
522 Final Exam
Daniel Rui - 3/17/20

Problem 1
Let X1, X2, . . . be independent r.v.’s satisfying

Xn =

n2 − 1 with probability 1
n2

−1 with probability 1− 1
n2

and let Sn = X1 + . . .+Xn.

(a) For any n ∈ N, E[Xn] = (n2 − 1) 1
n2 + (−1)(1− 1

n2 ) = n2−1
n2 − n2−1

n2 = 0.

(b) We proceed by Borel-Cantelli (similar to 521-hw10-p1):
∑∞
n=1 P (Xn 6= −1) =

∑∞
n=1

1
n2 < ∞,

so P (Xn 6= −1 i.o.) = 0 =⇒ P (Xn 6= 1 finitely often) = 1, which means that for almost every

ω ∈ Ω, there is some Nω s.t. n > Nω =⇒ Xn(ω) = −1. Thus, at a fixed ω, for all n large,

Sn
n

=
X1 + . . .+XNω

n
+
XNω+1 + . . .+Xn

n
≤ Nω(N2

ω − 1)

n
+
−1(n−Nω)

n
=
N3
ω

n
− 1

which tends to −1 as n→∞. Thus, for almost every ω, Sn(ω)
n → −1, i.e. Sn

n →a.s. −1.

(c) Defining An = σ[X1, . . . , Xn], we have that E(Sn+1|An) = E(Sn +Xn+1|An) =a.s. Sn+E[Xn+1] =

Sn, so {Sn,An}n∈N is a martingale. By Jensen’s inequality, {S2
n,An}n∈N is a submartingale.

(d) We want to find a (An−1-measurable) predictable variation process 〈Sn〉 s.t. {S2
n−〈Sn〉,An}n∈N

is a martingale:

E
(
S2
n+1 − 〈Sn+1〉|An

)
= E

(
S2
n + 2SnXn+1 +X2

n+1 − 〈Sn+1〉|An

)
=a.s. S

2
n + 2SnE[Xn+1] + E

[
X2
n+1

]
− 〈Sn+1〉

= S2
n + E

[
X2
n+1

]
− 〈Sn+1〉

We want this to equal S2
n − 〈Sn〉, and so 〈Sn+1〉 = E

[
X2
n+1

]
+ 〈Sn〉. This implies that 〈Sn〉 =

E
[
X2
n

]
+ . . . + E

[
X2

1

]
(note that this formula is still consistent for n = 1: E

(
S2

1 − 〈S1〉|A0

)
=

E
(
X2

1 − E
[
X2

1

]
|{∅,Ω}

)
= 0− 0 = S0 − 〈S0〉).

(e) First, observe that E
[
X2
n

]
= (n2 − 1)2 1

n2 + 1(1 − 1
n2 ) = (n2 − 1)( (n2−1)+1

n2 ) = n2 − 1 and so

〈Sn〉 =
∑n
k=1 E

[
X2
k

]
=
∑n
k=1(k2 − 1) = n(n+1)(2n+1)

6 − n. Taking bn = n3, we get that 〈Sn〉bn

converges everywhere (and hence in probability) to 1
3 .

Problem 2
Let Y1, . . . , Yn be i.i.d. with E[Yi] = 0 and Var[Yi] = σ2, and set Xni = aniYi for i ∈ {1, . . . , n} and

constants ani. As always, Sn =
∑n
i=1Xni.
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(a) The expectation and variance are respectively E[Sn] =
∑n
i=1 E[Xni] =

∑n
i=1 aniE[Yi] = 0 and

Var[Sn] =
∑n
i=1 Var[Xni] =

∑n
i=1 a

2
niE[Yi] = σ2

∑n
i=1 a

2
ni =: σ2

n (linearity of variance by inde-

pendence of the Xni).

(b) Let A2
n =

max1≤i≤n |ani|2∑n
i=1 a

2
ni

= σ2

σ2
n

max1≤i≤n |ani|2. We want to show that if A2
n → 0, then Sn

σn
→d

Z ∼ Normal(0,1). This immediately rings a bell for the Lindenberg-Feller CLT, which tells us

that for X ′ni s.t. E[X ′ni] = 0 and
∑n
i=1 Var[X ′ni] = 1, Ln(ε) :=

∑n
i=1 E

[
(X ′ni)

21[|X′ni|>ε]
]
→ 0 for

any ε > 0 =⇒
∑n
i=1X

′
ni →d Z.

In our case, take X ′ni = Xni
σn

and S′n =
∑n
i=1X

′
ni = Sn

σn
=⇒ E[X ′ni] = 0,Var[S′n] =

σ2
n

σ2
n

= 1.

Then,

Ln(ε) =

n∑
i=1

1

σ2
n

E
[
X2
ni1[|Xni|>εσn]

]
=

1

σ2
n

n∑
i=1

a2
niE

[
Y 2
i 1[
|Yi|> εσn

|ani|

]]
≤ 1

σ2
n

n∑
i=1

a2
niE

[
Y 2
i 1[
|Yi|> εσn

max1≤i≤n |ani|

]]
=

1

σ2
n

E

[
Y 2

1 1[
|Y1|> εσn

max1≤i≤n |ani|

]] n∑
i=1

a2
ni

=
1

σ2
E
[
Y 2

1 1[|Y1|> εσ
An

]

]
We assumed that A2

n → 0 =⇒ P (|Y1| > εσ
An

) = P (Y 2
1 > ε2σ2

A2
n

) ≤ E[Y1]
ε2σ2/A2

n
=

σ2A2
n

ε2σ2 (by Markov)

→ 0, and we know that Y 2
1 1[|Y1|> εσ

An
] ≤ Y 2

1 , which is integrable (E
[
Y 2

1

]
= σ2 <∞) and so by

the DCT,

lim
n→∞

E
[
Y 2

1 1[|Y1|> εσ
An

]

]
= E

[
lim
n→∞

E
[
Y 2

1 1[|Y1|> εσ
An

]

]]
= 0

Thus, for any ε > 0, we see that Ln(ε)→ 0, and so by Lindenberg-Feller, S′n = Sn
σn
→d Z.

(c) As an explicit example, take ani = 1√
n

( in )α for α ∈ R, so σ2
n = σ2

∑n
i=1 a

2
ni = 1

n

∑n
i=1( in )2α.

This is a Riemann sum (MSE), and so

lim
n→∞

1

n

n∑
i=1

(
i

n

)2α

=

∫ 1

0

t2α dt =

(
t2α+1

2α+ 1

)∣∣∣1
0

=

 1
2α+1 if α > − 1

2

∞ otherwise

Also, max1≤i≤n |ani|2 = 1
n (nn )2α = 1

n , so for all α, A2
n → 0 (and so (b) applies). We want to find

all the values α s.t. Sn → vαZ ∼ Normal(0, v2
α) for v2

α < ∞. I claim that σn → vα for some

vα 6= 0,±∞ (i.e. σn
vα
→ 1) ⇐⇒ Sn →d vαZ:

Proof: perhaps a little non-rigorously, ( =⇒ ): σn
vα
→ 1 and Sn

σn
→d Z =⇒ Sn

σn
σn
vα
→ Z =⇒

Sn → vαZ, and ( ⇐= ): Sn
vα
→d Z and Sn

σn
→d Z =⇒ Sn

vα
σn
σn

= Sn
vα

vα
σn
→d Z =⇒ σn

vα
→ 1. See

here (MSE) and here (Billingsley) for a more rigorous treatment.

Thus finally, α > − 1
2 ⇐⇒ Sn →d vαZ, where v2

α = 1
2α+1 .
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Problem 3
Consider a bounded continuous function f on [0,∞), and define L(λ) :=

∫∞
0
e−λxf(x)dx for λ ∈

(0,∞). Let X1, X2, . . . be i.i.d Exp(λ) so E[Xi] = 1
λ ,Var[Xi] = 1

λ2 , and let Sn =
∑n
i=1Xi.

(a) The distribution of Sn is Gamma(n, λ) (equiv. Erlang(n, λ)) (Wiki), w/ p.d.f. λnxn−1e−λx

(n−1)! 1(0,∞).

(b) We want to show that

E[f(Sn)] = (−1)n−1λ
nL(n−1)(λ)

(n− 1)!

Observe that

E[f(Sn)] =

∫ ∞
0

f(x)
λnxn−1e−λx

(n− 1)!
dx =

λn

(n− 1)!

∫ ∞
0

f(x)xn−1e−λx dx

and so showing that
∫∞

0
f(x)xn−1e−λx dx = (−1)n−1L(n−1)(λ) will suffice. We proceed by

induction: base case n = 1:
∫∞

0
f(x)e−λx dx = L(λ) 3

Now assume n works and so
∫∞

0
f(x)xn−1e−λx dx = (−1)n−1L(n−1)(λ). Differentiating both

sides w.r.t. λ and pulling it under the integral (which we can do because f(x)xn−1e−λx is

continuous on {(x, t) : [0,∞) × (0,∞)}, and the λ-partial is also continuous on that region),

yielding ∫ ∞
0

f(x)(−1)xne−λx dx = (−1)n−1L(n)(λ)

and rearranging the (−1) gives the desired result.

(c) With parameter n
y we have

En/y[f(Sn)] =

∫ ∞
0

f(x)
(ny )nxn−1e−(n/y)x

(n− 1)!
dx

while with parameter 1,

E1

[
f

(
ySn
n

)]
=

∫ ∞
0

f
( y
n
x
)xn−1e−x

(n− 1)!
dx =

∫ ∞
0

f(u)
(ny u)n−1e−(n/y)u

(n− 1)!

n

y
du

(where we made the substitution u = y
nx =⇒ du = y

n dx). This matches with En/y[f(Sn)] from

above, so En/y[f(Sn)] = E1[f(ySnn )]

(d) Finally, observe the following:

lim
n→∞

En/y[f(Sn)] = lim
n→∞

E1

[
f

(
ySn
n

)]
= lim
n→∞

∫
Ω

f

(
y
Sn
n

)
dP =

∫
Ω

lim
n→∞

f

(
y
Sn
n

)
dP

=

∫
Ω

f

(
y lim
n→∞

Sn
n

)
dP =

∫
Ω

f(y · E1[X1]) dP =

∫
Ω

f(y)dP = f(y)

where we pulled the limit inside the integral by the DCT (f is bounded =⇒ DCT applies),

inside f by continuity, and used E[X1] = 1 < ∞ =⇒ Sn
n →a.s. 1 (SLLN). Thus, we have the
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following formula for f in terms of the derivatives of its Laplace transform:

f(y) = lim
n→∞

(−1)n−1
(ny )nL(n−1)(ny )

(n− 1)!

Problem 4
Let Z1, Z2, . . . be i.i.d. Normal(0,1) and Sn = Z1 + ...+Zn ( =⇒ Sn ∼ Normal(0, n); see Wiki) , and

define Yn = eaSn−bn.

(a) For r ≥ 1 : Yn →r 0 ⇐⇒ r < 2b
a2 : using the MGF E

[
etSn

]
= eµt+σ

2t2/2 = ent
2/2 (Wiki), we have∫

Ω

|Yn − 0|r dP =

∫
Ω

eraSn−rbn dP =
1

erbn
E
[
eraSn

]
=

1

erbn
enr

2a2/2 = enr(
ra2

2 −b)

which goes to 0 iff r < 2b
a2 (i.e. iff the exponent is negative).

(b) For b = a2

2 ,

Yn =
eaSn

ea2n/2
=

n∏
i=1

eaZi

ea2/2

where Xi := eaZi

ea2/2
=⇒ E[Xi] = e0·t+1·a2/2

ea2/2
= 1, and i.i.d. because the Zi were.

(c) Kakutani’s martingale theorem tells us that for independent non-negative mean-1 X1, X2, . . .,

{Mn,An}n≥1 is a mean-1 martingale (where Mn =
∏n
i=1Xi), and Mn →a.s. M∞ ∈ L1 (this

part is actually given by the (sub)-martingale convergence theorem). Furthermore, among many

other things, it says that if
∏∞
i=1 E

[
X

1/2
i

]
is NOT > 0, then necessarily M∞ = 0 almost surely.

Well, our Xi (defined above) satisfy these conditions, but have

E
[
X1/2
n

]
= E

[
eaZn/2

ea2/4

]
=
e0+

(a2/4)·1
2

ea2/4
= e−a

2/8 =⇒
∞∏
i=1

E
[
X

1/2
i

]
= 0

and so Yn = Mn →a.s. 0.

Problem 5
(a) Suppose that Y is a r.v. with values in [−c, c] with E[Y ] = 0. For any θ ∈ R, fθ(z) = eθz for

z ∈ [−c, c] is convex, and so fθ(y) ≤ `θ(y) on [−c, c] where `θ(y) is the line between (−c, fθ(−c))
and (c, fθ(c)). Then, we have E[fθ(Y )] ≤ E[`θ(Y )] = `θ(E[Y ]) (by linearity of expectation)

= `θ(0). 0 is the average of −c and c, and so `θ(0) will be the average of fθ(−c) and fθ(c), i.e.

E
[
eθY
]
≤ e−θc+eθc

2 = cosh(θc).

Furthermore, noting that 2nn! = (2n)(2n− 2) · · · (2) ≤ (2n)(2n− 1) · · · (2)(1) = (2n)!, we have

cosh(x) =

∑∞
n=1(−1)n x

n

n! +
∑∞
n=1

xn

n!

2
=

∞∑
n=1

x2n

(2n)!
≤
∞∑
n=1

x2n

2nn!
= ex

2/2
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and so

E
[
eθY
]
≤ cosh(θc) ≤ eθ

2c2/2

(b) Suppose we have a martingale {Mn,An}n≥0 with M0 = 0 satisfying |Mn−Mn−1| ≤ cn for some

constants cn > 0 for all n ≥ 1. By Doob’s maximal submartingale inequality, we know that

P

(
max

0≤k≤n
Mk ≥ x

)
≤ inf
r>0

E
[
erMn

]
erx

Now we could use the triangle inequality to get that |Mn| ≤
∑n
i=1 ci, but this bound is not sharp

enough. Instead, let’s take the following approach (notice that we are not given the independence

of the Mn):

E
[
erMn

]
= E

[
er(Mn−Mn−1)erMn−1

]
= E

[
E
(
er(Mn−Mn−1)erMn−1

∣∣∣An−1

)]
= E

[
erMn−1E

(
er(Mn−Mn−1)

∣∣∣An−1

)]
We can’t directly use (a), but we can quickly prove a conditional version of that inequality:

E
(
fθ(Mn −Mn−1)

∣∣∣An−1

)
≤a.s. E

(
`θ(Mn −Mn−1)

∣∣∣An−1

)
=a.s. `θ(E

(
Mn −Mn−1

∣∣An−1

)
) =a.s. `θ(0) = cosh(θcn)

Thus, continuing our chain of equalities above,

E
[
erMn

]
= E

[
erMn−1E

(
er(Mn−Mn−1)

∣∣∣An−1

)]
≤ E

[
erMn−1 cosh(rcn)

]
≤ E

[
erMn−1 exp

(
r2c2n

2

)]
= exp

(
r2c2n

2

)
E
[
erMn−1

]
Continuing inductively, we get that

E
[
erMn

]
≤ exp

(
r2c2n

2

)
exp
(
r2c2n−1

2

)
· · · exp

(
r2c21

2

)
E
[
erM0

]
= exp

(
r2

2

∑n
i=1 c

2
i

)
Plugging this into Doob’s inequality, we have

P

(
max

0≤k≤n
Mk ≥ x

)
≤ inf
r>0

exp
(
r2

2

∑n
i=1 c

2
i

)
erx

To minimize the RHS, let’s calculate the first and second derivatives w.r.t r:

∂r[RHS] =

(
2r

2

n∑
i=1

c2i − x

)
exp
(
r2

2

∑n
i=1 c

2
i

)
erx

∂rr[RHS] =

(
n∑
i=1

c2i

)
exp
(
r2

2

∑n
i=1 c

2
i

)
erx

+

(
r

n∑
i=1

c2i − x

)2 exp
(
r2

2

∑n
i=1 c

2
i

)
erx
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The first derivative is 0 at r = x∑n
i=1 c

2
i

and the second derivative is always ≥ 0, so we’ve found r

that minimizes the RHS. Plugging it in yields

P

(
max

0≤k≤n
Mk ≥ x

)
≤ exp

(
x2

2
∑n
i=1 c

2
i

− x2∑n
i=1 c

2
i

)
= exp

(
− x2

2
∑n
i=1 c

2
i

)

Problem 6

Let X1, X2, . . . be i.i.d. Poisson(1), Sn = X1 + ...+Xn, and Zn =
Sn − n√

n
.

(a) The distribution of Sn is Poisson(n) (Wiki), with p.d.f.
λie−λ

i!
for i ∈ N0 := {0, 1, . . .}.

(b) The expectation of Z−n is

E
[
Z−n
]

=
1√
n
E
[
(Sn − n)−

]
=

1√
n

n∑
i=0

|i− n| · n
ie−n

i!
=
e−n√
n

n∑
i=0

(n− i)n
i

i!

=
e−n√
n

n∑
i=0

ni+1 − ini

i!
=
e−n√
n

(
n0+1 − 0

0!
+

n∑
i=1

(
ni+1

i!
− ni

(i− 1)!

))

which telescopes to leave just E[Z−n ] =
e−n√
n

nn+1

n!
.

(c) Take X ′i = Xi − 1, so E[X ′i] = 0 and Var[X ′i] = 1. The classical CLT gives that
S′n√
n

= Sn−n√
n

=

Zn →d Z ∼ Normal(0,1).

(d) Per the definition of convergence in distribution, Zn →d Z ⇐⇒ E[f(Zn)] → E[f(Z)] for any

f ∈ Cb(R). In particular, consider the sequence of functions fm(x) := m · 1(−∞,−m) + (−x) ·
1[−m,0] + 0 · 1(0,∞), all of which are in Cb(R). Let us denote f∞ := (−x) · 1(−∞,0] + 0 · 1(0,∞)

(which unfortunately is not in Cb(R)). Now,∣∣E[Z−n ]− E
[
Z−
]∣∣ =

∣∣E[f∞(Zn)]− E[f∞(Z)]
∣∣

≤
∣∣E[f∞(Zn)]− E[fm(Zn)]

∣∣+
∣∣E[fm(Zn)]− E[fm(Z)]

∣∣+
∣∣E[fm(Z)]− E[f∞(Z)]

∣∣
Let’s look at the first term first:

∣∣E[f∞(Zn)]− E[fm(Zn)]
∣∣ =

∣∣E[(−Zn −m)1[Zn<−m]

]∣∣ =
∣∣E[|Zn +m| · 1[Zn<−m]

]∣∣
The r.v. |Zn +m| is integrable, because |Zn +m| ≤ |Zn|+m ≤ max{1, |Zn|2}+m ≤ Z2

n + 1 +m

(MSE), and we know E
[
Z2
n + 1 +m

]
= 1 + 1 +m <∞. Furthermore, P (Zn < −m) ≤ P (|Zn| >

m) = P (Z2
n > m2) ≤ 1

m2 → 0 as m→∞ (Markov). Thus, by the DCT,

lim
m→∞

E
[
|Zn +m| · 1[Zn<−m]

]
= E

[
lim
m→∞

|Zn +m| · 1[Zn<−m]

]
= 0

and so the first term gets arbitrarily small for large enough m. The third term is dealt with

in exactly the same way. The second term gets arbitrarily small for large enough n because
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E[fm(Zn)]→ E[fm(Z)] by weak convergence. Thus, E[Z−n ]→ E[Z−] = 1
2

√
2
π = 1√

2π
(Wiki).

(e) Finally, putting parts (b) and (d) together we have

e−n√
n

nn+1

n!
→ 1√

2π
=⇒

√
2πnnne−n

n!
→ 1 =⇒ n! ∼

√
2πn

(n
e

)n
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522 Homework 8
Daniel Rui - 3/11/20

Problem 1
For real-valued {X,Xn}, we want to prove that Fn(x) = P (Xn ≤ x)→ P (X ≤ x) = F (x) for all x s.t.

P (X = x) = 0 (i.e. for all x in the continuity set CF ) ⇐⇒ E[f(Xn)]→ E[f(X)] for all f ∈ C∞(R).

( =⇒ ) Fix any f ∈ C∞(R) and ε > 0. Now observe that for a non-negative r.v. X s.t. E[X] < ∞,

and g s.t. ||g||∞ and ||g′||∞ are both <∞ (where ||g||∞ := inf{c ∈ R : |g| ≤ c a.e.}), we have that∫ ∞
0

g′(x)P (X > x)dP =

∫ ∞
0

∫
Ω

g′(x)1[X>x] dP dx =

∫
Ω

∫ ∞
0

g′(x)1[X>x] dxdP

=

∫
Ω

∫ X

0

g′(x)dxdP =

∫
Ω

g(X)− g(0)dP = E[g(X)]− g(0)

where the integral interchange is justified because∫
Ω

∫ ∞
0

|g′1[X>x]|dxdP ≤
∫

Ω

∫ X

0

||g′||∞ dx dP = ||g′||∞E[X] <∞

In general, we have that∫ ∞
b

g′(x)P (X > x)dx =

∫ ∞
0

g′(x)

∫
Ω

1[X>x] dxdP

=

∫
Ω

1[X>b]

∫ X

b

g′(x)dx dP = E
[
g(X)1[X>b]

]
− g(b)P (X > b)

and ∫ a

−∞
g′(x)P (X ≤ x)dx =

∫ a

−∞
g′(x)

∫
Ω

1[X≤x] dx dP

=

∫
Ω

1[X≤a]

∫ a

X

g′(x)dx dP = g(a)P (X ≤ a)− E
[
g(X)1[X≤a]

]
where the integral interchanges are justified in much the same way as in the X ≥ 0 case. Setting

a = b = 0 and subtracting the bottom from the top, we get

E[g(X)] = g(0) +

∫ ∞
0

g′(x)P (X > x)dx−
∫ 0

−∞
g′(x)P (X ≤ x)dx

and so
E
[
g(X)1[a<X≤b]

]
= E[g(X)]− E

[
g(X)1[X≤a]

]
− E

[
g(X)1[X>b]

]
= g(0)− g(a)P (X ≤ a)− g(b)P (X > b)

+

∫ b

0

g′(x)P (X > x)dx−
∫ 0

a

g′(x)P (X ≤ x)dx

8



Now in the context of this problem, f ∈ C∞(R) (bounded C∞ functions on R) obviously satisfies the

above conditions ||g||∞, ||g′||∞ <∞, so we can say

|E[f(Xn)]− E[f(X)]| =
∣∣∣∣∫ ∞

0

f ′(x)
(

1− Fn(x)− (1− F (x))
)
dx−

∫ 0

−∞
f ′(x)

(
Fn(x)− F (x)

)
dx

∣∣∣∣
=

∣∣∣∣∫ ∞
0

f ′(x)
(
F (x)− Fn(x)

)
dx

∣∣∣∣+

∣∣∣∣∫ 0

−∞
f ′(x)

(
Fn(x)− F (x)

)
dx

∣∣∣∣
We somehow need to make both these integrals arbitrarily small (e.g. by pulling the limit inside),

but at this point, there’s not really a way forward. However, as is often the case when dealing with

infinite bounds, we should look to restrict ourselves to a compact set. A nice one to consider would

be [a, b] where a, b ∈ CF ∩
⋂∞
n=1 CFn (still R minus a null set), F (a) < ε and F (b) > 1− ε (such points

exist because F (−∞+) = 0, F (∞−) = 1, and F is increasing and thus is only discontinuous on a null

set). Then,

|E[f(Xn)]− E[f(X)]| =
∣∣∣∣∫

R
f dFn −

∫
R
f dF

∣∣∣∣ =

∣∣∣∣∫
R
f d(Fn − F )

∣∣∣∣
=

∣∣∣∣∣
∫

(−∞,a]

f d(Fn − F ) +

∫
(a,b]

f d(Fn − F ) +

∫
(b,∞)

f d(Fn − F )

∣∣∣∣∣
≤

∣∣∣∣∣||f ||∞(
∫

(−∞,a]

d(Fn − F ) +

∫
(b,∞)

d(Fn − F )
)

+

∫
(a,b]

f d(Fn − F )

∣∣∣∣∣
≤

∣∣∣∣∣||f ||∞((Fn − F )(a)− (Fn − F )(b)
)

+

∫
(a,b]

f d(Fn − F )

∣∣∣∣∣
where

∫
(a,b]

f d(Fn − F ) =

∫
(a,b]

f dFn −
∫

(a,b]

f dF =

∫
X−1
n (a,b]

f(Xn)dP −
∫
X−1(a,b]

f(X)dP

= E
[
f(Xn)1[a<Xn≤b]

]
− E

[
f(X)1[a<X≤b]

]
= f(a)

(
P (X ≤ a)− P (Xn ≤ a)

)
+ f(b)

(
P (X > b)− P (Xn > b)

)
+

∫ b

0

f ′(x)
(
P (Xn > x)− P (X > x)

)
+

∫ 0

a

f ′(x)
(
P (X ≤ x)− P (Xn ≤ x)

)
= f(a)

(
(Fn − F )(a)

)
+ f(b)

(
(F − Fn)(b)

)
+

∫ b

0

f ′(x)
(

(Fn − F )(x)
)
dx+

∫ 0

a

f ′(x)
(

(F − Fn)(x)
)
dx

Now as n→∞, (Fn−F )(a) and (F −Fn)(b) both go to 0 because we chose a, b to be in the continuity

sets of the distribution functions. The integral terms (i.e.
∫ b

0
f ′(x)(Fn − F )(x)dx +

∫ 0

a
f ′(x)(F −

Fn)(x)dx) go to 0 by the DCT: |f ′(x)(Fn − F )(x)| ≤ 2||f ′||∞ (because |Fn|, |F | ≤ 1) which yields

a finite integral over bounded sets (e.g. [0, b] and [a, 0]). Thus, |E[f(Xn)] − E[f(X)]| → 0, and so

E[f(Xn)]→ E[f(X)].

9



( ⇐= ) It would be very easy if we had access to ft(x) = 1(−∞,t](x) because then we could just say

E[ft(Xn)] = P (Xn ≤ t) → E[ft(X)] = P (X ≤ t). We can’t do this, but we can do something very

similar; consider the C∞(R) function

ψ(x) =

∫ 1

x
e−

1
t(1−t) dt∫ 1

0
e−

1
t(1−t) dt

for 0 ≤ x ≤ 1, = 1 for x ≤ 0, and = 0 for x ≥ 1

Then, ψ(x−tε ) is very close to ft(x) in the sense that

ft(x) ≤ ψ
(
x− t
ε

)
≤ ft(x− ε) = ft+ε(x)

Thus, defining ψt,ε(x) = ψ(x−tε ), we have that

lim sup
n→∞

Fn(t) = lim sup
n→∞

E[ft(Xn)] ≤ lim sup
n→∞

E[ψt,ε(Xn)] = E[ψt,ε(X)] ≤ E[ft+ε(x)] = F (t+ ε)

and

lim inf
n→∞

Fn(t) = lim inf
n→∞

E[ft(Xn)] ≥ lim inf
n→∞

E[ψt−ε,ε(Xn)] = E[ψt−ε,ε(X)] ≥ E[ft−ε(x)] = F (t− ε)

which when put together, becomes

F (t− ε) ≤ lim inf
n→∞

Fn(t) ≤ lim sup
n→∞

Fn(t) ≤ F (t+ ε)

For all t ∈ CF , the left and right sides go to F (t), and so for all t ∈ CF , the Fn(t) have a limit, and

that limit equals F (t).

Problem 2
Suppose that logX ∼ Normal(0,1).

(a) We know that

P (X ≤ x) = P (logX ≤ log x) =

∫ log x

−∞

e−t
2/2

√
2π

dt =

∫ x

−∞

e−(log u)2/2

√
2π

1

u
du

(by making the substitution u = et ⇐⇒ t = log u), and so fX(u) = e−(log u)2/2

u
√

2π
.

(b) Now if we have a random variable Ya with density fa(y) = fX(y)(1 + a sin(2π log y)), we want

to show that E
[
Xk
]

= E
[
Y ka
]

for all integers k ≥ 1 and a ∈ [−1, 1] (|a| ≤ 1 because densities are

≥ 0). In order for this to be true, we must have that∫ ∞
0

xkfX(x)dx =

∫ ∞
0

xkfX(x)(1 + a sin(2π log x))dx

10



This is equivalent to showing that∫ ∞
0

axkfX(x) sin(2π log x)dx =
a√
2π

∫ ∞
0

xk

x
e−(log x)2/2 sin(2π log x)dx

=
a√
2π

∫ ∞
−∞

ekue−u
2/2 sin(2πu)du = 0

which is trivial because eku−u
2/2 is even centered at k (because ku−u2/2 is even centered at u),

and sin(2πk) is odd centered at k, leaving us with an integrand which is is odd centered at k,

yielding an integral of 0.

Problem 3
Let X, Y and W be random vectors ∈ Rk (i.e. X = (X1, . . . , Xk)) s.t. X and Y are independent and

X and W are independent, and where E
[
|Y|3

]
,E
[
|W|3

]
<∞,

E[Y] =


E[Y1]

...

E[Yk]

 =


E[W1]

...

E[Wk]

 = E[W],

and

Cov[Y] =


Cov[Y1, Y1] . . . Cov[Y1, Yk]

...
. . .

...

Cov[Yk, Y1] . . . Cov[Yk, Yk]

 =


Cov[W1,W1] . . . Cov[W1,Wk]

...
. . .

...

Cov[Wk,W1] . . . Cov[Wk,Wk]

 = Cov[W]

which means that E[YiYj ] = E[WiWj ] for all i, j ∈ {1, . . . , k} because

Cov[Yi, Yj ] = E[(Yi − E[Yi])(Yj − E[Yj ])] = E[YiYj ]− E[Yi]E[Yj ]

Now for any f : Rk → R in C3(Rk) (i.e. f , its 1st, 2nd, and 3rd-order partials all exist and are

continuous everywhere), Taylor’s theorem says that

f(x + y) =
∑
|α|≤2

[∂αf ](x)

α!
yα +

∑
|a|=3

[∂αf ](x + cy)

α!
yα

for some c ∈ (0, 1), where α = (a1, . . . , ak) for ai ∈ Z≥0, |α| = a1 + . . . + ak, α! = a1! · · · ak!,

yα = ya11 · · · y
ak
k , and ∂αf = ∂|α|f

∂
a1
1 ···∂

ak
k

. Writing things out more explicitly,

f(x + y) = f(x) +

k∑
i=1

[∂if ](x)yi +

k∑
i=1

k∑
j=1

[∂ijf ](x)

2
yiyj +

k∑
i=1

k∑
j=1

k∑
l=1

[∂ijlf ](x + cy)

6
yiyjyl
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But |[∂ijlf ](x+cy)| ≤ max
(i,j,l)∈{1,...,k}3

sup
x∈Rk

|[∂ijlf ](x)| =: C0 and
k∑
i=1

k∑
j=1

k∑
l=1

|yiyjyl| = (|y1|+. . .+|yk|)3 =

||y||31, so∣∣∣∣∣∣E[f(X + Y)]− E[f(X)] + E

[
k∑
i=1

[∂if ](X)Yi

]
+ E

 k∑
i=1

k∑
j=1

[∂ijf ](X)

2
YiYj

∣∣∣∣∣∣ ≤ C0

6
||Y||31

and so∣∣∣∣∣∣E[f(X + Y)]− E[f(X)] +

k∑
i=1

E[[∂if ](X)]E[Yi] +

k∑
i=1

k∑
j=1

E
[

[∂ijf ](X)

2

]
E[YiYj ]

∣∣∣∣∣∣ ≤ C0

6
||Y||31

by independence of X and Y. We can do the exact same argument for X and W, and subtracting

and using the triangle inequality, we get that∣∣∣∣∣∣E[f(X + Y)]− E[f(X)] +

k∑
i=1

E[[∂if ](X)]E[Yi] +

k∑
i=1

k∑
j=1

E
[

[∂ijf ](X)

2

]
E[YiYj ]

−E[f(X + W)] + E[f(X)]−
k∑
i=1

E[[∂if ](X)]E[Wi]−
k∑
i=1

k∑
j=1

E
[

[∂ijf ](X)

2

]
E[WiWj ]

∣∣∣∣∣∣
=
∣∣E[f(X + Y)]− E[f(X + W)]

∣∣ ≤ C0

6

(
||Y||31 + ||W||31

)
Finally, Cauchy-Schwarz tells us that

||Y||21 = (|Y1|+ . . .+ |Yk|)2 = (Y1 · (±1) + . . .+ Yk · (±1))2

≤ (Y 2
1 + . . .+ Y 2

k )((±1)2 + . . .+ (±1)2) = k||Y||22 = k|Y|2

and so ∣∣E[f(X + Y)]− E[f(X + W)]
∣∣ ≤ C0

6
k3/2

(
|Y|3 + |W|3

)
Problem 4
The classical multivariate CLT is as follows: for X1, . . . ,Xn i.i.d. random vectors in Rk (i.e. Xi =

(Xi1, . . . , Xik)) with E[X1] = µ and E
[
|X1|2

]
<∞, and Xn := 1

n (X1 + . . .+ Xn), we have that

√
n(Xn − µ)→d X = (X1, . . . , Xk) ∼ Normalk(0,Cov[X1])

Cramér-Wold tells us that this happens if and only if a ·
√
n(Xn −µ)→d a ·X for all a ∈ Rk. Define

Yi = a · (Xi − µ). Note that the Yi are i.i.d., with variance

Var[Y1] = Var

[
k∑
i=1

ai(X1i − µi)
]

=
k∑
i=1

k∑
j=1

E[ai(X1i − µi)aj(X1j − µj)] =
k∑
i=1

k∑
j=1

aiajCov[X1i, X1j ]
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Similarly, the variance of a ·X = a1X1 + . . .+ akXk is

Var

[
k∑
i=1

aiXi

]
=

k∑
i=1

k∑
j=1

aiajCov[Xi, Xj ] =
k∑
i=1

k∑
j=1

aiajCov[X1i, X1j ]

because Cov[X] = Cov[X1] by definition of X. Furthermore, a ·X is normally distributed (uniquely

determined by the values of the covariance matrix above), and so the single variable CLT gives that

a ·
√
n(Xn − µ) =

√
n(Y n − 0)→ a ·X ∼ Normal

(
0,

k∑
i=1

k∑
j=1

aiajCov[X1i, X1j ]

)

Because a ∈ Rk was arbitrarily chosen, we satisfied the conditions of Cramér-Wold, and so the

multivariate CLT holds.
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Problem 5
The Lévy metric for distributions F,G is defined to be

λ(F,G) = inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε, ∀x ∈ R}

We first want to verify that this is indeed a metric:

• λ(F,G) ≥ 0 obviously because we are only looking at ε > 0.

• λ(F,G) = λ(G,F ): note that G(x) ≤ F (x+ ε) + ε for all x ∈ R ⇐⇒ G(x− ε)− ε ≤ F (x) for all

x ∈ R and similarly F (x − ε) − ε ≤ G(x) for all x ∈ R ⇐⇒ F (x) ≤ G(x + ε) + ε for all x ∈ R
(just a variable change).

• λ(F,G) = 0 ⇐⇒ F = G: ( ⇐= ) is obvious because distribution functions are increasing,

and so always F (x − ε) ≤ F (x) ≤ F (ε). ( =⇒ ) follows by right continuity and monotonicity of

distribution functions (i.e. at any fixed x ∈ R, ∀ε,∃δ s.t. F (x + δ) − F (x) < ε), which together

with G(x) ≤ F (x+ δ) + δ yields that G(x) ≤ F (x) + ε+ δ. ε is arbitrary and δ can be as small as

we want it to be, so G(x) ≤ F (x) for all x ∈ R. For the ≥ direction, just use symmetry (proven

above) to switch F and G.

• λ(F,G) ≤ λ(F,H) + λ(H,G): for any ε1 s.t. F (x − ε1) − ε1 ≤ H(x) ≤ F (x + ε1) + ε1 and ε2 s.t.

H(x− ε2)− ε2 ≤ G(x) ≤ H(x+ ε2) + ε2, we have that

F (x− (ε1 + ε2))− (ε1 + ε2) ≤ H(x− ε2)− ε2
≤ G(x)

≤ H(x+ ε2) + ε2 ≤ F (x+ (ε2 + ε1)) + (ε1 + ε2)

i.e. that (ε1 + ε2) works for F,G, ∀ε1 that work for F,H and ∀ε2 that work for H,G, implying

that the infimum of the ε for F,G must be ≤ the infimum of the sum of the ε’s for F,H and H,G.

Now that we know λ is a metric, we want to prove that going to 0 in the metric corresponds exactly

to convergence in distribution, i.e. λ(Fn, F )→ 0 ⇐⇒ Fn →d F .

( =⇒ ) for ε > 0 fixed and n sufficiently large, λ(Fn, F ) < ε. Similarly to our argument of

λ(F,G) = 0 =⇒ F = G, we use right continuity of d.f.’s to get that Fn(x) ≤ F (x) + ε + δ (at

some fixed x). Similarly, for the other direction, Fn(x) ≥ F (x) − ε − δn (this δn is based on the

right continuity of the Fn, and so they might not be the same for all n). Thus, |Fn(x) − F (x)| ≤
ε+ max{δ, δn} ≤ ε+ supn∈N{δn}. The δ’s can be made arbitrarily small (because if δ works, so do all

0 < δ′ < δ), and so |Fn(x)−F (x)| ≤ ε. Thus Fn(x)→ F (x) at all continuity points, and so Fn →d F .

( ⇐= ) fix any ε > 0. Looking on any compact set [a, b], find x1, . . . , xN in the continuity set of F

(which is almost every point) s.t. xi+1 − xi < ε. Now for all n large enough, |Fn(xi)− F (xi)| < ε for

all i ∈ {1, . . . , N}. Thus for any x ∈ [a, b], it is between some xi−1 and xi and so Fn(x) ≤ Fn(xi) ≤

14



F (xi) + ε ≤ F (x + ε) + ε and similarly Fn(x) ≥ Fn(xi−1) ≥ F (xi−1) − ε ≥ F (x − ε) − ε. Doing this

on all compact sets, we get that for n sufficiently large λ(Fn, F ) ≤ ε =⇒ λ(Fn, F )→ 0.
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522 Homework 7
Daniel Rui - 3/4/20

Problem 1
Let S be a standard Brownian motion on [0,∞), and let τb := inf{t > 0 : S(t) = b} (for some fixed

b > 0). τb is of course a stopping time, and we want to use optional sampling of the exponential

martingale Yr(t) := erS(t)−r2t/2 to show that:

(a) P (τb <∞) = 1: {Yn,An}n≥0 is a martingale, and τb∧m := min{τb,m} (for some fixed m ∈ N) is

a stopping time ≤ m, and so by the simple optional sampling theorem, E(Yr(τb ∧m)|A0) = Yr(0)

a.s. =⇒ E[Yr(τb ∧m)] = E[Yr(0)] = E
[
erS(0)

]
= E

[
e0
]

= 1 (because S(0) = 0 by definition of

Brownian motion). But we know τb∧m ≤ τb and τb = inf{t > 0 : S(t) = b}, and so S(τb∧m) ≤ b.
Thus (for r > 0),

Yr(τb ∧m) =
erS(τb∧m)

er2(τb∧m)/2
≤ erb

er2(τb∧m)/2
≤ erb

e0
= erb

We’ve just bound a sequence (in m) of random variables by a constant erb (constant w.r.t. ω),

so we can use the dominated convergence theorem, which tells us that

E[Yr(τb)] = E
[

lim
m→∞

Yr(τb ∧m)
]

= lim
m→∞

E[Yr(τb ∧m)] = lim
m→∞

1 = 1

This is very helpful, because now we can say that

E[Yr(τb)] = E
[
erb−r

2τb/2
]

= 1 =⇒ E
[
e−r

2τb/2
]

= e−rb

Now as r ↘ 0, on [τb =∞], 1

er
2τb/2

→ 0 (obviously), but on [τb <∞], 1

er
2τb/2

↗ 1. On the other

hand, e−rb → 1, and so heuristically e−r
2τb/2 must go to 1 a.s., i.e. P ([τb < ∞]) = 1. More

rigorously, if P ([τb = ∞]) = c > 0, then E
[
e−r

2τb/2
]

is at most P ([τb < ∞]) · 1 = 1 − c (for all

r > 0). This contradicts that e−rb ↗ 1, and so P ([τb =∞]) must be 0.

(b) E[e−sτb ] = e−b
√

2s (for s ≥ 0): defining s = r2

2 ( ⇐⇒ r =
√

2s) and observing that the random

variables S(τb) = b and τb are independent (obviously because one is constant w.r.t. ω), we see

that

1 = E[Yr(τb)] = E

[
eb
√

2s

esτb

]
= E

[
eb
√

2s
]
E
[
e−sτb

]
=⇒ E

[
e−sτb

]
= e−b

√
2s

(c) E[τb] = ∞: with the moment generating function above, we just differentiate once (w.r.t. s) to

see that E[τb] is the negative of the function − 1
2b(2s)

−1/2e−b
√

2s evaluated at s = 0, which is ∞.

(d) E[τ rb ] < ∞ for r ∈ (0, 1/2) and = ∞ for r = 1/2, using the fact that the density of τb is

fτb(t) = b
t3/2

φ
(
b√
t

)
· 1(0,∞)(t) = b√

2πt3
e−

b2

2t · 1(0,∞)(t):

E[τ rb ] =

∫ ∞
0

tr
b√

2πt3
e−

b2

2t dt ≥
∫ 1

0

be−b
2/2

√
2π

tr−3/2 dt =

<∞ if r < 1/2

=∞ if r ≥ 1/2
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Problem 2
Because F and Fn are all continuous and monotonically increasing (0 at −∞ and 1 at ∞), we can

find (for any N ∈ N) N + 1 points x0, . . . , xN s.t. F (xk) = k
N (where x0 = −∞ and xN = ∞

for convenience). Now for any x ∈ R, there is exactly one interval (xi, xi+1] that it lies in, and

furthermore, because F is increasing,

F (x)− Fn(x) ≤ F (xi+1)− Fn(xi) = F (xi) + 1
N − Fn(xi)

and

Fn(x)− F (x) ≤ Fn(xi+1)− F (xi) = Fn(xi+1)− F (xi+1) + 1
N

and so |F (x)−Fn(x)| ≤ max{Fn(xi+1)−F (xi+1), F (xi)−Fn(xi)}+ 1
N . This bound is dependent on

which interval the x is in, but we can easily tweak this to be a uniform bound for all x ∈ R:

sup
x∈R
|F (x)− Fn(x)| ≤ max

i∈{0,...,N}
|F (xi)− Fn(xi)|+

1

N

Because Fn →d F ⇐⇒ Fn → F pointwise everywhere (because the Fn are all continuous, and by

the portmanteau theorem: Pn →d P ⇐⇒ lim
n→∞

Pn(B) = P (B) for all P−continuity sets B ∈ B[0,1],

namely B = [0, x]), the max over finitely many things goes to 0 for n large enough, and 1
N goes to

0 for N large enough. A rather easy consequence of this (i.e. uniform convergence and continuity)

and the triangle inequality applied to |Fn(xn) − F (x)| = |Fn(xn) − F (xn) + F (xn) − F (x)| is that

xn → x =⇒ Fn(xn)→ F (x),

Problem 3
(b) Fn → F =⇒ {Fn}n≥1 is tight: fix ε > 0. We know F (R) = P ([X ∈ R]) = 1, and because

R =
⋃∞
n=1(−n, n) is a union of increasing sets, we can interchange measures and limits to get

that lim
n→∞

F ((−n, n)) = 1. Thus, there is some N s.t. F ((−N,N)) > 1− ε.

The portmanteau theorem gives us that Fn → F ⇐⇒ Fn →d F ⇐⇒ lim inf
n→∞

Fn(B) ≥ F (B) for

all open sets B, which in our case means that lim inf
n→∞

Fn((−N,N)) ≥ F ((−N,N)) > 1− ε. The

strict inequality here allows us to say that for some K, Fk((−N,N)) > 1− ε for all k > K.

For F1, . . . , FK , just use the same argument we used on F to find N1, . . . , NK s.t. Fi((−Ni, Ni)) >
1−ε. TakingN0 = max{N1, . . . , NK , N}, we get that ∀Fi, Fi([−N0, N0]) ≥ Fi((−N0, N0)) > 1−ε.
I.e., for any fixed ε we’ve found K compact s.t. Fi(K) > 1− ε, ∀Fi; thus {Fn} is tight.

(a) lim sup
n→∞

E[|Xn|r] = M < ∞ =⇒ {Fn} is tight: to translate this assumption into a statement

regarding probability measures, observe that

lim sup
n→∞

Fn((−∞,−λ) ∪ (λ,∞)) = lim sup
n→∞

P (|Xn| > λ)

=
1

λr
lim sup
n→∞

λrP (|Xn| > λ) ≤ 1

λr
lim sup
n→∞

E
[
|Xn|r · 1[|Xn|>λ]

]
≤ 1

λr
lim sup
n→∞

E[|Xn|r] =
M

λr
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and so lim sup
n→∞

Fn((−∞,−λ)∪(λ,∞))→ 0 as λ→∞. Thus, there is some Λ s.t. lim sup
n→∞

Fn((−∞,−Λ)∪

(Λ,∞)) < ε for any fixed ε > 0. Then,

lim inf
n→∞

Fn([−Λ,Λ]) = lim inf
n→∞

(
1− Fn((−∞,−Λ) ∪ (Λ,∞))

)
= 1− lim inf

n→∞
Fn((−∞,−Λ) ∪ (Λ,∞))

≥ 1− lim sup
n→∞

Fn((−∞,−Λ) ∪ (Λ,∞)) > 1− ε

This means that for all large enough n, Fn([−Λ,Λ]) > 1− ε, and so similarly as above in (b), we

just find the corresponding Λi for all the Fi for i not “large enough”, and then take the max to

find a compact set that works for all the Fi.

Problem 4
Suppose that we have Z ∼ Normal(0,1) and µn → µ < ∞ and σ2

n → σ2 < ∞. Then, defining

Xn =d µn + σnZ and X =d µ+ σZ, we get:

(b)
∣∣E[f(Xn)]− E[f(X)]

∣∣ ≤ ||f ||BLE[min
{

1, |µn − µ|+ |σn − σ| · |Z|
}]

(for any f ∈ BL(R)):

∣∣E[f(Xn)]− E[f(X)]
∣∣ =

∣∣E[f(Xn)− f(X)]
∣∣ =

∣∣E[f(µn + σnZ)− f(µ+ σZ)]
∣∣

≤ E[|f(µn + σnZ)− f(µ+ σZ)|]

≤ E
[
||f ||BL min{1,

∣∣(µ+ σZ)− (µn + σnZ)
∣∣}]

≤ ||f ||BLE
[
min

{
1, |µn − µ|+ |σn − σ| · |Z|

}]
where we used the fact that X =d Y =⇒ E[f(X)] = E[f(Y )] (could be proven with the law of

the unconscious statistician), the BL-inequality, and the triangle inequality.

(a) Xn →d X: this is equivalent to showing E[f(Xn)]→ E[f(X)] for any f ∈ BL(R). From (b), we

know that ∣∣E[f(Xn)]− E[f(X)]
∣∣ ≤ ||f ||BLE[min

{
1, |µn − µ|+ |σn − σ| · |Z|

}]
≤ ||f ||BLE[|µn − µ|+ |σn − σ| · |Z|]

= ||f ||BL
(
|µn − µ|+ |σn − σ| · E[|Z|]

)
For large enough n, we can easily bound this by any ε > 0, because µn → µ and σn → σ (||f ||BL
and E[|Z|] are just constants here). We’ve just found that for any f ∈ BL(R), we can find N s.t.

n > N =⇒
∣∣E[f(Xn)]− E[f(X)]

∣∣, and so E[f(Xn)]→ E[f(X)] for all f ∈ BL(R).
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522 Homework 6
Daniel Rui - 2/26/20

Problem 1
Polyá’s urn: initially at t = 0, we have 1 black and 1 white ball. At each time t = 1, 2, . . ., a ball is

chosen randomly and is replaced together with a new ball of the same color. Thus, immediately after

t = n, there are n+ 2 balls total and Bn + 1 black balls, where Bn is the number of black balls chosen

by time n and the 1 is from the initial one. Define Mn := Bn+1
n+2 , i.e. the fraction of the balls that are

black immediately after t = n. Then, with An := σ[M1, . . . ,Mn], {Mn,An}n≥0 is a martingale:

E(Mn+1|An) = E
(
Bn+1 + 1

n+ 3

∣∣∣An

)
=

1

n+ 3
E(Bn+1|Bn) +

1

n+ 3

=
1

n+ 3

(
(Bn + 1)Mn +Bn(1−Mn)

)
+

1

n+ 3

=
Mn +Bn + 1

n+ 3
=

Bn+1
n+2 +Bn + 1

n+ 3
=
Bn + 1

n+ 2
= Mn

Furthermore, notice that P (B1 = k) = 1
2 for k ∈ {0, 1}. Assuming that P (Bn = k) = 1

n+1 for all

k ∈ {0, . . . , n}, we inductively get that

P (Bn+1 = k) = E[P (Bn+1 = k|Bn)] = E
[ ∞∑
i=0

P (Bn+1 = k|Bn = i) · 1[Bn=i]

]
= E

[
P (Bn+1 = k|Bn = k) · 1[Bn=k] + P (Bn+1 = k|Bn = k − 1) · 1[Bn=k−1]

]
= P (Bn+1 = k|Bn = k)P (Bn = k) + P (Bn+1 = k|Bn = k − 1)P (Bn = k − 1)

=
(

1− k+1
n+2

)
· P (Bn = k) + (k−1)+1

n+2 · P (Bn = k − 1)

= 1
n+2

(
(n− k + 1)P (Bn = k) + kP (Bn = k − 1)

)
which equals 1

n+2 in all three cases: k = n + 1, for which the first term is 0; k = 0, for which the

second term is 0; and k ∈ {1, . . . , n}, for which the terms cancel neatly. Thus P (Bn = k) = P (Mn =
k+1
n+2 ) = 1

n+1 for all k ∈ {0, . . . , n} (a discrete uniform distribution), and so Θ := lim
n→∞

Mn ∼ Unif(0, 1).

Lastly, {Nθ
n,An}n≥0, where Nθ

n := (n+1)!
Bn!(n−Bn)!θ

Bn(1− θ)n−Bn , is a martingale:

E
(
Nθ
n+1|An

)
= E

(
(n+ 2)!

Bn+1!(n+ 1−Bn+1)!
θBn+1(1− θ)n+1−Bn+1

∣∣∣Bn)
=

(n+ 2)!θBn+1(1− θ)n−Bn
(Bn + 1)!(n−Bn)!

·Mn︸ ︷︷ ︸
picked black, prob.Mn =⇒ Bn+1=Bn+1

+
(n+ 2)!θBn(1− θ)n+1−Bn

Bn!(n+ 1−Bn)!
· (1−Mn)︸ ︷︷ ︸

picked white, prob.1−Mn =⇒ Bn+1=Bn

=
(n+ 1)!θBn(1− θ)n−Bn

Bn!(n−Bn)!
·
(

(n+ 2)θ

Bn + 1
·Mn +

(n+ 2)(1− θ)
(n+ 1−Bn)

· (1−Mn)

)
= Nθ

n ·
(

θ

Mn
·Mn +

(1− θ)
(1−Mn)

· (1−Mn)

)
= Nθ

n
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Problem 2
We want to prove Doob’s Lr-inequality: for a martingale {Xn,An}n≥0 and r > 1, the following are

equivalent:

(i) {|Xn|r} is integrable

(ii) Xn →Lr
X∞

(iii) {Xn} is uniformly integrable and Xn →a.s. X∞ ∈ Lr

(iv) {|Xn|r} is uniformly integrable

(v) {|Xn|r,An}n∈[0,∞] is a submartingale and E[|Xn|r] 1−1 E[|X∞|r] <∞

Just from the initial assumption (that {Xn,An}n≥0 is a martingale and r > 1), we get that g(x) = |x|
is convex =⇒ {|Xn|,An}n≥0 is a submartingale. Furthermore g(x) = |x|r is also convex, so

{|Xn|r,An}n≥0 is also a submartingale.

Immediately, we see that {|Xn|,An}n≥0 is submg =⇒ [(i) ⇐⇒ (iv)] (by HW#5P5), and {|Xn|r,An}n≥0

is submg =⇒ [(iv) ⇐⇒ (v)] (by part (B) of the (sub-)martingale convergence theorem).

(i) =⇒ (iii): also, in HW#5P5, we proved as an intermediary step that {|Xn|r} integrable =⇒
{|Xn|} uniformly integrable, which of course is iff {Xn} uniformly integrable. Part (A) of the s-

mg convergence theorem gives us that Xn →a.s. X∞ ∈ L1, and Fatou tells us that E[|X∞|r] =

E
[
lim inf
n→∞

|Xn|r
]
≤ lim inf

n→∞
E[|Xn|r] ≤ sup

n∈
E[|Xn|r] <∞, and so X∞ ∈ Lr.

{|Xn|} being uniformly integrable implies that {Xn} is uniformly integrable, and because we are on a

finite measure space that implies that {X+
n } is integrable. Hence, by part A of the (sub-)martingale

convergence theorem, (iii) =⇒ Xn →a.s. X∞ ∈ L1 =⇒ Xn →p X∞, which by Vitali’s theorem,

means that (iii) =⇒ ((iv) ⇐⇒ (ii)). Because (iii) can be deduced from (iv), this proves (iv) =⇒
(ii). The other direction (ii) =⇒ (iv) is given by one of the big theorems from chapter 3 (Theorem 5.7).

Lastly, (iii) =⇒ (i): part Paul Vondiziano B of the s-mg convergence theorem gives that {|Xn|,An}n∈[0,∞]

is a submartingale, and so |Xn| ≤ E
(
|X∞|

∣∣An

)
=⇒ |Xn|r ≤ E

(
|X∞|

∣∣Ar
n

)
≤ E(|X∞|r|An) =⇒

E[|Xn|r] ≤ E[|X∞|r] <∞ =⇒ sup
n∈N

E[|Xn|r] <∞ (because X∞ ∈ Lr).

Problem 3
!Warning!: I’ve switched the use of Y and X because I borrowed some notation from homework #4.

Also, as written, the problem statement looks like it’s saying that P and Q are measures on the real

line, which would imply that dQ
dP is a function of the real line, while Y1, . . . are functions on (Ω,A).

Immediately this seems incompatible, so I’ve tried my best to interpret the problem in such a way

that the types match up.
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Let Y1, Y2, . . . be independent on some probability space (Ω,A,P), and suppose ( Paul Vondiziano

assume?) they have density pk (w.r.t. some measure µ), i.e. FYk(B) = Pk(B) =
∫
B
pk dµ, i.e.

pk = dPk
dµ , the Radon-Nikodym derivative. Now suppose that we have some other candidate density

qk (w.r.t the same measure µ) s.t. Qk � Pk � µ. Define Xk = qk(Yk)
pk(Yk) (which is ≥ 0 because densities

are ≥ 0).

(a) Defining Mn :=
∏n
k=1Xk and Ak = σ[Y1, . . . , Yk], {Mn,Ak}k≥1 is essentially Kakutani’s mar-

tingale. Note our usage of the law of the unconscious statistician and of the change of variables

theorem:

E(Mn+1|An) = E
(
qn+1(Yn+1)

pn+1(Yn+1)
·Mn

∣∣∣An

)
=a.s. MnE

[
qn+1(Yn+1)

pn+1(Yn+1)

]
= Mn

∫
Ω

qn+1(Yn+1)

pn+1(Yn+1)
dP = Mn

∫
R

qn+1(x)

pn+1(x)
dFYn+1

(x)

= Mn

∫
R

qn+1(t)

pn+1(t)

dFYn+1

dµ
(t)dµ(t) = Mn

∫
R

qn+1(t)

pn+1(t)
pn+1(t)dµ(t)

= Mn

∫
R
qn+1(t)dµ(t) = MnQn+1(R) = Mn

Lastly, regarding the mean: E[Mn] = E
[
n∏
k=1

Xk

]
=

n∏
k=1

E[Xk] =
n∏
k=1

∫
Ω
qk(Yk)
pk(Yk) dP =

n∏
k=1

1 = 1.

Regarding the likelihood ratio interpretation: note that the Pk and Qk are all measures on the

real line; i.e. Pk, Qk : B → R. Define Ak = σ[Yk] = Y −1
k (B). Then for any Ak ∈ Ak, there

is some B ∈ B s.t. Y −1
k (B) = Ak. Thus for every Ak ∈ Ak and its corresponding B, we can

define P̃k(Ak) = Pk(B), meaning that P̃k : Ak → R. We can similarly do this to Qk to get

Q̃k : Ak → R, Qk(B) = Q̃k(Ak).

Now because Qk � Pk, there is some function dQk
dPk

s.t. Qk(B) =
∫
B

dQk
dPk

dPk. The law of the

unconscious statistician gives that this integral is =
∫
Y −1
k (B)

dQk
dPk

(Yk)dP̃k =
∫
Ak

dQk
dPk

(Yk)dP̃k

(because Pk(B) = P̃k(Y −1
k (B)) is in fact the induced measure). But Qk(B) = Q̃k(Ak) so

Q̃k(Ak) =
∫
Ak

dQk
dPk

(Yk)dP̃k!

Furthermore Q̃k � P̃k (b/c P̃k(Ak) = 0 ⇐⇒ Pk(B) = 0 =⇒ Qk(B) = 0 ⇐⇒ Q̃n(Ak) = 0),

meaning that there is a unique (a.s.) dQ̃k
dP̃k

s.t. Q̃k(Ak) =
∫
Ak

dQ̃k
dP̃k

dP̃k. Thus, dQ̃k
dP̃k

=a.s.
dQk
dPk

(Yk).

This relates to the Xk above because the chain rule for Radon-Nikodym derivatives tells us that,

qk =
dQk
dµ

=a.s.
dQk
dPk

· dPk
dµ

=
dQk
dPk

· pk =⇒ dQk
dPk

=a.s.
qk
pk

and hence Q̃k(Ak) =
∫
Ak
Xk dP̃k, ∀Ak ∈ Ak. We are now ready to define the product measure

P̃n =
∏n
k=1 P̃k, where P̃n(A1×A2× . . .×An) = P̃1(A1) · P̃2(A2) · · · P̃n(An) (similarly Qn). Be-

cause the Radon-Nikodym derivative of a product measure is the product of the R-N derivatives,
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we have that

Q̃n(A) =

∫
A

n∏
k=1

Xk dP̃n

for any A ∈ An := σ[{A1× . . .×An : Ai ∈ Ai}]. Thus, Mn =
∏n
k=1Xk is equal (a.s.) to dQ̃n

dP̃n
. If

we think of the infinite dimensional σ-algebra A := σ[{A1×A2× . . . : Ai ∈ Ai}] and the infinite

product measures P̃ :=
∏∞
k=1 P̃k and Q̃ :=

∏∞
k=1 Q̃k (both measures : A → R), then P̃n = P̃ |An

(restriction to a sub-σ-field An, where we tweak An to be := σ[{A1×. . .×An×Ω×. . . : Ai ∈ Ai}]
and so An ⊆ An+1), and same for Q̃n. Thus {Mn,An}n≥1 fits the form of a likelihood ratio

martingale: for any A ∈ Am (m < n),∫
A

Mn dP̃ =

∫
A

Mn dP̃n = Q̃n(A) = Q̃m(A) =

∫
A

Mm dP̃m =

∫
A

Mm dP̃

implying that
∫
A
Mn −Mm dP̃ = 0 for all A ∈ Am.

(b) Not quite sure what’s going on here...if we don’t know that Q� P , how do we even define dQ
dP ?

(c) From Kakutani’s martingale theorem, {Mn} uniformly integrable ⇐⇒
∏∞

1 E
[√
Xn

]
> 0; thus

we just need to prove the following equality:

∞∏
n=1

E
[√

Xn

]
=

∞∏
n=1

∫
R

√
pn(x)qn(x)dx > 0

Under my interpretation, we would have that

E
[√

Xn

]
=

∫
Ω

√
qn
pn

(Yn)dP =

∫
R

√
qn
pn

(x)dFYn(x)

which doesn’t get us to Lebesgue measure/regular integration on the real line...

(d) If pn = qn, then
∫
R
√
pnqn dx =

∫
R pn dx will be 1 (integrating a density function on R always

yields 1 and so the product in (c) will be 1 > 0. Now for example take pn to be the density of

Unif(0,1) and qn to be the density of Unif(0,2). Then
∫
R
√
pnqn dx =

∫
R

√
1[0,1] · 1

2 · 1[0,2] dx =∫ 1

0

√
1
2 dx =

√
1
2 which would go to 0 in the infinite product. Similarly if we take qn to be

the density of Unif(0, 1
2 ), we would get

∫
R
√
pnqn dx =

∫
R

√
1[0,1] · 2 · 1[0, 12 ] dx =

∫ 1/2

0

√
2 dx =

√
2

2

which would also go to 0. Thus, the condition (c) is satisfied in the case of uniform r.v.’s when the

distributions are exactly the same each other. In general, the statistical meaning when it holds

will be if the distributions are similar, and the meaning when it fails will be if the distributions

are different.
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Problem 4
Let X and Y be random variables ≥ 0 where λP (X ≥ λ) ≤ E

[
Y · 1[X≥λ]

]
for every λ > 0. We know

that for any p > 1,

E[Xp] =

∫ ∞
0

P (Xp ≥ x)dx =

∫ ∞
0

P (X ≥ x1/p)dx =

∫ ∞
0

pup−1P (X ≥ u)du

(where these equalities hold even if the integrals end up being ∞ — i.e. one diverges ⇐⇒ the other

diverges, and one converges ⇐⇒ the other converges to the same value). The following (in)equalities

use Fubini-Tonelli (because every function involved here is ≥ 0) and Hölder’s inequality:

E[Xp] =

∫ ∞
0

pup−1P (X ≥ u)du ≤
∫ ∞

0

pup−2 · E
[
Y · 1[X≥u]

]
du

=

∫ ∞
0

E
[
pup−2 · Y · 1[X≥u]

]
du = E

[∫ ∞
0

pup−2 · Y (ω) · 1[X≥u](ω)du

]
= E

[
pY (ω)

∫ ∞
0

up−2 · 1[X≥u](ω)du

]
= E

[
pY (ω)

∫ X(ω)

0

up−2 du

]

= E
[
pY · 1

p− 1
Xp−1

]
=

p

p− 1
E
[
Y ·Xp−1

]
≤ p

p− 1
(E[Y p])

1
p

(
E
[
(Xp−1)

1

1− 1
p

])1− 1
p

=
p

p− 1
(E[Y p])

1
p (E[Xp])

p−1
p

Rearranging yields that E[Xp] ≤
(

p
p−1

)p
E[Y p], as desired. Lastly note that E[Xp] = 0 or E[Y p] =∞

don’t affect this inequality, because everything here is ≥ 0 and ≤ ∞ respectively.
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522 Homework 5
Daniel Rui - 2/19/20

Problem 1
We have a martingale {Xn,An}n≥0, a predictable process {Hn,An}n≥0 (i.e. Hn is An−1-measurable,

and H0 is constant i.e. {0,Ω}-measurable) and Wn := (H ·X)n :=
∑n
k=1Hk∆Xk :=

∑n
k=1Hk(Xk −

Xk−1).

(a) Assuming that the Hn are bounded (for ease I guess?) and keeping in mind that Hn+1 is An-

measurable,

E[Wn+1 −Wn|An] = E(Hn+1(Xn+1 −Xn)|An) =a.s. Hn+1E(Xn+1 −Xn|An)

= Hn+1

(
E(Xn+1|An)−Xn

)
=a.s. Hn+1

(
Xn −Xn

)
= 0

and so clearly {Wn,An}n≥0 is a martingale.

(b) We want to show that Ln = W 2
n −〈W 〉n is a 0-mean martingale w.r.t. An where L0 := H2

0 (X2
0 −

E
[
X2

0

]
) and

〈W 〉n := 〈H ·X〉n =

n∑
k=1

H2
kE
(
(∆Xk)2|Ak−1

)
+H2

0E
[
X2

0

]
= H2

nE
(
(Xn −Xn−1)2|An−1

)︸ ︷︷ ︸
An−1-msble

+ . . .

First, we compute

E
(
W 2
n+1|An

)
= E

(
(Wn+1 −Wn +Wn)2|An

)
= E

(
(Wn+1 −Wn)2 + 2Wn(Wn+1 −Wn) + (Wn)2|An

)
=a.s. E

((
Hn+1(Xn+1 −Xn)

)2∣∣∣An

)
+ 2WnE(Wn+1 −Wn|An) + (Wn)2

=a.s. H
2
n+1E

((
(Xn+1 −Xn)

)2∣∣∣An

)
+ 2Wn

(
Wn −Wn

)
+ (Wn)2

= H2
n+1E

(
(∆Xn+1)2

∣∣An

)
+ (Wn)2

Then,

E(Ln+1 − Ln|An) = E
(
W 2
n+1 − 〈W 〉n+1 −W 2

n + 〈W 〉n|An

)
= E

(
W 2
n+1 −W 2

n − 〈W 〉n+1 + 〈W 〉n|An

)
= H2

n+1E
(
(∆Xn+1)2

∣∣An

)
+ (Wn)2 − (Wn)2 − 〈W 〉n+1 + 〈W 〉n

= H2
n+1E

(
(∆Xn+1)2

∣∣An

)
+ (Wn)2 − (Wn)2 −H2

n+1E
(
(∆Xn+1)2

∣∣An

)
= 0

Because {Ln,An}n≥0 is now a martingale, E[Ln+1] = E[Ln] = . . . = E[L0] = E
[
H2

0 (X2
0 − E

[
X2

0

]
)
]

=

H2
0E
[
X2

0 − E
[
X2

0

]]
= 0 (recall that H0 is constant). Thus {Ln,An}n≥0 is also 0-mean; this in

combination with the predictable process 〈W 〉n is Doob’s decomposition of {W 2
n ,An}n≥1
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Problem 2
We suppose that {Xn,An} and {Yn,An} are submartingales. Then by the definition of submartingale

and that X ≤ Y =⇒ E(X|D) ≤a.s. E(Y |D), Xn ≤a.s E[Xn+1|An] ≤ E[max{Xn+1, Yn+1}|An].

Likewise, Yn ≤a.s E[Yn+1|An] ≤ E[max{Xn+1, Yn+1}|An], and so max{Xn, Yn} ≤a.s E[Yn+1|An] ≤
E[max{Xn+1, Yn+1}|An], which of course means that {max{Xn, Yn},An} is a sub-martingale.

Problem 3
LetX,Y ∈ L2(Ω,A, P ) and D a sub-σ-field of A. Then because E(Y |D) is D-measurable, E[E(Y |D)] =

E[Y ], and E(XY |D) = Y E(X|D) when Y is D-measurable,

E[XE(Y |D)] = E
[
E
(
XE(Y |D)

∣∣∣D)] = E[E(X|D)E(Y |D)]

We can switch the X and Y to get that E[XE(Y |D)] = E[E(X|D)E(Y |D)] = E[Y E(X|D)].

Problem 4
Let T1, T2, . . . (≥ 0) be (extended) stopping times (w.r.t. a filtration At of A, i.e. all At sub-σ-fields

of A and As ⊆ At for s ≤ t); i.e. [Ti ≤ t] ∈ At for all t ≥ 0.

(a) If the At are right-continuous (i.e.
⋂
j>i Aj = Ai for all i or equivalently

⋂∞
m=1 Ai+(1/m) = Ai),

then T1 + T2 is also a stopping time:

[T1 + T2 ≤ t] = {ω ∈ Ω : ∀m ∈ N,∃a ∈ Q s.t. T1(ω) ≤ a+ 1
m and T2(ω) ≤ (t− a) + 1

m}

=

∞⋂
m=1

⋃
a∈Q

[T1 ≤ a+ 1
m ] ∩ [T2 ≤ (t− a) + 1

m ]

but a < − 1
m or a > t + 1

m =⇒ [T1 ≤ a + 1
m ] ∩ [T2 ≤ (t − a) + 1

m ] = ∅, so for any a ∈ Q,

[T1 ≤ a + 1
m ] ∩ [T2 ≤ (t − a) + 1

m ] is definitely in At+(2/m). Thus the sets that remain after

intersecting over all m ∈ N must be in the At+(2/m) for all m ∈ N, which by right-continuity

means that [T1 + T2 ≤ t] ∈ At.

(b) Define AT1
:= {A ∈ A : A ∩ [T1 ≤ t] ∈ At for all t ≥ 0}; similarly AT2

. Now if A ∈ AT1
, then

A ∩ [T1 ≤ T2] ∈ AT2
because

[T1 ≤ T2 ≤ t] = {ω ∈ Ω : ∀m ∈ N,∃a ∈ Q[0,t− 1
m ] s.t. T1 ≤ a+ 1

m and a− 1
m < T2 ≤ t}

where Qm := Q[0,t− 1
m ] := Q ∩ [0, t− 1

m ) ∪ {t− 1
m}, and so

A ∩ [T1 ≤ T2] ∩ [T2 ≤ t] =
(
A ∩ [T1 ≤ t]

)
∩
( ∞⋂
m=1

⋃
a∈Qm

[T1 ≤ a+ 1
m ] ∩ [a− 1

m < T2 ≤ t]
)
∈ At

Taking A = Ω, [T1 ≤ T2] ∈ AT2
=⇒ [T1 > T2] ∈ AT2

and by symmetry [T2 ≤ T1] ∈ AT1
=⇒

[T2 > T1] ∈ AT1
. Furthermore, [T2 ≤ T1] ∈ AT1

=⇒ [T2 ≤ T1] ∩ [T1 ≤ T2] = [T1 = T2] ∈ AT2
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and so it is clear that [T1 ≤ T2], [T1 = T2], and [T1 ≥ T2] are all in both AT1
and AT2

.

(c) If T1 ≤ T2 then [T1 ≤ T2] = Ω and so A ∈ AT1
=⇒ A ∈ AT2

, i.e. AT1
⊆ AT2

. Therefore,

Amin{T1,T2} = AT1
∩ AT2

because min{T1, T2} ≤ T1 and T2 =⇒ Amin{T1,T2} ⊆ AT1
and AT2

,

and because A ∩ [min{T1, T2} ≤ t] = A ∩
(
[T1 ≤ t] ∪ [T2 ≤ t]

)
=
(
A ∩ [T1 ≤ t]

)
∪
(
A ∩ [T2 ≤

t]
)

=⇒
(
A ∈ T1 ∩ T2 =⇒ A ∈ Amin{T1,T2}

)
.

Additionally A ∈ AT1
=⇒ A ∩ [T1 ≤ T2] ∈ AT2

, but also [T1 ≤ T2] ∈ AT1
so A ∈ AT1

=⇒ A ∈
[T1 ≤ T2] ∈ AT1

∩ AT2
.

(d) If we have {Tn} such that Tn ≥ Tn+1 ≥ . . . ≥ T and limn→∞ Tn = T , then we know that

AT ⊆ . . . ⊆ ATn+1
⊆ ATn and so AT ⊆

⋂∞
i=n ATi . For the other direction, it would be easy if

[T ≤ t] =
⋂∞
i=n[Ti ≤ t]; this of course does not work because all the Tn could be > t while still

having their limit be T = t. The fix is to write

[T ≤ t] = {ω ∈ Ω : ∀m ∈ N,∃N ∈ N s.t. ∀i ≥ N, Ti ≤ t+ 1
m}

=

∞⋂
m=1

∞⋃
N=1

∞⋂
i=N

[Ti ≤ t+ 1
m ] ∈

∞⋂
m=1

At+(1/m)

We are allowed right-continuity, so [T ≤ t] ∈ At. Adding back an A ∈
⋂∞
i=n ATi ,

A ∩ [T ≤ t] = A ∩
∞⋂
m=1

∞⋃
N=1

∞⋂
i=N

[Ti ≤ t+ 1
m ]

=

∞⋂
m=1

∞⋃
N=1

∞⋂
i=N

A ∩ [Ti ≤ t+ 1
m ] ∈

∞⋂
m=1

At+(1/m)

and so A ∩ [T ≤ t] ∈ At for all t ≥ 0.

Problem 5
Let {Xn,An}n≥0 be a submartingale with Xn ≥ 0. Then for any r > 1, {Xr

n} is uniformly integrable

if and only if {Xr
n} is integrable:

( =⇒ ) recall that being uniformly integrable on a finite measure space (µ(Ω) < ∞) implies being

integrable: ∫
Ω

|f |dµ =

∫
[|f |>λ]

|f |dµ+

∫
[|f |≤λ]

|f |dµ ≤ ε+ λ · µ(Ω) <∞

for a sufficiently large λ.

(⇐= ) g(x) = |x|r is convex, and so {Xr
n,An}n≥0 is also a submartingale. The (sub)-martingale con-

vergence theorem tells us that Xr
n →a.s. X

r
∞ ∈ L1 (everything still ≥ 0), and that {Xr

n} is uniformly

integrable ⇐⇒ {Xr
n} is integrable and lim sup

n→∞
E[|Xr

n|] ≤ E[|Xr
∞|] < ∞ and so we just need to show

lim sup
n→∞

E[Xr
n] ≤ E[Xr

∞] <∞.

First we show that {Xn} is uniformly integrable (and hence that Xn converges a.s. to an X∞ ∈ L1
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that closes the martingale which would give that E(X∞|An) ≥a.s. Xn, ∀n ∈ N):

Xn · 1[Xn>λ] =
λr−1

λr−1
Xn · 1[Xn>λ] <

Xr−1
n ·Xn · 1[Xn>λ]

λr−1

=⇒ E
[
Xn · 1[Xn>λ]

]
≤ 1

λr−1
E
[
Xr
n · 1[Xn>λ]

]
≤ 1

λr−1
E[Xr

n] ≤ 1

λr−1
sup
n∈N

E[Xr
n]

which goes to 0 as λ → ∞. Then as advertised E(X∞|An) ≥a.s. Xn =⇒ E(X∞|An)
r ≥a.s. X

r
n =⇒

E[Xr
n] ≤ E[E(X∞|An)

r
] ≤ E[E(Xr

∞|An)] = E[Xr
∞] for all n, and so clearly lim sup

n→∞
E[Xr

n] ≤ E[Xr
∞].

Finally, Fatou (which only requires f ≥ 0) tells us that

E[Xr
∞] = E

[
lim
n→∞

Xr
n

]
= E

[
lim inf
n→∞

Xr
n

]
≤ lim inf

n→∞
E[Xr

n] ≤ sup
n∈N

E[Xr
n] <∞

and we are done.

Problem 6
Let’s start at generation zero with a single individual, who then produces some individuals in the first

generation, and so on. Let Zn be the number of individuals from the n-th generation (so Z0 = 1).

Let Xnj denote the number of offspring of the j-th individual of the n-th generation (so X01 = Z1).

Then Zn+1 =
∑Zn
j=1Xnj (for n ≥ 0). Furthermore, all the X’s are i.i.d., and pk = P (X = k) for

k ∈ {0, 1, 2, . . .}, and m := E[X] =
∑∞
k=0 kpk <∞ and p0 > 1 and p0 + p1 < 1.

(a) Define Wn := Zn/m
n and An := σ[W1, . . . ,Wn]. Then {Wn,An}n≥0 is a martingale with

E[Wn] = 1. Furthermore, if σ2 := Var[X] <∞, we can calculate Var[Wn]:

• When m = 1, Wn = Zn and so Var[Wn] = Var[Zn] where

Var[Zn+1] = E[Var(Zn+1|Zn)] + Var[E(Zn+1|Zn)]

= E

[
Var

(
Zn∑
j=1

Xnj

∣∣∣∣Zn
)]

+ Var

[
E

(
Zn∑
j=1

Xnj

∣∣∣∣Zn
)]

= E[ZnVar[Xnj ]] + Var[ZnE[Xnj ]] = σ2E[Zn] + Var[Zn]

Notice that in the computation above we said that E[Zn+1] = E[E(Zn+1|Zn)] = E[ZnE[Xnj]] =

E[Zn], and so all the E[Zn] = E[Z0] = 1. The formula then becomes Var[Zn+1] = σ2+Var[Zn],

where Var[Z0] = 0, and so Var[Zn+1] = (n+ 1)σ2. More beautifully that’s Var[Wn] = nσ2.

• For m 6= 1, note that E[Zn+1] = E[E(Zn+1|Zn)] = E[ZnE[Xnj]] = mE[Zn] =⇒ E[Zn] = mn.

Then,

Var[Zn+1] = E[Var(Zn+1|Zn)] + Var[E(Zn+1|Zn)]

= E

[
Var

(
Zn∑
j=1

Xnj

∣∣∣∣Zn
)]

+ Var

[
E

(
Zn∑
j=1

Xnj

∣∣∣∣Zn
)]

= E[ZnVar[Xnj ]] + Var[ZnE[Xnj ]] = σ2E[Zn] + Var[mZn]

= σ2mn +m2Var[Zn]
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Listing the first couple Var[Zn] out we get that

n Var[Zn]

0 0

1 σ2m0 +m20 = σ2

2 σ2m1 +m2(σ2) = σ2m1 + σ2m2

3 σ2m2 +m2(σ2m1 + σ2m2) = σ2m2 + σ2m3 + σ2m4

4 σ2m3 + σ2m4 + σ2m5 + σ2m6

5 σ2m4 + σ2m5 + σ2m6 + σ2m7 + σ2m8

and so it is clear that Var[Zn+1] = σ2
∑2n
i=nm

i = σ2mn
∑n
i=0m

i = σ2mn 1−mn+1

1−m . Thus,

Var[Wn+1] = Var

[
Zn+1

mn+1

]
=

1

m2n+2
Var[Zn+1]

=
σ2mn(1−mn+1)

(1−m)m2n+2
= σ2 mn+1 − 1

mn+2(m− 1)
= σ2 1−m−(n+1)

m(m− 1)

and so Var[Wn] = σ2 1−m−n
m(m−1) .

(b) If we define generating functions f and fn of X and Zn resp. by f(s) :=
∑∞
k=0 s

kpk and

fn(s) :=
∑∞
k=0 s

kP (Zn = k).

f(fn(s)) =

∞∑
i=0

 ∞∑
j=0

sjP (Zn = j)

i

pi

=

∞∑
i=0

( ∑
a1+a2+...=i

i!

a1! · · · aj !
sa1+2a2+...P (Zn = 1)a1 · P (Zn = 2)a2 · · ·

)
pi

The coefficients of sk will be :(
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522 Homework 4
Daniel Rui - 2/12/20

Problem 1
Let X1, X2, . . . be independent r.v.’s with Xk ≥ 0 and E[Xk] = 1, and let Mn :=

∏n
k=1Xk with M0 :=

1. Then — recalling that E(XY |D) =a.s. Y E(X|D) if Y is D-measurable, and E(Y |D) =a.s. E[Y ]

if F(Y ) and D are independent — {Mn,An}n≥0 (where An := σ[X1, . . . , Xn]) is a martingale with

E[Mn] = 1 for all Mn:

E(Mn+1|An) = E(Xn+1 ·Mn|An) = MnE(Xn+1|An) =a.s. Mn · E[Xn+1] =a.s. Mn

Problem 2
Recall from class that Mt := Nt − λt (for {Nt} a Poisson process with λ > 0) and M2

t − λt are both

martingales. We want to recover both of these (and more!) from the exponential martingale

Y(c, t, ω) :=
ecMt(ω)

E
[
ecMt(ω)

] =
ecNt(ω)/ecλt

E
[
ecNt(ω)

]
/ecλt

=
ecNt(ω)

E
[
ecNt(ω)

]
Note that Nt ∼ Poisson(λt), so the induced measure is FNt(A) =

∑
k∈A∩Z≥0

(λt)ke−λt

k! . Thus by the

law of the unconscious statistician,

E
[
ecNt

]
=

∫
R
ecx dFNt(x) =

∞∑
k=0

eck
(λt)ke−λt

k!
= e−λt

∞∑
k=0

(ecλt)k

k!
= e−λtee

cλt = e(ec−1)λt

Therefore, Y(c, t, ω) =
ecNt(ω)

e(ec−1)λt
. To verify that these Y do indeed form a martingale, observe that

E(Y(c, t)|As) =
1

e(ec−1)λt
E
(
ecNt |As

)
=

1

e(ec−1)λt
E
(
ecNt−cNs · ecNs |As

)
=a.s.

ecNs

e(ec−1)λt
E
(
ecNt−cNs |As

)
=a.s.

ecNs

e(ec−1)λt
E
[
ecNt−cNs

]
Nt − Ns counts the number of things that happen between s and t, so this is also ∼ Poiss(λ(t − s)),
and so

E(Y(c, t)|As) =a.s.
ecNs

e(ec−1)λt
e(ec−1)λ(t−s) =

ecNs

e(ec−1)λs
= Y(c, s)

Lastly, we just do some differentiation:

∂
∂cY(c, t) = (Nt − ecλt)ecNt−(ec−1)λt

∂2

∂c2Y(c, t) = (Nt − ecλt)2ecNt−(ec−1)λt − ecλt · ecNt−(ec−1)λt

and so
[
∂
∂cY

]
(0, t) = Nt−λt and =⇒

[
∂2

∂c2Y
]
(0, t) = (Nt−λt)2−λt. See Problem 6 (now commented

out) for higher derivatives.
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Problem 3
For X1, . . . , Xn independent with mean 0, Sk = X1 + . . . + Xk, and Ak = σ[X1, . . . , Xk], observe

that (because E(Y |D) =a.s. Y if Y is D-measurable, E(XY |D) =a.s. Y E(X|D) if Y is D-measurable,

E(Y |D) =a.s. E[Y ] if F(Y ) and D are independent, and linearity):

E
(
S2
k|Ai

)
= E

(
(Sk − Si)2 + 2Si(Sk − Si) + S2

i |Ai

)
= E

(
(Sk − Si)2|Ai

)
+ 2E(Si(Sk − Si)|Ai) + E

(
S2
i |Ai

)
=a.s. E

[
(Sk − Si)2

]
+ SiE[Sk − Si] + S2

i

= E
[
S2
k

]
− 2E[SkSi] + E

[
S2
i

]
+ 0 + S2

i

= E
[
S2
k

]
− 2E

[
(Sk − Si)Si + S2

i

]
+ E

[
S2
i

]
+ 0 + S2

i

= E
[
S2
k

]
− 2E[Sk − Si]E[Si]− 2E

[
S2
i

]
+ E

[
S2
i

]
+ S2

i

= E
[
S2
k

]
+ S2

i − E
[
S2
i

]
and so E

[
S2
k − E

[
S2
k

]
|Ai

]
= S2

i − E
[
S2
i

]
, implying that {S2

k − E
[
S2
k

]
,Ak}1≤k≤n is a martingale.

Problem 4

Defining Tk := Sn
bn

+
∑k
n+1

Xi
bi

, where 0 < b1 ≤ · · · ≤ bN , {Sk,Ak}1≤k≤N is a martingale, E[Sk] = 0,

and Xk := Sk − Sk−1 (and X1 := S1), we have that for any j s.t. n ≤ j < k,

E(Tk|Aj) = E(Tk − Tj + Tj |Aj) = E(Tk − Tj |Aj) + E(Tj |Aj) =a.s. E

(
k∑
j+1

Xi
bi

∣∣∣∣Aj

)
+ Tj

=
k∑
j+1

E(Xi|Aj)
bi

+ Tj =
k∑
j+1

E(Si|Aj)−E(Si−1|Aj)
bi

+ Tj =a.s.

k∑
j+1

Sj−Sj
bi

+ Tj = Tj

and so {Tk,Ak}n≤k≤N is a martingale. For the variance, we can just go back to the basic defini-

tion (let’s overwrite b1, . . . , bn−1 to all just be bn; it’s not like they show up anyways), keeping in

mind that Sk is Ak-measureable, the Ak are increasing (hence Xk is also Ak-measureable), and that

E(XY |D) =a.s. Y E(X|D) if Y is D-measurable:

Var[TN ] = E
[
T 2
N

]
− E[TN ]

2
= E

[
T 2
N

]
= E

[(
Sn
bn

+
N∑
n+1

Xi
bi

)2
]

= E

[(∑n
1 Xi
bn

+
N∑
n+1

Xi
bi

)2
]

= E

[(
n∑
1

Xi
bn

+
N∑
n+1

Xi
bi

)2
]

= E
[(∑N

1
Xi
bi

)2
]

= E

[∑N
1
X2
i

b2i
+

∑
1≤i 6=j≤N

XiXj
bibj

]

=
N∑
1

E[X2
i ]

b2i
+ 2

∑
1≤i<j≤N

E[XiXj ]
bibj

=
N∑
1

σ2
i

b2i
+ 2

∑
1≤i<j≤N

E
[
E
(
XiXj

∣∣Aj−1

)]
bibj

=
N∑
1

σ2
i

b2i
+ 2

∑
1≤i<j≤N

E
[
XiE

(
Xj

∣∣Aj−1

)]
bibj

=
N∑
1

σ2
i

b2i
+ 2

∑
1≤i<j≤N

E[Xi(Sj−1−Sj−1)]
bibj

=
N∑
1

σ2
i

b2i

which when we un-overwrite the b1, . . . , bn−1, becomes
n∑
1

σ2
i

b2n
+

N∑
n+1

σ2
i

b2i
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Problem 5
Let Y1, Y2, . . . be independent on some probability space (Ω,A,P), and suppose (assume?) they have

density pk (w.r.t. some measure µ), i.e. FYk(B) = Pk(B) =
∫
B
pk dµ, i.e. pk = dPk

dµ , the Radon-

Nikodym derivative. Now suppose that we have some other candidate density qk (w.r.t the same

measure µ) s.t. Qk � Pk � µ. Define Xk = qk(Yk)
pk(Yk) (which is ≥ 0 because densities are ≥ 0). Then:

(a) defining Mn :=
∏n
k=1Xk and Ak = σ[Y1, . . . , Yk], {Mn,Ak}k≥1 is essentially Kakutani’s mar-

tingale. Note our usage of the law of the unconscious statistician and of the change of variables

theorem:

E(Mn+1|An) = E
(
qn+1(Yn+1)

pn+1(Yn+1)
·Mn

∣∣∣An

)
=a.s. MnE

[
qn+1(Yn+1)

pn+1(Yn+1)

]
= Mn

∫
Ω

qn+1(Yn+1)

pn+1(Yn+1)
dP = Mn

∫
R

qn+1(x)

pn+1(x)
dFYn+1(x)

= Mn

∫
R

qn+1(t)

pn+1(t)

dFYn+1

dµ
(t)dµ(t) = Mn

∫
R

qn+1(t)

pn+1(t)
pn+1(t)dµ(t)

= Mn

∫
R
qn+1(t)dµ(t) = MnQn+1(R) = Mn

Lastly, regarding the mean: E[Mn] = E
[
n∏
k=1

Xk

]
=

n∏
k=1

E[Xk] =
n∏
k=1

∫
Ω
qk(Yk)
pk(Yk) dP =

n∏
k=1

1 = 1.

(b) note that the Pk and Qk are all measures on the real line; i.e. Pk, Qk : B → R. Define

Ak = σ[Yk] = Y −1
k (B). Then for any Ak ∈ Ak, there is some B ∈ B s.t. Y −1

k (B) = Ak.

Thus for every Ak ∈ Ak and its corresponding B, we can define P̃k(Ak) = Pk(B), meaning that

P̃k : Ak → R. We can similarly do this to Qk to get Q̃k : Ak → R, Qk(B) = Q̃k(Ak).

Now because Qk � Pk, there is some function dQk
dPk

s.t. Qk(B) =
∫
B

dQk
dPk

dPk. The law of the

unconscious statistician gives that this integral is =
∫
Y −1
k (B)

dQk
dPk

(Yk)dP̃k =
∫
Ak

dQk
dPk

(Yk)dP̃k

(because Pk(B) = P̃k(Y −1
k (B)) is in fact the induced measure). But Qk(B) = Q̃k(Ak) so

Q̃k(Ak) =
∫
Ak

dQk
dPk

(Yk)dP̃k!

Furthermore Q̃k � P̃k (b/c P̃k(Ak) = 0 ⇐⇒ Pk(B) = 0 =⇒ Qk(B) = 0 ⇐⇒ Q̃n(Ak) = 0),

meaning that there is a unique (a.s.) dQ̃k
dP̃k

s.t. Q̃k(Ak) =
∫
Ak

dQ̃k
dP̃k

dP̃k. Thus, dQ̃k
dP̃k

=a.s.
dQk
dPk

(Yk).

This relates to the Xk above because the chain rule for Radon-Nikodym derivatives tells us that,

qk =
dQk
dµ

=a.s.
dQk
dPk

· dPk
dµ

=
dQk
dPk

· pk =⇒ dQk
dPk

=a.s.
qk
pk

and hence Q̃k(Ak) =
∫
Ak
Xk dP̃k, ∀Ak ∈ Ak. We are now ready to define the product measure

P̃n =
∏n
k=1 P̃k, where P̃n(A1×A2× . . .×An) = P̃1(A1) · P̃2(A2) · · · P̃n(An) (similarly Qn). Be-

cause the Radon-Nikodym derivative of a product measure is the product of the R-N derivatives,

we have that

Q̃n(A) =

∫
A

n∏
k=1

Xk dP̃n
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for any A ∈ An := σ[{A1× . . .×An : Ai ∈ Ai}]. Thus, Mn =
∏n
k=1Xk is equal (a.s.) to dQ̃n

dP̃n
. If

we think of the infinite dimensional σ-algebra A := σ[{A1×A2× . . . : Ai ∈ Ai}] and the infinite

product measures P̃ :=
∏∞
k=1 P̃k and Q̃ :=

∏∞
k=1 Q̃k (both measures : A → R), then P̃n = P̃ |An

(restriction to a sub-σ-field An, where we tweak An to be := σ[{A1×. . .×An×Ω×. . . : Ai ∈ Ai}]
and so An ⊆ An+1), and same for Q̃n. Thus {Mn,An}n≥1 fits the form of a likelihood ratio

martingale: for any A ∈ Am (m < n),∫
A

Mn dP̃ =

∫
A

Mn dP̃n = Q̃n(A) = Q̃m(A) =

∫
A

Mm dP̃m =

∫
A

Mm dP̃

implying that
∫
A
Mn −Mm dP̃ = 0 for all A ∈ Am.
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522 Homework 3
Daniel Rui - 2/5/20

Problem 1
We have X,Y i.i.d. with continuous d.f. F , and M = max{X,Y }. We want to verify that

P (X ≤ x|M) = 1[M≤x] + 1
2
F (x)
F (M) · 1[M>x]

From definition, P (X ≤ x|M) := P (X ≤ x|F(M)) := E
(
1[X≤x]|F(M)

)
, so the following must hold:∫

D

E
(
1[X≤x]|F(M)

)
dP =

∫
D

1[X≤x] dP, ∀D ∈ F(M)

It suffices to show the equality for all D ∈ {[M ≤ m] : m ∈ R} (cf. Axler MIRA). Note that we are

integrating w.r.t. ω ∈ Ω here, not x, and so F (x) can be taken out of the integral as a constant.∫
[M≤m]

E
(
1[X≤x]|F(M)

)
dP =

∫
[M≤m]

1[M≤x] + 1
2

F (x)

F (M)
· 1[M>x] dP

=P ([M ≤ m] ∩ [M ≤ x]) + 1
2F (x)

∫
[x<M≤m]

1

F (M)
dP

If x ≥ m, then the 2nd term is 0 and the 1st term is P ([M ≤ m]). Furthermore, [M ≤ m] ⊆ [X ≤ x]

(b/c for any ω, M(ω) ≤ m =⇒ X(ω) ≤ m ≤ x). Thus, P ([M ≤ m]) = P ([M ≤ m] ∩ [X ≤ x]).

Now for x < m: note that FM (x) = P ([M ≤ x]) = P ([X ≤ x]∩[Y ≤ x]) = F 2(x). Then, by successive

applications of the law of the unconscious statistician, we get that∫
[x<M≤m]

1√
FM (M)

dP =

∫ m

x

1√
FM (t)

dFM (t) =

∫ FM (m)

FM (x)

1
√
y
dλ(y)

and so the expression just becomes P ([M ≤ x]) + 1
2F (x) · 2(

√
FM (m)−

√
FM (x)) = F 2(x) +P ([X ≤

x])(F (m)− F (x)) = P ([X ≤ x])P ([Y ≤ m]) = P ([X ≤ x] ∩ [Y ≤ m]) = P ([M ≤ m] ∩ [X ≤ x]).

Problem 2

(a) Defining conditional variance as Var[Y |X] = E
((
Y − E(Y |X)

)2∣∣∣X), denoting YX := E(Y |X),

and using the properties E[Y ] = E[E(Y |D)], E(Y |D) is D-measurable, E(YX |D) =a.s. YX if YX

is D-msble, E(XY |D) =a.s. Y E(X|D) if Y is D-measurable, and linearity, we see that

Var[Y ] = E
[
(Y − E[Y ])2

]
= E

[
(Y − YX + YX − E[Y ])2

]
= E

[
(Y − YX)2

]
+ 2E

[
(Y − YX)(YX − E[Y ])

]
+ E

[
(YX − E[Y ])2

]
= E

[
E
(
(Y − YX)2

∣∣X)]+ 2E
[
E
(

(Y − YX)(YX − E[Y ])
∣∣∣X)]+ E

[(
YX − E

[
YX
])2]

= E
[
Var[Y |X]

]
+ 2E

[
(YX − E[Y ])E

(
(Y − YX)

∣∣∣X)]+ Var[YX ]

= E
[
Var[Y |X]

]
+ 2E

[
(YX − E[Y ])

(
YX − YX

)]
+ Var[YX ] = E

[
Var[Y |X]

]
+ Var[YX ]
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(b) We want to show that Z := E(Y |D) minimizes E
[
(Y − Z)2

]
over all D-measurable random

variables in L2. Let Z ′ be some arbitrary L2 D-measurable random variable. Using the same

properties as above, we see that

E
[
(Y − Z ′)2

]
= E

[
(Y − Z + Z − Z ′)2

]
= E

[
(Y − Z)2

]
+ 2E[(Y − Z)(Z − Z ′)] + E

[
(Z − Z ′)2

]
= E

[
(Y − Z)2

]
+ 2E

[
E
(
(Y − Z)(Z − Z ′)|D

)]
+ E

[
(Z − Z ′)2

]
= E

[
(Y − Z)2

]
+ 2E

[
(Z − Z ′)E

(
(Y − Z)|D

)]
+ E

[
(Z − Z ′)2

]
= E

[
(Y − Z)2

]
+ 2E

[
(Z − Z ′)(E(Y |D)− Z)

]
+ E

[
(Z − Z ′)2

]
= E

[
(Y − Z)2

]
+ 0 + E

[
(Z − Z ′)2

]
which means that E

[
(Y − Z ′)2

]
≥ E

[
(Y − Z)2

]
, with equality only when Z ′ = Z (a.s.).

Problem 3
If we assume that Ω =

⊔
i∈I Di for finite or countable I, and let D := σ[{D1, D2, . . .}], then

P (A|D) =
∑
i∈I

P (A ∩Di)

P (Di)
1Di

We verify this by showing that
∫
Di
P (A|D)dP =

∫
Di

E(1A|D)dP =
∫
Di

1A dP for all Di ∈ D (because

{Di} is a π-system, Dynkin’s π−λ theorem (+ corollaries) says that two measures that agree on {Di}
agree on D). Below we probably have to use Fubini-Tonelli (but it’s not that bad because the things

we are integrating are ≥ 0):∫
Dj

∑
i∈I

P (A ∩Di)

P (Di)
1Di dP =

∑
i∈I

P (A ∩Di)

P (Di)

∫
Dj

1Di dP

=
∑
i∈I

P (A ∩Di)

P (Di)
P (Dj ∩Di) =

P (A ∩Dj)

P (Dj)
P (Dj) = P (A ∩Dj)

where the sum collapses because the Di are disjoint =⇒ P (Di ∩Dj) = 0. Now for general Y ∈ L1,

we want to verify that
∫
Di

E(Y |D)dP =
∫
Di
Y dP where E(Y |D) is defined as

E(Y |D) =
∑
i∈I

(
1

P (Di)

∫
Di

Y dP

)
· 1Di .

We proceed similar to above:∫
Dj

∑
i∈I

(
1

P (Di)

∫
Di

Y dP

)
· 1Di =

∑
i∈I

(
1

P (Di)

∫
Di

Y dP

)∫
Dj

1Di dP

=
∑
i∈I

(
1

P (Di)

∫
Di

Y dP

)
P (Dj ∩Di) =

1

P (Dj)

∫
Dj

Y dP · P (Dj) =

∫
Dj

Y dP
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Problem 4
Given independent X,Y and r ≥ 1, we want to show that E[|X + µY |r] ≤ E[|X + Y |r]. Recall the

properties E(Y |D) =a.s. E[Y ] if F(Y ) and D are independent, and g(E(Y |D)) ≤a.s. E(g(Y )|D) for

convex g (for this problem we’ll take g(x) = |x|r). Then,

|X + µY |r = |X + E(Y |X)|r = |E((X + Y )|X)|r ≤ E
(
|X + Y |r

∣∣X).
Finally, by monotonicity of expectation and by E[Y ] = E[E(Y |D)], we conclude with

E[|X + µY |r] ≤ E
[
E
(
|X + Y |r

∣∣X)] = E[|X + Y |r].

Problem 5
Cr inequality: E[|X + Y |r] ≤ CrE[|Xr|] + CrE[|Y r|], where r > 0, Cr = 2max{r,1}−1.

Proof: First recall from the proof of the regular Cr inequality that |X+Y |r ≤ Cr|X|r +Cr|Y |r. From

monotonicity and linearity of conditional expectation, we can place E(·|D) around this equality to get

E
(
E[|X + Y |r]

∣∣D) ≤a.s. E
(
Cr|X|r + Cr|Y |r

∣∣D) = CrE
(
|X|r

∣∣D)+ CrE
(
|Y |r

∣∣D)
Hölder: E[|XY |] ≤

(
E[|X|r]

)1/r(E[|X|s]
)1/s

where r > 1, 1/r + 1/s = 1.

Proof: Like in the proof of the regular Hölder’s inequality, we use Young’s inequality (inheriting our

conditions on r and s):

|ab| ≤ |a|
r

r
+
|b|s

s
with equality exactly when |a|r = |b|s ⇐⇒ |b| = |a|r−1

Now we let a = |X|(
E
(
|X|r

∣∣D))1/r and b = |Y |(
E
(
|Y |s
∣∣D))1/s and then take conditional expectations:

E

(
|X|(

E
(
|X|r

∣∣D))1/r |Y |(
E
(
|Y |s

∣∣D))1/s
∣∣∣∣D
)
≤ E

(
|X|r

rE
(
|X|r

∣∣D)
∣∣∣∣D
)

+ E

(
|Y |s

sE
(
|Y |s

∣∣D)
∣∣∣∣D
)

which simplifies down to

E
(
|XY |

∣∣D)(
E
(
|X|r

∣∣D))1/r(E(|Y |s∣∣D))1/s ≤ E(|X|r|D)

rE
(
|X|r

∣∣D) +
E(|Y |s|D)

sE
(
|Y |s

∣∣D) =
1

r
+

1

s
= 1

Rearranging yields the desired result.

Liapunov:
(
E[|X|r]

)1/r
is increasing in r for r ≥ 0.

Proof: Let 0 < a ≤ b. By the conditional version of Hölder with parameters r = b
a and s = b

b−a and

r.v.’s |X|a and 1, we get that

E
(
|X|a · 1

∣∣D) ≤ (E((|X|a)
b
a

∣∣D)) ab (E(1
b
b−a
∣∣D)) b−ab =⇒ E

(
|X|a

∣∣D)1/a ≤ (E(|X|b∣∣D))1/b
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Minkowski:
(
E[|X + Y |r]

)1/r ≤ (E[|X|r]
)1/r

+
(
E[|Y |r]

)1/r
for r ≥ 1.

Proof: Just like in the proof of regular Minkowski, we start by noting that inequality is trivial for

r = 1, and that for r > 1 (and s = r
r−1 ),

E
(
|X + Y |r

∣∣D) ≤ E
(
(|X|+ |Y |)|X + Y |r−1

∣∣D)
= E

(
|X| · |X + Y |r−1

∣∣D)+ E
(
(|Y | · |X + Y |r−1

∣∣D)
≤
(
E
(
|X|r

∣∣D)) 1
r
(
E
(
(|X + Y |r−1)s

∣∣D)) 1
s +

(
E
(
|Y |r

∣∣D)) 1
r
(
E
(
(|X + Y |r−1)s

∣∣D)) 1
s

=
(
E
(
|X|r

∣∣D))1/r(E(|X + Y |r
∣∣D))1/s +

(
E
(
|Y |r

∣∣D))1/r(E(|X + Y |r
∣∣D))1/s

=
((

E
(
|X|r

∣∣D))1/r +
(
E
(
|Y |r

∣∣D))1/r)(E(|X + Y |r
∣∣D))1−(1/r)

If E
(
|X + Y |r

∣∣D) = 0, the result is trivial, and otherwise we divide to get an exponent of (1/r) on

the left hand side, which is the result.

Jensen: g(E(Y |D)) ≤a.s. E(g(Y )|D).

Proof: Tweaking the proof of the regular Jensen inequality a bit (consider a set of lines instead of just

one to account for the fact that we’re dealing with inequalities on r.v.’s and not numbers), observe that

g(x) = sup{l(x) : l ∈ L} where L is the set of lines l(x) s.t. l(x) ≤ g(x) for all x ∈ R. Then, picking

any line l from L, l(X) ≤ g(X) =⇒ E(l(X)|D) ≤a.s. E(g(X)|D). But by linearity of conditional

expectation, E(l(X)|D) = l(E(X|D) ≤a.s. E(g(X)|D). This is true for any line l, and so we can take

the supremum to get that g(E(X|D)) ≤a.s. E(g(X)|D).

A random variable hD(ω) =a.s. E(Y |D) ⇐⇒ E[XY ] = E[XhD] for all D-measurable r.v.’s X (where

E[|XY |] <∞):

( =⇒ ) For all D ∈ D, we know that
∫
D
hD dP =

∫
D
Y dP . Thus, we know that for all X = 1D, the

claim is true. We proceed via the standard machine: for any simple function X :=
∑N
i=1 ci1Di ,∫

Ω

N∑
i=1

ciY · 1Di =

N∑
i=1

ci

∫
Di

Y dP =

N∑
i=1

ci

∫
Di

hD dP =

∫
Ω

N∑
i=1

cihD · 1Di

Now supposing X ≥ 0, we have some sequence Xn of simple functions that converge monotonically

to X, and so using the monotone convergence theorem,

E[XY ] = E
[
XY +

]
− E

[
XY −

]
= lim
n→∞

E
[
XnY

+
]
− lim
n→∞

E
[
XnY

−]
= lim
n→∞

E
[
Xnh

+
D

]
− lim
n→∞

E
[
Xnh

−
D

]
= E

[
Xnh

+
D

]
− E

[
Xnh

−
D

]
= E[XnhD]

Finally, for arbitrary D-measurable X,

E[XY ] = E
[
X+Y

]
− E

[
X−Y

]
= E

[
X+hD

]
− E

[
X−hD

]
= E[XhD]
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( ⇐= ) Take X = 1D for any D and we get that
∫

Ω
1D · Y dP =

∫
Ω

1D · hD dP =⇒
∫
D
Y dP =∫

D
hD dP =⇒ hD(ω) =a.s. E(Y |D).

Problem 6
We have a jar of six identical balls labelled 1, 2, 2, 3, 3, 3. The r.v.’s X1 and X2 represent sampling

twice (WITHOUT replacement). The joint probability distribution for (X1, X2) is

X1

1 2 3

1 0 2/30 3/30 5/30

X2 2 2/30 2/30 6/30 10/30

3 3/30 6/30 6/30 15/30

5/30 10/30 15/30 1

Now letting Ω be the 3×3 grid above, Y = X2, S = X1 +X2, and D = S−1(B), we want to explicitly

compute the values of the r.v.’s P (Y = 1|D), P (Y = 2|D), P (Y = 3|D), and E(Y |D).

Values of S

2 3 4

3 4 5

4 5 6

Associated probabilities

s 2 3 4 5 6

P (S = s) 0 4/30 8/30 12/30 6/30

Using the formula from problem #3, P (Y = i|D) =

6∑
j=2

P (A ∩Di)

P (Di)
1Dj , we get the following:

P (Y = 1|D)(ω)

2/4 3/8

2/4 3/8 0

3/8 0 0

P (Y = 2|D)(ω)

2/4 2/8

2/4 2/8 6/12

2/8 6/12 0

P (Y = 3|D)(ω)

0 3/8

0 3/8 6/12

3/8 6/12 1

Finally, E(Y |D) = E
(
1[Y=1] + 2 · 1[Y=2] + 3 · 1[Y=3]|D

)
= P (Y = 1|D) + 2 · P (Y = 2|D) + 3 · P (Y =

3|D):

E(Y |D)(ω)

6/4 16/8

6/4 16/8 30/12

16/8 30/12 3

Problem 7
Supposing that X,Y ∈ L1(Ω,F, P ) and E(Y |X) = X a.s. and E(X|Y ) = Y a.s., we want to prove

that P ([X = Y ]) = 1. I actually went and hunted down an online pdf of Williams’s Probability
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with Martingales, and so we proceed with his hint (along with the properties E[Y ] = E[E(Y |D)] and

E(XY |D) =a.s. Y E(X|D) if Y is D-measurable):∫
[X>c]∩[Y≤c]

(X − Y )dP +

∫
[X≤c]∩[Y≤c]

(X − Y )dP

=

∫
[Y≤c]

(X − Y )dP =

∫
[Y≤c]

X dP −
∫

[Y≤c]
Y dP

=E
[
1[Y≤c]X

]
− E

[
1[Y≤c]Y

]
= E

[
E
(
1[Y≤c]X|Y

)]
− E

[
1[Y≤c]Y

]
=E
[
1[Y≤c]E(X|Y )

]
− E

[
1[Y≤c]Y

]
=

∫
[Y≤c]

E(X|Y )dP −
∫

[Y≤c]
Y dP = 0

Of course, we can flip the letters around to get:
∫

[Y >c]∩[X≤c](Y −X)dP+
∫

[Y≤c]∩[X≤c](Y −X)dP = 0.

Thus, when we sum the two formulas together we get that∫
[X>c]∩[Y≤c]

(X − Y )dP +

∫
[X≤c]∩[Y≤c]

(X − Y )dP

+

∫
[Y >c]∩[X≤c]

(Y −X)dP +

∫
[Y≤c]∩[X≤c]

(Y −X)dP

=

∫
[X>c]∩[Y≤c]

(X − Y )dP +

∫
[Y >c]∩[X≤c]

(Y −X)dP

=

∫
[Y≤c<X]

(X − Y )dP +

∫
[X≤c<Y ]

(Y −X)dP = 0

We are almost at the point where we are integrating (X−Y ) over [X > Y ] and (Y −X) over [Y > X];

note that [X > Y ] =
⋃
c∈Q[X > c ≥ Y ] and [Y > X] =

⋃
c∈Q[Y > c ≥ X] (where we use Q because R

is uncountable and we don’t want to deal with uncountable sums). Therefore, we can say that

0 ≤
∫

[X>Y ]

(X − Y )dP +

∫
[Y >X]

(Y −X)dP

≤
∑
c∈Q

(∫
[Y≤c<X]

(X − Y )dP +

∫
[X≤c<Y ]

(Y −X)dP

)
=
∑
c∈Q

0 = 0

This implies that
∫

Ω
|X − Y |dP = 0, which is only possible if P ([|X − Y | = 0]) = 1 =⇒ X =a.s. Y .
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522 Homework 2
Daniel Rui - 1/22/20

Problem 1
We want to prove the equivalence of the following three statements:

(a)

∞∑
k=1

Xk <∞ a.s. (b)

∞∑
k=1

[
P (Xk > 1) + E

[
Xk · 1[Xk≤1]

]]
<∞ (c)

∞∑
k=1

E
[

Xk
1+Xk

]
<∞

We set out to prove that (c) implies (a) using the 3-series theorem:

(1) Note that Xk > 1 ⇐⇒ 1 +Xk > 2 ⇐⇒ 1
2 <

1
1+Xk

⇐⇒ 1
2 <

Xk
1+Xk

⇐⇒ 1 < 2Xk
1+Xk

. Thus,

∞∑
k=1

P (Xk > 1) =

∞∑
k=1

E
[
1 · 1[Xk>1]

]
<

∞∑
k=1

E
[

2Xk
1+Xk

· 1[Xk>1]

]
≤
∞∑
k=1

2E
[

Xk
1+Xk

]
<∞.

(2) For the next two, note that 0 ≤ Xk ≤ 1 ⇐⇒ 1
2 ≤

1
1+Xk

≤ 1 ⇐⇒ Xk ≤ 2Xk
1+Xk

≤ 2Xk, and so

∞∑
k=1

E
[
Xk · 1[Xk≤1]

]
≤
∞∑
k=1

E
[

2Xk
1+Xk

· 1[Xk≤1]

]
≤
∞∑
k=1

2E
[

Xk
1+Xk

]
<∞.

(3) Expanding upon the above inequalities, note that Xk ≤ 2Xk
1+Xk

together with Xk ≤ 1 imply that

X2
k ≤ Xk ≤ 2Xk

1+Xk
, and recall also that Var

[
Xk · 1[Xk≤1]

]
= E

[
X2
k · 1[Xk≤1]

]
− E

[
Xk · 1[Xk≤1]

]2
is

always ≥ 0. Thus,

∞∑
k=1

E
[
X2
k · 1[Xk≤1]

]
− E

[
Xk · 1[Xk≤1]

]2 ≤ ∞∑
k=1

E
[
X2
k · 1[Xk≤1]

]
≤
∞∑
k=1

E
[
Xk · 1[Xk≤1]

]
<∞

Note that our proof in (3) also shows that the two conditions given by (b) imply the variance condition

(because we simply bounded the variance series by the expectation series), and so assuming (b) we

can still fulfill the three conditions set by the 3-series theorem. The 3-series theorem now tells us that
n∑
k=1

Xk →a.s. S, which trivially gives that
∞∑
k=1

Xk <∞.

Summarizing, we’ve shown that (c) implies (a) (and hence obviously (b) as well), and also that (b)

implies (a), so all we need to do now is show (a) =⇒ (c). We are given that
∞∑
k=1

Xk is finite a.s., so

let’s say that it is less than M a.s. for some M . Then,

∞∑
k=1

E
[

Xk
1+Xk

]
≤
∞∑
k=1

E[Xk] ≤ E

[ ∞∑
k=1

Xk

]
≤ E[M ] = M <∞
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Problem 2
Let Y1, Y2, . . . be i.i.d. Cauchy(0,1). From Wikipedia, we know that the characteristic function of the

Cauchy(0,1) distribution is

ϕYk(t) = E
[
eitYk

]
= e−|t|

Furthermore, Lévy’s continuity theorem gives that ϕSn(t)→ ϕS(t) pointwise for all t ∈ R =⇒ [ϕS(t)

is continuous ⇐⇒ Sn →d S for some S ⇐⇒ S has characteristic function ϕS ]. Let us define

Sn =
n∑
k=1

akYk for some sequence {ak}. Then,

ϕSn(t) = E
[
eitSn

]
= E

[
eitY1 · · · eitYn

]
but because the Yk are independent =⇒ eitYk are independent, expectation is multiplicative, so

ϕSn(t) = E
[
eitSn

]
= E

[
eita1Y1

]
· · ·E

[
eitanYn

]
= e−|a1t| · · · e−|ant| = e

−|t|
n∑
k=1

|ak|

If
∞∑
k=1

|ak| = ∞, then for all t 6= 0, ϕSn(t) → 0; however, for all n ∈ N, ϕSn(0) = 1, so ϕSn(0) → 1.

This of course means that ϕS(t) is not continuous, and so Lévy tells us that the Sn 6→d to any r.v.,

and furthermore, theorem 8.1 from PfS says that →d ⇐⇒→a.s., and so Sn 6→a.s. S for any S.

If
∞∑
k=1

|ak| converges (i.e. is finite) to say a, then ϕSn(t)→ ϕS(t) := exp(−a|t|) pointwise for all t, so

Lévy tells us that Sn →d S where the characteristic function of S is ϕS(t). This of course implies that

S is distributed Cauchy(0,a). Theorem 8.1 again says that convergence in distribution iff convergence

a.s., and so Sn →a.s. S. In the particular case that ak = 1
2k

, Sn →a.s. S where S ∼ Cauchy(0,1).

Problem 3
Let a be some fixed value > 0; V,U(1),U(2) be independent Brownian bridge processes; and Z be

Normal(0,1) and independent of V. Let us add to the conditions of Brownian bridge processes that

V(0) = V(1) = 0. We want to verify that . . .

(a) B(t) = V(t) + tZ is a Brownian motion for t ∈ [0, 1]: (1) B(0) = V(0) + 0 · Z = 0 + 0 = 0;

(2) E[B(t)] = E[V(t)] + tE[Z] = 0 + 0 = 0; and (3) E[B(s)B(t)] = E[(V(s) + sZ)(V(t) + tZ)] =

E
[
V(s)V(t) + sZV(t) + tZV(s) + stZ2

]
= E[V(s)V(t)] + sE[Z]V(t) + tE[Z]V(s) + stE

[
Z2
]

=

min{s, t} − st+ 0 + 0 + st · 1 = min{s, t}.

(b) B(1)(t) = B(at)/
√
a is a Brownian motion for t ∈ [0, 1/a): (1) B(1)(0) = B(0)/

√
a = 0; (2)

E
[
B(1)(t)

]
= E[B(at)]/

√
a = 0 for t ∈ [0, 1/a); and (3) E

[
B(1)(s)B(1)(t)

]
= 1

aE[B(as)B(at)] =
1
a min{as, at} = min{s, t} for s, t ∈ [0, 1/a).

(c) B(2)(t) = B(a + t) − B(a) is a Brownian motion for t ∈ [−a, 1 − a], a ∈ [0, 1]: (1) B(2)(0) =

B(a) − B(a) = 0; (2) E
[
B(2)(t)

]
= E[B(a+ t)] − E[B(a)] = 0; and (3) E

[
B(2)(s)B(2)(t)

]
=

E[B(a+ s)B(a+ t)] − E[B(a)B(a+ t)] − E[B(a+ s)B(a)] + E[B(a)B(a)] = min{a + s, a + t} −
min{a, a+ t} −min{a+ s, a}+ min{a, a} = min{a+ s, a+ t} − a− a+ a = min{s, t}.
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(d) U(3) =
√

1− aU(1)±
√
aU(2) is a Brownian bridge, t ∈ [0, 1]: (1)

√
1− aU(1)(0)±

√
aU(2)(0) = 0;

√
1− aU(1)(1) ±

√
aU(2)(1) = 0; (2) E

[√
1− aU(1) ±

√
aU(2)

]
=
√

1− aE
[
U(1)

]
±
√
aE
[
U(2)

]
=

0; and (3) E
[
U(3)(s)U(3)(t)

]
= E

[(√
1− aU(1)(s)±

√
aU(2)(s)

)(√
1− aU(1)(t)±

√
aU(2)(t)

)]
=

(1 − a)E
[
U(1)(s)U(1)(t)

]
±
√
a(1− a)E

[
U(1)(s)

]
E
[
U(2)(t)

]
±
√
a(1− a)E

[
U(1)(t)

]
E
[
U(2)(s)

]
+

aE
[
U(2)(s)U(2)(t)

]
= (1− a)(min{s, t} − st)± 0± 0 + a(min{s, t} − st) = min{s, t} − st.

(e) Z(t) = [U(1)(t) + U(2)(1 − t)]/
√

2 is a Brownian bridge, t ∈ [0, 1]: (1) Z(0) = Z(1) = [U(1)(0) +

U(2)(1)]/
√

2 = (0 + 0)/
√

2 = 0; (2) E[Z(t)] =
(
E
[
U(1)(t)

]
+ E

[
U(2)(1− t)

])
/
√

2 = 0; and

(3) E[Z(s)Z(t)] = 1
2E
[(
U(1)(s) + U(2)(1− s)

)(
U(1)(t) + U(2)(1− t)

)]
= 1

2

(
E
[
U(1)(s)U(1)(t)

]
+

E
[
U(2)(1− s)

]
E
[
U(1)(t)

]
+E
[
U(2)(1− t)

]
E
[
U(1)(s)

]
+E
[
U(2)(1− s)U(2)(1− t)

])
= 1

2

(
min{s, t}−

st+0+0+min{1−s, 1− t}− (1−s)(1− t)
)

= 1
2

(
min{s, t}−2st+min{1−s, 1− t}−1+s+ t

)
=

1
2

(
min{s, t} − 2st+ min{t, s}

)
= min{s, t} − st.

Problem 4

(a) Given any two Haar functions gnj and gmk, we want to show that
∫ 1

0
gnj(t)gmk(t)dλ = 0. First,

let us what the set [gnj 6= 0] is. Well, gnj(t) = 2n/2
[
1[0,1/2](2

nt − j) − 1(1/2,1](2
nt − j)

]
so it’s

non-zero only when 0 ≤ 2nt−j ≤ 1 ⇐⇒ t ∈
[
j

2n ,
j+1
2n

]
. If n = m and w.l.o.g. j ≤ k; then k could

either be = j, in which case the integral is
∫
[ j
2n ,

j+1
2n ] 1 dλ = 1

2n and so
∫ 1

0
g2
n(t)dλ =

∑2n−1
0

1
2n = 1;

or k could be = j+1, in which case the integral would be
∫
{ j+1

2n }
−1 dλ = 0; or k could be > j+1,

in which case the integral would obviously just be 0.

Now w.l.o.g. n < m. Similar to above, the intersection of two intervals
[
j

2n ,
j+1
2n

]
,
[
k

2m ,
k+1
2m

]
can only result in ∅, a singleton, or the smaller of the two intervals, i.e.

[
k

2m ,
k+1
2m

]
. If the

intersection is ∅ or a singleton, the integral is clearly 0. Note that gnj is 1 on
[

2j
2n+1 ,

2j+1
2n+1

]
and

−1 on
(

2j+1
2n+1 ,

2j+2
2n+1

]
, and furthermore, that

[
k

2m ,
k+1
2m

]
lies cleanly inside exactly one of these two.

We will say that it’s 1 w.l.o.g.; then the integral becomes
∫
[ k
2m , k+1

2m ] gmk(t)dλ, which is just 0

(because of the equal amount of area above and below the x-axis).

(b) Recall from class that we proved that

|Vn(t, ω)| ≤ 1
2 · 2

−n/2 max
1≤k≤2n−1

|Xnk(ω)| ≤ 2−n/2
√
n almost surely

for all n ≥ N for some N . We want to rigorously justify the following interchange (by thinking

about sums as integrals on N w.r.t. counting measure, where counting measure is sigma finite):∫
Ω

[ ∞∑
n=0

[ ∞∑
m=0

Vn(s, ω)Vm(t, ω)“dm”

]
“dn”

]
dP

=
∞∑
n=0

[∫
Ω

[ ∞∑
m=0

Vn(s, ω)Vm(t, ω)“dm”

]
dP

]
“dn”

=
∞∑
n=0

[ ∞∑
m=0

[∫
Ω

Vn(s, ω)Vm(t, ω)dP

]
“dm”

]
“dn”

which we can do by showing that
∫

Ω

[ ∞∑
n=0

[∣∣∣∣ ∞∑
m=0

Vn(s, ω)Vm(t, ω)“dm”

∣∣∣∣]“dn”

]
dP <∞ and that
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∫
Ω

[ ∞∑
m=0

∣∣∣Vn(s, ω)Vm(t, ω)
∣∣∣“dm”

]
dP <∞ (for any fixed n). For the first one, note that

∫
Ω

[ ∞∑
n=0

[∣∣∣∣∣
∞∑
m=0

Vn(s, ω)Vm(t, ω)“dm”

∣∣∣∣∣
]

“dn”

]
dP

≤
∫

Ω

[ ∞∑
n=0

[ ∞∑
m=0

∣∣∣Vn(s, ω)
∣∣∣∣∣∣Vm(t, ω)

∣∣∣“dm”

]
“dn”

]
dP

=

∫
Ω

[ ∞∑
n=0

∣∣∣Vn(s, ω)
∣∣∣[N−1∑
m=0

∣∣∣Vm(t, ω)
∣∣∣“dm” +

∞∑
m=N

∣∣∣Vm(t, ω)
∣∣∣“dm”

]
“dn”

]
dP

≤
∫

Ω

[ ∞∑
n=0

∣∣∣Vn(s, ω)
∣∣∣[N−1∑
m=0

∣∣∣Vm(t, ω)
∣∣∣“dm” +

∞∑
m=N

√
m

2m/2
“dm”

]
“dn”

]
dP

But Y (t, ω) :=
∑N−1
m=0

∣∣Vm(t, ω)
∣∣ has

E[Y ] =
N−1∑
m=0

E
[∣∣Vm(t, ω)

∣∣] =
N−1∑
m=0

2m−1∑
j=0

|hmj(t)|E[|Xmj(ω)|]

=
N−1∑
m=0

2m−1∑
j=0

|hmj(t)| ·
√

2
π ≤

√
2
π

N−1∑
m=0

2−m/2︸ ︷︷ ︸
for any given t, at most one hnj is 6= 0

=: C1 <∞

(using formulas from Wikipedia for expectations of folded normals) and

Var[Y ] =
N−1∑
m=0

Var
[∣∣Vm(t, ω)

∣∣] =
N−1∑
m=0

2m−1∑
j=0

(hmj(t))
2Var[|Xmj(ω)|]

=
N−1∑
m=0

2m−1∑
j=0

h2
mj(t)

(
E
[
X2
mj(ω)

]
− E[|Xmj(ω)|]2

)
≤
N−1∑
m=0

2−m
(
1− 2

π

)
=: C2 <∞.

C0 :=
∑∞
m=N

√
m

2m/2
is clearly finite as well (

√
m < 1.1m for m > M , so the sum is < finite number

of terms +
∑∞
m=M ( 1.1√

2
)m, which is finite). We then continue the above chain of inequalities:

≤
∫

Ω

[ ∞∑
n=0

∣∣∣Vn(s, ω)
∣∣∣[Y (t, ω) + C0]“dn”

]
dP

=

∫
Ω

[Y (t, ω) + C0]

[
N−1∑
n=0

∣∣∣Vn(s, ω)
∣∣∣“dn” +

∞∑
n=N

∣∣∣Vn(s, ω)
∣∣∣“dn”

]
dP

≤
∫

Ω

[Y (t, ω) + C0][Y (t, ω) + C0]dP =

∫
Ω

Y 2(t, ω) + 2C0Y (t, ω) + C2
0 dP

=E
[
Y 2
]

+ 2C0E[Y ] + C2
0 = Var[Y ] + E[Y ]

2
+ 2C0C1 + C2

0

=C2 + C2
1 + 2C0C1 + C2

0 <∞

The second interchange is now trivial with the above machinery. The rest of the argument given

in the handout is just interchanging integrals and finite sums, and Parseval’s identity.
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Problem 5
Let µ0 := µ|A0

, i.e. for any A0 ∈ A0, we have that µ0(A0) = µ(A0). Now for any indicator function,

say on some A0, ∫
Ω

1A0 dµ = µ(A0) = µ0(A0) =

∫
Ω

1A0 dµ0.

Bumping up to any simple function
n∑
k=1

ck1A0,k
for real numbers ck and disjoint A0,k,

∫
Ω

n∑
k=1

ck1A0,k
dµ =

n∑
k=1

ckµ(A0,k) =

n∑
k=1

ckµ0(A0,k) =

∫
Ω

n∑
k=1

ck1A0,k
dµ0

Then for any X+ ≥ 0, we can construct simple functions Xn that monotonically increase to X+

(reference pg. 26 of PfS), and so with the monotone convergence theorem, we have that∫
Ω

X+ dµ = lim
n→∞

∫
Ω

Xn dµ = lim
n→∞

∫
Ω

Xn dµ0 =

∫
Ω

X+ dµ0

And so finally, for arbitrary X = X+ −X−,∫
Ω

X dµ =

∫
Ω

X+ dµ−
∫

Ω

X− dµ =

∫
Ω

X+ dµ0 −
∫

Ω

X− dµ0 =

∫
Ω

X dµ0

Problem 6
Let Z0, Z1, . . . be i.i.d Normal(0,1), and let fk(t) :=

√
2 sin(kπt), k ∈ N.

(a) Here’s a plot for k = 1, 2, 3:

−1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1

−2

−1

1

2
f1(t)

f2(t)

f3(t)

Orthonomality:∫ 1

0

f2
k (t)dt = 2

∫ 1

0

sin2(kπt)dt = 2

∫ 1

0

1− cos(2kπt)

2
dt = 1−

(
sin(2kπt)

2kπ

)∣∣∣∣1
0

= 1
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and (using WolframAlpha to evaluate the nastier integrals),∫ 1

0

fj(t)fk(t)dt = 2

∫ 1

0

sin(jπt) sin(kπt)dt

=2

(
k sin(jπt) cos(kπt)− j cos(jπt) sin(kπt)

π(j2 − k2)

)∣∣∣∣1
0

= 0

(b) Defining U(t, ω) :=
∞∑
k=1

Zk(ω)fk(t)
kπ for t ∈ [0, 1], we want to verify that it is in fact a Brownian

bridge:

(1) U(0) =
∞∑
k=1

√
2 sin(0) · Zk(ω)

kπ = 0; and U(1) =
∞∑
k=1

√
2 sin(kπ) · Zk(ω)

kπ = 0

(2) E[U(t)] =
∞∑
k=1

fk(t)
kπ E[Zk] =

∞∑
k=1

fk(t)
kπ · 0 = 0, where we would have to verify (for Tonelli) that

E
[ ∞∑
k=1

∣∣∣Zkfk(t)
kπ

∣∣∣] <∞
which seems like it wouldn’t converge because we just have 1/k, which diverges....uh oh....

(3) E[U(s)U(t)] = E

[
∞∑
j=1

Zjfj(s)
jπ

∞∑
k=1

Zkfk(t)
kπ

]
= E

[
∞∑
j=1

∞∑
k=1

Zjfj(s)
jπ

Zkfk(t)
kπ

]
and of course again we

would have to verify (for Tonelli) that

E

[
∞∑
j=1

[∣∣∣∣ ∞∑
k=1

Zjfj(s)
jπ

Zkfk(t)
kπ

∣∣∣∣]
]
<∞ and E

[∣∣∣Zjfj(s)jπ

∣∣∣ ∞∑
k=1

∣∣∣Zkfk(t)
kπ

∣∣∣] <∞
(c)
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522 Homework 1
Daniel Rui - 1/15/20

Problem 1
We have X1, X2, . . . i.i.d with P (Xk = 0) = P (Xk = 2) = 1

2 , so E[Xk] = Var[Xk] = 1. Defining

Sn :=

n∑
k=1

Xk

3k
=⇒ E[Sn] =

n∑
k=1

E
[
Xk

3k

]
=

n∑
k=1

1

3k
,Var[Sn] =

n∑
k=1

Var

[
Xk

3k

]
=

n∑
k=1

1

9k

we see that E[Sn] → 1
2 and Var[Sn] → 1

8 , so by the 2-series theorem, there is some r.v. S s.t.

Sn →a.s. S where E[S] = 1
2 and Var[S] = 1

8 Furthermore, we know that convergence a.s. implies

convergence in distribution, so to find FS , we will find FSn . Observe that (using the law of total

probability) for n > 1

P (Sn ≤ x) = P (Sn−1 ≤ x) · P (Xn = 0) + P

(
Sn−1 ≤ x−

2

3n

)
· P (Xn = 2)

or in other words

FSn(x) =
1

2

[
FSn−1

(x) + FSn−1

(
x− 2

3n

)]
Drawing out FS1

and subsequently FS2
, we immediately jump to the conclusion that FS is the Cantor

function. We will prove this rigorously by induction. First note that we can “extend” the FSn

backwards to FS0
which is 0 on (−∞, 0) and 1 on [0,∞). In general, FSn satisfies a few properties:

• FSn is increasing.

Proof: FS0
is obviously increasing. Assuming that FSn−1

(x) is increasing, we know that the

function FSn−1

(
x− 2

3n

)
is also increasing. The sum of two increasing functions is increasing, and

dividing by 2 doesn’t change that, so FSn is increasing.

• FSn ≤ FSn−1
(for all x)

Proof: FSn−1
is increasing, so we know that FSn−1

(
x− 2

3n

)
≤ FSn−1

(x)FSn−1

(
x− 2

3n

)
for all x,

implying that FSn−1

(
x− 2

3n

)
+ FSn−1

(x) ≤ 2FSn−1
(x), yielding the result upon rearrangement.

• FSn only attains finitely many values.

Proof: Base case: FS1
attains 3 values. Assume that FSn−1

satisfies the proposition. Let #n−1

denote the number of values that FSn−1
attains. FSn can only have values of that are averages

of the values from FSn−1
, and there definitely ≤ (#n−1)2 possible averages, which is finite.

• For any value v that FSn attains, F−1
Sn

(v) is an interval I (a set I is an interval if and only if

∀x, y ∈ I, x < z < y =⇒ z ∈ I).

Proof: Assume not; then there is x, y ∈ I s.t. there is z ∈ (x, y) s.t. FSn(z) 6= v. Because FSn is

increasing, x < z < y =⇒ FSn(x) = v ≤ FSn(z) ≤ FSn(y) = v =⇒ FSn(z) = v; contradiction.

45



• I0 for all FSn is (−∞, 0).

Proof: Base case: trivially true for FS0
. Assuming FSn−1

satisfies this, this would tell us that

FSn−1
> 0 on [0,∞). Thus, for any x ∈ [0,∞), FSn(x) is either the average of 2 positive

quantities, of the average of one positive quantity and 0, which is still positive. This implies that

FSn > 0 on [0,∞). Finally, for all x ∈ (−∞, 0), we see that FSn(x) is 0, so the result is true.

• Let #n denote the number of values attained by FSn . Then there are #n intervals I0, . . . , I#n−1

s.t. for any i, FSn(x) = FSn(y) for all x, y ∈ Ii (define this value to be vi — note that i < j ⇐⇒
vi < vj). Also denote FSn(Ii) = vi. (We can do all of this is from the above properties). Claim:

λ(Ii) ≥ 2
3n , and all the Ii (i ≥ 1) are of the form [x, y). Note that λ(I0) always =∞ from above.

Proof: Base case: obviously true for FS0
. Now assume that FSn−1

satisfies the proposition. Let

Ii = [xi, yi) (for i ≥ 1); observe that xi = yi−1 (letting y0 = 0). Then, all x ∈ Ji :=
[
xi + 2

3n , yi
)

satisfy FSn(x) = FSn−1
(x) = vi, and all x ∈ Ji′ :=

[
xi, xi + 2

3n

)
satisfy FSn(x) = vi−1+vi

2 . Call Ji

an old interval because FSn(Ji) = vi is an old value; analogously call Ji′ a new interval. Because

λ([xi, yi)) ≥ 2
3n−1 , we know that λ(Ji) ≥ 2

3n−1 − 2
3n = 4

3n ≥
2

3n , and λ(Ji′) = 2
3n . Because this

holds for all i (6= 0), the claim holds. Furthermore, note that when we go from FSn−1
to FSn , the

left bounds of ALL old intervals are moved right by 2
3n , and ALL new intervals have length 2

3n .

• #n = 2n + 1 for n ≥ 1

Proof: Base case: FS1
has 3 pieces. Assuming that #n−1 = 2n−1 + 1, we know from the above

proof that every interval Ii, i ∈ {1, . . . , 2n−1} splits into 2 pieces (while I0 remains (−∞, 0)).

• We know that new intervals created by FSn , n ≥ 1, (i.e. intervals corresponding to values that

FSn is the first to attain) initially have length 2
3n . Claim: Let I =

[
x, x+ 2

3n

)
be any such

interval, with v := FSn(I). As we iterate, the intervals corresponding to v have lengths → 1
3n .

Proof: Above, we showed that ALL old intervals get their left bound moved by 2
3n , so when

we get to FSn+1
, FSn+2

, . . ., I’s left bound gets moved right by 2
3n+1 ,

2
3n+2 , . . .. Thus, in FSN

(N > n), the left bound is moved right by
∑N
k=n+1

2
3k

, so as N →∞, F−1
SN

(v)→
[
x+ 1

3n , x+ 2
3n

)
.

Furthermore, denote I−1 to be the last interval (i.e. the one with value 1, first attained by FS0

on [0,∞)). Although I−1 is not of the form covered above, we still know that its left bound gets

moved right with every iteration. Thus, the I−1 approach
[∑∞

n=1
2

3n ,∞
)

= [1,∞)

• For FSn , y is the right bound of one of the intervals I0, . . . , I−2 (where I−2 denotes the second

to last interval) ⇐⇒ y =
∑n
k=1 dk

2
3k

where dk is 0 or 1. Furthermore, if y is the right bound of

the interval Ii, then FSn(Ii) =
∑n
k=1 dk

1
2k

Proof: Base case: FS1
has I0 = (−∞, 0), I1 = [0, 2

3 ), I2 = [ 2
3 ,∞), so y0 = 0, y1 = 2

3 , and FS1
(I0) =

0, FS1
(I1) = 1

2 as desired. Now assume FSn−1
satisfies the proposition; let the intervals of FSn−1

be denoted I(n−1,0), . . . , I(n−1,2n−1). We know from the proofs above that any interval from any

interval I(n−1,i), 1 ≤ i ≤ 2n−1 is split into two intervals I(n,2i−1), I(n,2i), where y(n,2i) = y(n−1,i)

and y(n,2i−1) = y(n−1,i−1) + 2
3n . This easily proves ( =⇒ ) in the first part; ( ⇐= ) follows

because of the induction hypothesis and the fact that each interval of FSn−1 splits into 2, one

where dn = 0 and one where dn = 1.

46



Finally, the intervals with dn = 0 are of the form I(n,2i), and we know that y(n,2i) = y(n−1,i) and

v(n,2i) = v(n−1,i). The intervals with dn = 1 are of the form I(n,2i−1), and y(n,2i−1) = y(n−1,i−1) +
2

3n and v(n,2i−1) = 1
2 (v(n−1,i−1)+v(n−1,i)); but we know that v(n−1,i) = v(n−1,i−1)+ 1

2n−1 (because

the first part implies that FSn−1
attains all a

2n−1 , 0 ≤ a ≤ 2n−1, and because FSn is increasing, so

if v(n−1,i) = a
2n−1 , then v(n−1,i−1) must be a−1

2n−1 ). Therefore, v(n,2i−1) = v(n−1,i−1) + 1
2n . Because

the formulas for v(n,2i−1) and y(n,2i−1) “match”, the second part of the proposition holds.

With all that, we see that FS maps intervals of the form[( n∑
k=1

dk
2

3k

)
− 1

3n
,

n∑
k=1

dk
2

3k

)
7→

n∑
k=1

dk
1

2k

(for all n ∈ N) and of course (−∞, 0) 7→ 0 and [1,∞) 7→ 1. This, of course, describes the Cantor

function (or the Cantor uniform distribution). QED!

Problem 2

We have independent {Xk}k≥1 with Xk ∼ Unif(−k, k), so E[Xk] = 0 and Var[Xk] = k2

3 (formulas

from Wikipedia). Define Sn =
∑n
k=1 a

kXk for some a ∈ (0, 1). Observe that

E[Sn] =

n∑
k=1

E
[
akXk

]
=

n∑
k=1

akE[Xk] = 0→ 0 <∞

Var[Sn] =

n∑
k=1

Var
[
akXk

]
=

n∑
k=1

(ak)2Var[Xk] =
1

3

n∑
k=1

k2a2k

Letting Vn =
∑n
k=1 k

2a2k, we can find the closed form by doing the following manipulations:

Vn = 1a2+ 4a4 + 9a6 + . . .+ n2a2n

a2Vn = 1a4 + 4a6 + 9a8 + . . .+ n2a2n+2

(1− a2)Vn = 1a2+ 3a4 + 5a6 + . . .+ (2n+ 1)a2n − n2a2n+2

a2(1− a2)Vn = 1a4 + 3a6 + 5a8 + . . .+ (2n+ 1)a2n+2 − n2a2n+4

(1− a2)2Vn = 1a2+ 2a4 + 2a6 + . . .+ 2a2n − (n+ 1)2a2n+2 + n2a2n+4

(1− a2)2Vn + a2 = 2
n∑
k=1

a2k − (n+ 1)2a2n+2 + n2a2n+4

= 2
a2(1− a2n+2)

1− a2
− (n+ 1)2a2n+2 + n2a2n+4

Taking the limit as n→∞, we get

(1− a2)2V + a2 =
2a2

1− a2
=⇒ V =

2a2 − a2(1− a2)

(1− a2)3
=
a2(1 + a2)

(1− a2)3

=⇒ Var[Sn]→ 1

3
· a

2(1 + a2)

(1− a2)3
<∞

By the 2-series theorem, Sn →a.s. S where E[S] and Var[S] equal the limiting values calculated above.
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Problem 3

Let {Xk} be a sequence of arbitrary random variables ≥ 0 with
∞∑
k=1

E[min(Xk, c)] <∞ (∀c > 0). We

can split this expression into

∞∑
k=1

E
[
Xk · 1[Xk≤c] + c · 1[Xk>c]

]
=

∞∑
k=1

(
E
[
Xi · 1[Xk≤c]

]
+ cP ([Xk > c])

)
<∞

which implies that
∞∑
k=1

P ([Xk > c]) < ∞. Borel-Cantelli tells us that P ([Xk > c] i.o.) = 0, which

means that there is some Nc s.t. ∀k > Nc, Xk ≤ c almost surely. Then,

∞∑
k=Nc

E[Xk] =

∞∑
k=Nc

(
E
[
Xi · 1[Xk≤c]

]
+ cP ([Xk > c])

)
=

∞∑
k=Nc

E[min(Xk, c)] <∞

Let SNc,n =
n∑

k=Nc

Xk and let an = E[SNc,n]. The an are increasing (because Xk ≥ 0) and bounded,

so an → a. Markov’s inequality gives that

P ([SNc,n ≥ λ]) ≤ an
λ
≤ a

λ

For any ω ∈ Ω, SNc,n(ω) is increasing (because Xk ≥ 0). If it’s unbounded, set S(Nc)(ω) =∞; other-

wise, we know the limit exists (by the monotone sequence theorem) so set S(Nc)(ω) = lim
n→∞

SNc,n(ω).

In other words

S(Nc)(ω) =

 lim
n→∞

SNc,n(ω) if the limit exists

∞ otherwise

Now observe that for all appropriate n,

[SNc,n ≥ λ] ⊆ [SNc,n+1 ≥ λ]

so by the limit-measure commutativity theorem for monotone sets,

P ([S(Nc) ≥ λ]) ≤ P

(∞⋃
Nc

[SNc,n ≥ λ− ε]

)
= lim
n→∞

P ([SNc,n ≥ λ− ε]) ≤
a

λ− ε

Thus taking λ → ∞, we see that P ([S(Nc) = ∞]) = 0. Which means that almost surely, SNc,n(ω)

converge to S(Nc)(ω). Finally, for n ≥ Nc,

Sn =

Nc−1∑
k=1

Xk + SNc,n and S =

Nc−1∑
k=1

Xk + S(Nc)

which inherits the result from above; mainly that Sn →a.s. S.
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Problem 4

We have i.i.d. Z1, Z2, . . . ∼ N(0, 1). Define W 2
n =

∞∑
k=1

Z2
k

(πk)2 . Using formulas from Wikipedia about

the moments of the normal distribution and known values of ζ(s),

E
[
W 2
n

]
=

n∑
k=1

E
[
Z2
k

(πk)2

]
=

1

π2

n∑
k=1

1

k2
E
[
Z2
k

]
→ 1

π2

∞∑
k=1

1

i2
=

1

π2
· π

2

6
=

1

6
<∞

and

Var
[
W 2
n

]
=

n∑
k=1

Var

[
Z2
k

(πk)2

]
=

1

π4

n∑
k=1

1

k4
Var
[
Z2
k

]
=

1

π4

n∑
k=1

1

k4

(
E
[
Z4
k

]
− E

[
Z2
k

])
=

1

π4

n∑
k=1

1

k4

(
3Var[Zk]−Var[Zk]

)
→ 1

π4

∞∑
k=1

2

k4
=

1

π4
· 2π4

90
=

1

45
<∞

By the 2-series theorem, W 2
n →a.s. W

2, where E[W 2] =
1

6
.

Problem 5
We have Y1, Y2, . . . i.i.d. Exponential(1), so E[Yk] = 1 and Var[Yk] = 1,

E[Sn] =

n∑
k=1

E
[
Yk − 1

λk

]
=

n∑
k=1

1

λk
E[Yk − 1] = 0→ 0 <∞

Also,

Var[Sn] =

n∑
k=1

Var

[
Yk − 1

λk

]
=

∞∑
k=1

1

λ2
k

Var[Yk − 1] =

n∑
k=1

1

λ2
k

Var[Yk]→
∞∑
k=1

1

λ2
k

<∞

as from the given. Thus, by the 2-series theorem, Sn →a.s. S, where E[S] = 0 and Var[S] =
1

λ2
.
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