all 57%5, 0 < a < 27~1 and because Fg, is 1ncreasmg, SO

n—1

if v(p_1,4) = ga=r, then v, 1 ;1) must be 5= —1). Therefore, V(n,2i—1) = V(n—1,i—1) —|— . Because

the formulas for v(, 2;—1) and Y, 2;—1) “match”, the second part of the proposition holds.

With all that, we see that Fg maps intervals of the form

"2 I &, 2 N |
[(de?,k) - 3n7zdk3k> = > digg
k=1 k=1 k=1

(for all n € N) and of course (—o0,0) — 0 and [1,00) — 1. This, of course, describes the Cantor

function (or the Cantor uniform distribution). QED!

Problem 2

We have independent {Xj}r>1 with X ~ Unif(—k, k), so E[X)] = 0 and Var[X] = %z (formulas
from Wikipedia). Define S,, = >_;_; a* X}, for some a € (0,1). Observe that

n

Zn:]E a"X;] =) d"E[Xi] =0 0< o0

k=1 k=1
Var[S,] = ZVar[aka] = Z( k)2 Var[X;] = ijQ 2k
k=1 k=1

Letting V,, = > "1 _, k2a?* | we can find the closed form by doing the following manipulations:

V,, = 1a®+ 4a* + 9a% + ... + n2a®"

a’V, = la* + 4a% + 9a® + ... + n2a?n+2
(1 —a?)V, = 1a®+ 3a* +5a° + ... + (2n +1)a?" — n2q?nt2
a*(1-a?)V, = la* +3a® +5a® + ... + (2n + 1)a®"+2 — n2q?+4

(1 —a?)?V,, = 1a®+ 2a* + 2a° + ... + 2a®" — (n + 1)2a®*2 + n2¢?n
(1 _ a2)2Vn + a2 =92 Z a2k: _ (,n + 1)2a2n+2 + n2a2n+4
k=1

2 2n+2
a*(l—a n ) —(n+ 1)2a2n+2 + p2g2ntd

1—a?
Taking the limit as n — oo, we get
2a? 2a% —a?(1 —a?®)  a*(1+a?)
1—a®)2V +4a2 = V= =
(I=a)Vta'=1—5F = 1) 1—a?)
1 a*(1+a?)

By the 2-series theorem, S,, —,s. S where E[S] and Var[S] equal the limiting values calculated above.
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Problem 3

&)

Let {Xx} be a sequence of arbitrary random variables > 0 with > E[min(Xy, ¢)] < co (Ve > 0). We
k=1

can split this expression into

Z]E X 1ix<q + ¢ 1ixsd] Z [Xi - 1ix,<d] + cP([Xx > ) < o0
k=1 k=1

which implies that Z P([Xy > c]) < co. Borel-Cantelli tells us that P([Xj > ¢ i.0.) = 0, which

means that there is some N, s.t. Vk > N., Xi < c almost surely. Then,

i E[X)] =

k=N, k

M8

(B[X: - 1ix,<q] + cP([X) > ¢])) = > E[min(Xy, ¢)] < o0
k=N

c

Il
2

c

n

Let Sn.n = Y. X and let a, = E[Sn, »]. The a, are increasing (because X3 > 0) and bounded,
k=N,
so a, — a. Markov’s inequality gives that

P([Sn,m 2 M) < 52 <

> e

For any w € Q, S, n(w) is increasing (because X > 0). If it’s unbounded, set Sy, )(w) = oo; other-

wise, we know the limit exists (by the monotone sequence theorem) so set Siy,y(w) = lim Sy, ,(w).
n—oo

In other words

lim S, n(w) if the limit exists
Sn.y(w) = § e
00 otherwise

Now observe that for all appropriate n,
[SNen > A € [SNeng1 > A

so by the limit-measure commutativity theorem for monotone sets,

P([Sny > \) < P(U[SNM,L >\ 4) = lim P([Sn.n > A—¢]) < —

n— o0 A—¢
N,

Thus taking A — oo, we see that P([S(n,) = oo]) = 0. Which means that almost surely, Sy, n(w)
converge to Sy,)(w). Finally, for n > N,

N.—1 N.—1
= Z X +SNc7n and S = Z X +S(NC)
k=1 k=1

which inherits the result from above; mainly that S, —.s. S.
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Problem 4

o0
We have i.i.d. Zy,Zs,... ~ N(0,1). Define W2 = % Using formulas from Wikipedia about
=1

the moments of the normal distribution and known values of ¢(s),

- 72 1 <1 1 1 1 1
E[W’%]:ZE{(nlfﬁ}:wz PR -5 5 m g5 ™
k=1 —

and

) - 72 1 w1 ) 1 w1 4 )
Var[72] = ;var[(ﬂ:)z] = 2 gVl = 3 el ()

:gZy(?’Var[Zk]—Var[Zk])—>—§ 2Lt
k=1

1
By the 2-series theorem, W2 —, o W2, where E[W?] = T

Problem 5

We have Y7, Y53, ... i.i.d. Exponential(1), so E[Y;] =1 and Var[Y;] =1,

Also,

Var[$,] = Var| £ =Y SVarlyy —1] = > —Var[¥i] =
k=1 S e Py i

| —

< 0

Eal

1
as from the given. Thus, by the 2-series theorem, S, —,s. S, where E[S] = 0 and Var[S] = 2
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