
523 Midterm
Daniel Rui - 5/8/20

Problem 1

Let X be an r.v. and φ(t) = E
[
eitX

]
= E[cos(tX) + i sin(tX)] be its ch.f., and so Reφ(t) = φ(t)+φ(−t)

2 .

Thus to create some r.v. that has ch.f. of Reφ(t), we need to somehow weight X equally between

“+1” and “−1” — consider a Rademacher r.v. R independent of X, and the ch.f. of the r.v. RX:

E
[
eitRX

]
= E

[
eit·1·X · 1[R=1]

]
+ E

[
eit·(−1)·X · 1[R=−1]

]
=

E
[
eitX

]
2

+
E
[
e−itX

]
2

=
φ(t) + φ(−t)

2

That is to say, Reφ(t) is a ch.f (of the r.v. RX).

Problem 2
Let X be an r.v. with mean 0 and variance σ2 < ∞, and consider the r.v. X∗ that satisfies the

identity σ2E[f ′(X∗)] = E[Xf(X)] for all absolutely continuous f for which E[f ′(X∗)] and E[Xf(X)]

make sense. The distribution of X∗, called the X-zero bias distribution, is uniquely determined by

the identity.

(a) We want to show that (aX)∗ =d aX
∗, for any a 6= 0. By definition, (aX)∗ is an r.v. that satisfies

a2σ2E[f ′((aX)∗)] = E[aXf(aX)] for all appropriate f (described above). On the other hand,

if we consider g(x) = f(ax) (for appropriate f), then by the definition of X∗, σ2E[g′(X∗)] =

E[Xg(X)] ⇐⇒ σ2E[af ′(aX∗)] = E[Xf(aX)] ⇐⇒ a2σ2E[f ′(aX∗)] = E[aXf(aX)] and so

putting both equalities together we get that E[f ′((aX)∗)] = E[f ′(aX∗)]. But we said that the

distribution for r.v.’s that satisfied the identity was uniquely determined, so it must be that

aX∗ =d (aX∗).

(b) If we consider (the absolutely continuous function) ft(x) = (x − t) · 1(−∞,t](x) with derivative

f ′t(x) = 1(−∞,t], then we get that

FX∗(t) = P (X∗ ≤ t) = E
[
1(−∞,t](X

∗)
]

= E[f ′(X∗)] =
1

σ2
E[Xf(X)] =

E
[
X(X − t)1[X≤t]

]
σ2

In particular, this means that if |X| ≤ C a.s. (i.e. 1[X≤−C−ε] =a.s. 0 and 1[X≤C] =a.s. 1),

FX∗(−C − ε) = 0 and FX∗(C) =
E
[
X2 − tX

]
σ2

=
σ2 − 0

σ2
= 1

(for all ε > 0), and so |X∗| ≤ C almost surely as well.

We can also consider Xs with the X-size bias distribution, where X is non-negative and Xs satisfies

E[Xf(X)] = µE[f(Xs)] (again for all f for which the expectations exist, and µ = E[X]).

(a) As in (a) above, (aX)s =d aX
s for any a 6= 0, because E[aXf(aX)] = aµE[f((aX)s)] ⇐⇒

E[Xf(aX)] = µE[f((aX)s)] (by definition) and E[Xg(X)] = µE[g(Xs)] ⇐⇒ E[Xf(aX)] =

1



µE[f(aXs)] where again g(x) = f(ax) (for appropriate f) and so putting the equalities together

we get E[f(aXs)] = E[f((aX)s)]. But we said that the distribution for r.v.’s that satisfied the

identity was uniquely determined, so it must be that aXs =d (aXs).

(b) As in (b) above, we find the (induced measure of the) c.d.f. of Xs:

FXs(A) = E[1A(Xs)] =
1

µ
E[X1A(X)] =

1

µ

∫
R
x1A(x)dFX(x) =

∫
A

x

µ
dFX(x)

Thus if X takes values in [0, C] (a.s.), then taking A = (C,∞), the above equation makes it clear

that FXs(A) = 0, and thus 0 ≤ Xs ≤ C a.s. as well.

Problem 3
(a) In the framework of Problem 2A, we already established that FX∗(t) = 1

σ2E
[
X(X − t)1[X≤t]

]
.

If we assume that X has a p.d.f. f(x), then we can write FX∗(t) = 1
σ2

∫
(−∞,t] x(x − t)f(x)dx.

Differentiating, we get that F ′X∗(t) = 1
σ2 t(t−t)f(t)+

∫ t
−∞−xf(x)dx and F ′′X∗(t) = −tf(t), which

is ≥ 0 for t ≤ 0 and ≤ 0 for t ≥ 0 (because densities are ≥ 0). Thus, FX∗(t) is convex on (−∞, 0]

and concave on [0,∞), which means that FX∗ is unimodal with 0-mode according to Khinchine’s

definition.

(b) More generally, in the case where X may not have a p.d.f., we have for t1 < t2 that

FX∗(t1) + FX∗(t2)

2
=

1

σ2
E
[
X
X − t1

2
1[X≤t1] +X

X − t2
2

1[X≤t2]

]
which can be written as 1

σ2E[Xg(X)] if we take g(x) = x−t1
2 · 1(−∞,t1](x) + x−t2

2 · 1(−∞,t2](x).

Similarly, FX∗(
t1+t2

2 ) = 1
σ2E[Xh(X)] for h(x) = (x− t1+t2

2 )1
(−∞, t1+t2

2 ]
(x). But

[h− g](x) =
x− t1

2
· 1

(−∞, t1+t2
2 ]

(x) +
x− t2

2
· 1

(−∞, t1+t2
2 ]

(x)

− x− t1
2
· 1(−∞,t1](x)− x− t2

2
· 1(−∞,t2](x)

=
x− t1

2
· 1

(t1,
t1+t2

2 ]
(x)− x− t2

2
· 1

(
t1+t2

2 ,t2]
(x)

which is ≥ 0 (because x ∈ (t1,
t1+t2

2 ] =⇒ x − t1 > 0 and x ∈ ( t1+t2
2 , t2] =⇒ x − t2 ≤ 0).

Furthermore, [h− g](x) is 0 outside of [t1, t2]. Thus, for t1 < t2 ≤ 0,

FX∗(t1) + FX∗(t2)

2
− FX∗

(
t1 + t2

2

)
=

1

σ2
E[X[g − h](X)] ≥ 0

because [g− h](x) is ≤ 0, 0 when X is outside [t1, t2], so we are only concerned with values of X

in [t1, t2], a negative interval. Similarly, for 0 ≤ t1 < t2,

FX∗(t1) + FX∗(t2)

2
− FX∗

(
t1 + t2

2

)
=

1

σ2
E[X[g − h](X)] ≤ 0

2

http://danielrui.com/texts/folland.pdf#page=190


because X is positive (i.e. in the range [t1, t2]) while [g− h] is negative. (One could go back and

change the average to a weighted average with λ and (1 − λ), and the logic would follow much

the same way). Thus, FX∗(t) is convex on (−∞, 0] and concave on [0,∞), which means that FX∗

is unimodal with 0-mode according to Khinchine’s definition.

Problem 4
Let K(t) = E

[
X(1[0≤t≤X] − 1[X≤t<0])

]
where X is a 0-mean r.v.. We have that:∫

R
K(t)dt =

∫
R

∫
Ω

X · 1[0≤t≤X] dP dt+

∫
R

∫
Ω

−X · 1[X≤t<0] dP dt

=

∫
Ω

∫
R
X · 1[0≤t≤X] dtdP −

∫
Ω

∫
R
X · 1[X≤t<0] dt dP

=

∫
Ω

X · 1[X≥0]

∫ X

0

1 dtdP −
∫

Ω

X · 1[X<0]

∫ 0

X

1 dtdP

= E
[
X21[x≥0]

]
− E

[
−X21[x<0]

]
= E

[
X2
]

where the integral interchange is justified by Fubini-Tonelli because X · 1[0≤t≤X] and −X · 1[X≤t<0]

are both non-negative functions. Similarly (again using non-negativity for integral interchange),∫
R
|t|K(t)dt =

∫
R

∫
Ω

|t|X · 1[0≤t≤X] dP dt+

∫
R

∫
Ω

−|t|X · 1[X≤t<0] dP dt

=

∫
Ω

X

∫
R
|t|1[0≤t≤X] dtdP −

∫
Ω

X

∫
R
|t|1[X≤t<0] dtdP

=

∫
Ω

X · 1[X≥0]

∫ X

0

|t|dtdP −
∫

Ω

X · 1[X<0]

∫ 0

X

|t|dtdP

=

∫
Ω

X · 1[X≥0] · ( 1
2 t

2)
∣∣X
0
dP −

∫
Ω

X · 1[X<0](− 1
2 t

2)
∣∣0
X
dtdP

= 1
2E
[
X31[X≥0]

]
− E

[
1
2X

31[X<0]

]
= 1

2 (E
[
(X3)+

]
+ E

[
(X3)−

]
) = 1

2E
[
|X|3

]
Problem 5
Suppose that g, h : R → R are 1−1, and that X is an r.v such that E

[
g2(X)

]
,E
[
h2(X)

]
< ∞. We

would like to prove that Cov[g(X), h(X)] ≥ 0. As the hint so generously suggests, we consider Y , an

independent copy of X so that:

E
[(
g(Y )− g(X)

)(
h(Y )− h(X)

)]
= E[g(Y )h(Y )]− E[g(Y )h(X)]− E[g(X)h(Y )] + E[g(X)h(X)]

= 2E[g(X)h(X)]− 2E[g(X)]E[h(X)] = 2Cov[g(X), h(X)]

where we used that E[g(X)h(X)] = E[g(Y )h(Y )], E[g(X)] = E[g(Y )], and E[h(X)] = E[h(Y )] (because

X =d Y ), and that E[g(X)h(Y )] = E[g(X)]E[h(Y )] by independence of X,Y . Because g, h are both

non-decreasing, at any ω ∈ Ω, both differences (g(Y ) − g(X) and h(Y ) − h(X)) are either both ≤ 0

if Y (ω) ≤ X(ω) or both ≥ 0 if Y (ω) ≥ X(ω). Thus, the product of the differences is always ≥ 0, so

the expectation is always ≥ 0, meaning of course that Cov[g(X), h(X)] ≥ 0

3



Problem 6
The law of the iterated logarithm states that for S(t) a standard Brownian motion on [0,∞),

lim sup
t→∞

S(t)√
2t log log t

=a.s. 1

(a) We want to show that S̃(t) = tS( 1
t ) is a Brownian motion on [0,∞). We first verify the expectation

and covariance formulas: for any s, t ∈ (0,∞),

� E
[
S̃(t)

]
= E

[
tS( 1

t )
]

= tE
[
S( 1

t )
]

= 0

� E
[
S̃(s)S̃(t)

]
= E

[
stS( 1

s )S( 1
t )
]

= stmin{ 1
s ,

1
t } = min{st 1

s , st
1
t } = min{t, s}

Now from the LIL applied to −S(t) which is also a Brownian motion (pretty obviously), the

lim inf is −1, and so multiplying everything by
√

2t log log t
t (which goes to 0 as t→∞) yields that

both the lim sup and lim inf of S(t)
t as t→∞ is a.s. 0. This is the same limit as limt→0 S̃(t), and

so we see that setting S̃(0) = 0 makes it right continuous a.s. at 0. S̃(t) is continuous (a.s.) on

(0,∞) because S(t) is. Lastly, S̃(t) is clearly Gaussian because S(t) is, and so S̃(t) is indeed a

Brownian motion on [0,∞).

(b) Well, taking S̃ to be the Brownian motion in consideration in the LIL, we have that

1 =a.s. lim sup
t→∞

tS( 1
t )√

2t log log t
= lim sup

t→∞

S( 1
t )√

2 1
t log log t

= lim sup
t′→0

S(t′)√
2t′ log log( 1

t′ )

Problem 8
As we discovered in 523hw4p3b, or as given to us in the problem statement, we can represent the sum

of the numbers drawn in sampling n balls without replacement from a collection of N balls labeled

c1, . . . , cN as

YN =

N∑
i=1

bicπi

where bi = 1[1,n](i). From the notation of 523hw4p2 or 523hw4p3a, we have that b̄N = n
N , B2

N =∑N
i=1(bi − b̄N )2 = n(1− n

N )2 + (N − n) n
2

N2 = n(N−nN )2 + (N − n) n
2

N2 = nN−nN (N−nN + n
N ) = n(1− n

N ),

and

E[YN ] = Nb̄N c̄N = nc̄N and Var[YN ] =
B2
NC

2
N

N − 1
=

n

N
C2
N

(
1− n− 1

N − 1

)
A theorem of Hájek, 1961 says that supposing

max
1≤i≤N

|bi − b̄N |
BN

→ 0 and max
1≤i≤N

|ci − c̄N |
CN

→ 0,

4

https://www.stat.washington.edu/jaw/COURSES/520s/523/HO.523.20/523-Spr2020-L9.pdf#page=25


then YN−E[YN ]
Var[Yn] →d Normal(0, 1) if and only if

∑
(i,j):

√
N |bi−b̄N |·|cj−c̄N |>εBNCN

|bi − b̄N |2|cj − c̄N |2

B2
NC

2
N

→ 0

as N → ∞, for every ε > 0 (where i, j in the sums are in {1, . . . , N}). Substituting what we know

about {bi} we see that

max
1≤i≤N

|bi − b̄N |
BN

=
max{1− n

N ,
n
N }√

n(1− n
N )

= max

{√
1− n

N√
n

,

√
n√

N(1− n
N )

}
= max

{√
1

n
− 1

N
,

√
n√

N − n

}

which goes to zero as N → ∞ if n := nN → ∞, but growing much slower than N (i.e nN < εN

eventually for every ε > 0, or nN = o(N)). Thus, the theorem says that if nN = o(N)→∞, and

max
1≤i≤N

|ci − c̄N |
CN

→ 0

then YN−E[YN ]
Var[Yn] →d Normal(0, 1) if and only if

n∑
i=1

∑
j:
√

N
n (1− n

N )|cj−c̄N |>εCN

(1− n
N )|cj − c̄N |2

nC2
N

+

N∑
i=n+1

∑
j:
√

n
N−n |cj−c̄N |>εCN

n
N |cj − c̄N |

2

(N − n)C2
N

=
∑

j:
√

N
n (1− n

N )|cj−c̄N |>εCN

(N − n)|cj − c̄N |2

NC2
N

+
∑

j:
√

n
N−n |cj−c̄N |>εCN

n|cj − c̄N |2

NC2
N

→ 0

as N →∞, for every ε > 0 (where the j’s in the sums are in {1, . . . , N}).

Additional observations: It seems that the second term will have no trouble going to 0, given that
n
N → 0 and because

√
N−n
n → ∞ so there will not be many (or any?) j s.t.

|cj−c̄N |
CN

> ε
√

N−n
n for

large enough N . Thus, if one wants to use this theorem, one should really only be concerned with the

first term.

5



523 Homework 4
Daniel Rui - 4/29/20

Problem 1
We want to show that the following are equivalent:

(i) max1≤k≤n P (|Xnk| > ε)→ 0 for all ε > 0 (uniform asymptotic negligible, or u.a.n. for short)

(ii) max1≤k≤n |φXnk(t)− 1| → 0 uniformly on every finite interval of t

(iii) max1≤k≤n E
[
X2
nk ∧ 1

]
→ 0 (where recall a ∧ b = min{a, b})

Proof: (i) =⇒ (iii): For any (small) ε > 0, E
[
X2
nk ∧ 1

]
can be decomposed as

E
[
X2
nk ∧ 1

]
= E

[
(X2

n,k ∧ 1)1[|Xnk|≤ε] + (X2
nk ∧ 1)1[|Xnk|>ε]

]
≤ E

[
ε2 · 1[|Xnk≤ε]

]
+ E

[
1 · 1[|Xnk|>ε]

]
≤ ε2 + P (|Xnk| > ε)

We can place max1≤k≤n on both sides, and because ε > 0 can be chosen arbitrarily small, along with

the fact that max1≤k≤n P (|Xnk| > ε)→ 0 (from (i)), the LHS must go to 0.

(iii) =⇒ (i): For any ε > 0 (and less than 1), observe that on the set [|Xnk| > ε],
X2
nk∧1
ε2 ≥ 1 and so

P (|Xnk| > ε) = E
[
1[|Xnk|>ε]

]
≤ E

[
X2
nk∧1
ε2 1[|Xnk|>ε]

]
≤ 1

ε2
E
[
X2
nk ∧ 1

]
We can place max1≤k≤n on both sides, and fixing any ε ∈ (0, 1), (iii) tells us the RHS goes to 0, so

the LHS must as well. Finally for any ε ≥ 1, just note that P (|Xnk| > ε) ≤ P (|Xnk| > 1
2 ) which we

already know goes to 0 (after we place maximums on both sides).

(i) =⇒ (ii): Observe that for any ε > 0,

|φXnk(t)− 1| =
∣∣E[eitXnk − 1

]∣∣ =

∣∣∣∣∫
R
(eitx − 1)dFXnk(x)

∣∣∣∣
≤
∫

[|x|≤ε]
|eitx − 1|dFXnk(x) +

∫
[|x|>ε]

|eitx − 1|dFXnk(x)

≤
∫

[|x|≤ε]
| cos(tx)− 1 + i sin(tx)|dFXnk(x) +

∫
[|x|>ε]

2 dFXnk(x)

=

∫
[|x|≤ε]

√
1− 2 cos(tx) + 1 dFXnk(x) + 2P (|Xnk| > ε)

≤
∫

[|x|≤ε]

√
2 · (tx)2

2
dFXnk(x) + 2P (|Xnk| > ε)

≤ |t|
∫

[|x|≤ε]
|x|dFXnk(x) + 2P (|Xnk| > ε)

≤ |t|εP (|Xnk| ≤ ε) + 2P (|Xnk| > ε) ≤ ε|t|+ 2P (|Xnk| > ε)

where we used that 1− cosx ≤ x2

2 (as can be seen via Taylor series). Again, we can place max1≤k≤n

on both sides. Over any finite interval of t, |t| is bounded by say B, so we can choose ε > 0 small

6



enough (and n large enough for (i) to kick in) that the uniform bound Bε+ 2 max1≤k≤n P (|Xnk| > ε)

(not dependent on t) on the RHS goes to 0.

(ii) =⇒ (i): From the proof of the continuity thm (Lec. 5), P (|X| ≥ λ) ≤ 7λ
∫ 1/λ

0
(1−Reφ(t))dt, so

P (|Xnk| > ε) ≤ 7ε

∫ 1/ε

0

(1− ReφXnk(t))dt = 7ε

∫ 1/ε

0

|1− Reφ(t)|dt

≤ 7ε

∫ 1/ε

0

√
(1− ReφXnk(t))2 + (ImφXnk(t))2 dt

= 7ε

∫ 1/ε

0

|1− φXnk(t)|dt ≤ 7ε
1

ε
sup

0≤t≤ε
|1− φXnk | = 7 sup

0≤t≤ε
|1− φXnk |

We can place max1≤k≤n on both sides, and because [0, ε] is a finite interval of t, (ii) tells us that the

RHS goes to 0.

Problem 2
We have two sequences of real numbers, {b1, . . . , bN} and {c1, . . . , cN}. Let R = (R1, . . . , RN ) be

distributed uniformly over the set of permutations of {1, . . . , N} (i.e. P (R = σN ) = 1
N ! for any

permutation σN ), and denote SN =
∑N
j=1 bjcRj , b̄N = 1

N

∑N
j=1 bj = E

[
bRj
]

(for any j ∈ {1, . . . , N},
because of the N ! permutations, exactly (N − 1)! have Rj = 1, exactly (N − 1)! have Rj = 2, and so

on), and B2
N =

∑N
j=1(bj − b̄N )2 = NVar

[
bRj
]

(again variance can be done over any Rj). c̄N and C2
N

are defined similarly.

(a) We compute the variance of SN as follows:

Var[SN ] =

N∑
j=1

Var
[
bjcRj

]
+ 2

∑
1≤i<j≤n

Cov
[
bicRi , bjcRj

]
=

1

N
C2
N

N∑
j=1

b2j + 2
∑

1≤i<j≤n

bibj

(
E
[
cRicRj

]
− E[cRi ]E

[
cRj
])

=
1

N
C2
N ·NE

[
b2Rj

]
+ 2

∑
1≤i<j≤n

bibj

(Nc̄2N − E
[
c2Rj

]
N − 1

− c̄2N
)

=
1

N
C2
N ·NE

[
b2Rj

]
+

( c̄2N − E
[
c2Rj

]
N − 1

)( N∑
j=1

bj

)2

−
N∑
j=1

b2j


= C2

N · E
[
b2Rj

]
+

(−Var
[
cRj
]

N − 1

)(
N2b̄2N −NE

[
b2Rj

])
= C2

N · E
[
b2Rj

]
+

1
NC

2
N ·NE

[
b2Rj

]
N − 1

−
1
NC

2
N ·N2b̄2N
N − 1

= C2
N

E
[
b2Rj

]
+

E
[
b2Rj

]
N − 1

− Nb̄2N
N − 1

 = C2
N

NE
[
b2Rj

]
N − 1

− Nb̄2N
N − 1


= C2

N

(
N

N − 1
Var
[
b2Rj

])
=
B2
NC

2
N

N − 1

7
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where we used the fact that (for i 6= j, using 522hw3p3), P (Ri = k|Rj) =
∑N
k′=1

P (Ri=k∩Rj=k′)
P (Rj=k′)

1[Rj=k′]

= 1
N−1 · 1[Rj 6=k] (because there are (N − 2)! permutations where Ri = k and Rj = k′ for k 6= k′,

and (N − 1)! permutations where just Rj = k′; for k = k′, obviously it’s 0), and so

E
[
cRicRj

]
= E

[
E
(
cRicRj |Rj

)]
= E

[
cRjE(cRi |Rj)

]
= E

[
cRj

N∑
k=1

ckP (Ri = k|Rj)

]
= E

[
cRj

c1 + . . .+ cN − cRj
N − 1

]

=
E
[
cRj ·Nc̄N

]
− E

[
c2Rj

]
N − 1

=
Nc̄2N − E

[
c2Rj

]
N − 1

(b) From chapter 4 of Chen, Goldstein and Shao (2011), if we have a matrix {aij}Ni,j=1 and Y =∑N
j=1 aj,Rj with mean µ and variance σ2, and γ :=

∑N
i,j=1 |aij−ai•−a•j +a••|3 where ai• is the

mean of the N numbers on the ith row, a•j the mean along the jth column, and a•• the mean

over the whole matrix, then for F the d.f. of Y−µ
σ and Φ the d.f. of the standard normal,

||F − Φ||1 ≤
γ

(N − 1)σ3

(
16 +

56

N − 1
+

8

(N − 1)2

)
Applying this to our problem above, we can make the matrix where aij = bicj and so Y = SN =∑N
j=1 bjcRj . We’ve already established that E[SN ] = µ = Nb̄N c̄N and Var[Sn] = σ2 =

B2
NC

2
N

N−1 .

Regarding γ, ai• = bic̄N , a•j = cj b̄N , and a•• = b̄N c̄N and so

γ =

N∑
i,j=1

|bicj − bic̄N − b̄Ncj + b̄N c̄N |3

=

N∑
i=1

N∑
j=1

|bi − b̄N |3|cj − c̄N |3 =

(
N∑
i=1

|bi − b̄N |3
) N∑

j=1

|cj − c̄N |3


From the inequality (x + y)3/2 ≥ x3/2 + y3/2 (for x, y ≥ 0, which we can prove by fixing y and

then showing that (x + y0)3/2 has derivative ≥ to that of x3/2, and both sides equal y
3/2
0 at

x = 0), we see that

N∑
i=1

|bi − b̄N |3 =

N∑
i=1

(|bi − b̄N |2)3/2 ≤

(
N∑
i=1

|bi − b̄N |2
)3/2

= B3
N

and so doing the same thing for the c’s, we can bound γ by γ ≤ B3
NC

3
N . Thus

γ

(N − 1)σ3
≤ B3

NC
3
N

(N − 1)
B3
NC

3
N

(N−1)3/2

=
√
N − 1

which unfortunately doesn’t go to 0. As an alternative perspective, Theorem 6.1 gives another
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bound for the problem:

sup
x∈R
|F (x)− Φ(x)| ≤

16.3 max
1≤i,j≤n

|aij − ai• + a•j − a••|

σ

=

16.3 max
1≤i≤n

|bi − b̄N | · max
1≤i≤n

|ci − c̄N |

BNCN

√
N − 1

It looks like in general, it is not true that Y converges to the normal d.f., but we can consider

special cases of sequences. Let 3fcm({bi}) (3rd folded central moment) denote 1
n

∑N
i=1 |bi − b̄N |3

(similarly 2fcm({bi}) = 1
NB

2
N ). Thus

γ

(N − 1)
B3
NC

3
N

(N−1)3/2

=
N2 3fcm({bi}) 3fcm({ci})

(N 2fcm({bi}))3/2(N 2fcm({ci}))3/2

√
N − 1

=

√
N − 1

N

3fcm({bi}) 3fcm({ci})
[2fcm({bi}) 2fcm({ci})]3/2

Because 3fcm weights large deviations more than 2fcm, this gives us the intuition that for se-

quences bi and ci that don’t vary too much, 3fcm doesn’t outgrow 2fcm that much, so we do

have convergence to 0. In particular, if both sequences lie within a length 1 interval, then 3fcm

≤ 2fcm and we get convergence to normal at rate about 1√
N

.

(c) As stated above, the bounds given by Chen, Goldstein and Shao give that the convergence to

normal is at rate
1√
N

3fcm({bi}) 3fcm({ci})
[2fcm({bi}) 2fcm({ci})]3/2

and so I’ll put it as “not faster than 1√
N

”.

Problem 3
Let X1, . . . , Xn be the numbers resulting from sampling without replacement from a collection on N

balls labeled with numbers a1, . . . , aN , and define āN = 1
N

∑N
i=1 ai and σ2

a = 1
N

∑N
i=1(ai − āN )2.

(a) Notice that for any i ∈ {1, . . . , n}, j ∈ {1, . . . , N}, P (Xi = aj) = 1
N (the number of times

Xi is aj must be the same for all aj , due to the fact that we can just switch/rename the aj

and keep the problem the same). Thus, āN = E[Xi] and σ2
a = Var[Xi]. We now want to find

Cov[Xj , Xk] = E[XjXk] − E[Xj ]E[Xk] (where j 6= k). We perform the same trick as above in

Problem 2:

E[XjXk] = E[E(XjXk|Xj)] = E[XjE(Xk|Xj)] = E
[
Xj

NāN −Xj

N − 1

]
=
Nā2

N − E
[
X2
j

]
N − 1

so

Cov[Xj , Xk] =
Nā2

N − E
[
X2
j

]
N − 1

− E[Xj ]
2

=
E[Xj ]

2 − E
[
X2
j

]
N − 1

=
−σ2

a

N − 1

9



Therefore, defining Tn = X1 + . . . Xn, we have that

Var

[
Tn
n

]
=

1

n2

 n∑
i=1

Var[Xi] + 2
∑

1≤i<j≤n

Cov[Xi, Xj ]


=

1

n2

(
nσ2

a + (n2 − n)
−σ2

a

N − 1

)
=
σ2
a

n

(
1− n− 1

N − 1

)

(b) This can be framed in terms of Problem 2 by setting the sequences {bi}Ni=1 and {ci}Ni=1 to be

bi = 1i∈{1,...,n} and ci = ai.

Problem 4
We suppose that Y1, . . . are i.i.d. with d.f. G and ch.f. φ(t). Let Nλ be ∼ Poisson(λ) and independent

of the {Yi}’s, and let Sλ =
∑Nλ
j=1 Yj . Then,

φSλ(t) = E
[
eitSλ

]
= E

[
E
(
eitSλ |Nλ

)]
= E

[
E
(
eitY1 · · · eitYNλ |Nλ

)]
= E

[
φNλ(t)

]
=

∞∑
k=0

φk(t) · e−λλ
k

k!
= e−λ

∞∑
k=0

(λφ(t))k

k!
= eλ(φ(t)−1)

Problem 5
In the K-function approach for sums of independent r.v.’s, the analogous identity to the Stein identity

for normal r.v.’s E[f ′(W )] = E[Wf(W )] is

E[Wf(W )] = E
[
f ′
(
W (I) + ξ∗I

)]
where the notation is as follows:

� W =
∑n
i=1 ξi, where the ξi are all independent and satisfy E[ξi] = 0 and

∑n
i=1 E

[
ξ2
i

]
= 1

� W (i) = W − ξi

� Ki(t) = E
[
ξi · (1[0,ξi](t)− 1[ξi,0)(t))

]
� ξ∗i has density Ki(t)/E

[
ξ2
i

]
, and independent of all other ξj and ξ∗j for j 6= i

� I is a index r.v., independent of all ξi and ξ∗i , satisfying P (I = i) = E
[
ξ2
i

]
Alternatively/equivalently, the identity may be written as

E[Wf(W )] =

n∑
i=1

∫ ∞
−∞

E
[
f ′
(
W (i) + t

)]
Ki(t)dt

Remember, the point of the Stein identity and equation f ′(w)−wf(w) = h(w)−E[h(Z)] was to find fh

for every h we care about (recall the definition of weak convergence E[h(X)]→ E[h(Z)] ⇐⇒ X →d Z

for some classes of h) such that E[h(W )− h(Z)] = E[f ′h(W )−Wfh(W )], thereby allowing us to

10



understand the LHS by understanding the more easily understood RHS. This K-function approach

provides another perspective on the same quantity; i.e.

E[h(W )− h(Z)] = E[f ′h(W )−Wf(W )] = E
[
f ′h(W )− f ′h

(
W (I) + ξ∗I

)]
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523 Homework 3
Daniel Rui - 4/22/20

Problem 1
Consider a random variable X with p.d.f. fX(x) = 1

x log2 x
· 1[e,∞) (where this is a p.d.f. because it’s

≥ 0 and has integral 1). However, for any r > 0 (using the substitution eu = x ⇐⇒ u = log x =⇒
du = 1

x dx,

E[Xr] =

∫ ∞
e

xr
1

x log2 x
dx =

∫ ∞
1

eru

u2
du =∞

(because eru

u2 → ∞ as u → ∞. However, if we take g(x) =
√

log x (which does go to ∞ as x → ∞),

we get that

E[g(X)] =

∫ ∞
e

1

x log1.5 x
dx =

∫ ∞
1

1

u1.5
du = 2 <∞

Problem 2
If we have X ∼ Poisson(λ), then

λE[f(X + 1)] = λ

∞∑
n=0

f(n+ 1)
e−λλn

n!
=

∞∑
n=0

(n+ 1)f(n+ 1)
e−λλn+1

(n+ 1)!

=

∞∑
n=1

nf(n)
e−λλn

n!
=

∞∑
n=0

nf(n)
e−λλn

n!
= E[f(X)]

Problem 3
Let ξ1, . . . , ξn be i.i.d. Unif(0,1) r.v.s, and let Xi = (1[ξi≤t1] − t1, . . . , 1[ξi≤tk] − tk) for 0 < t1 < . . . <

tk < 1. Also, define Un(t) =
√
n(Gn(t)− t) where Gn(t) = 1

n

∑n
i=1 1ξi≤t. Clearly all the Xi are i.i.d.,

and so by the multivariate CLT, we have that

1√
n

n∑
i=1

Xi =

(
1√
n

[( n∑
i=1

1[ξi≤t1]

)
− nt1

]
, . . . ,

1√
n

[( n∑
i=1

1[ξi≤tk]

)
− ntk

])
= (Un(t1), . . . ,Un(tk))

converges in distribution to a Normal(0,Σ) distribution where Σ is the covariance matrix, with the

ith row and jth column entry being E
[
(1[ξ1≤ti] − ti)(1[ξ1≤tj ] − tj)

]
= E

[
1[ξ1≤ti]1[ξ1≤tj ]

]
− titj =

min{ti, tj} − titj . If we denote U to be a standard Brownian bridge on [0, 1], then (U(t1), . . . ,U(tk))

is normally distributed (because Brownian bridges are Gaussian processes) and has covariance matrix

with entries exactly equal to the covariance matrix from above (due to the fact that for Brownian

bridges, E[U(s)U(t)] = min{s, t} − st). Thus, we have that

(Un(t1), . . . ,Un(tk))→d (U(t1), . . . ,U(tk))
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Problem 4

Let X1, . . . , Xn be i.i.d. with mean 0 and variance 1, and let Sn(t) = 1√
n

∑bntc
i=1 Xi. We want to prove

that (again for 0 < t1 < . . . < tk < 1):

(Sn(t1), . . . ,Sn(tk))→d (S(t1), . . . ,S(tk))

By the Cramér-Wold device, this is equivalent to a1Sn(t1)+ . . .+akSn(tk)→d a1S(t1)+ . . .+akSn(tk),

∀a ∈ Rk. But this is equivalent to a′1Sn(t1) + a′2(Sn(t2) − Sn(t1)) + . . . + a′k(Sn(tk) − Sn(tk−1)) →d

a′1S(t1) + a′2(S(t2)− S(t1)) + . . . + a′k(S(tk)− S(tk−1)) for every (a′1, . . . , a
′
k) ∈ Rk (because for every

a, there is corresponding a′ s.t. everything is equal, and vice versa).

Lévy’s continuity theorem gives that this is if and only if the characteristic functions converge, but

because Sn(t1), (Sn(t2)− Sn(t1)), . . . , (Sn(tk)− Sn(tk−1)) are all independent (and same with S), the

characteristic functions of the whole thing will be the products of the characteristic functions of the

pieces, and so it will suffice to prove that the ch.f. of a′i(Sn(ti) − Sn(ti−1)) converges to that of

a′i(S(ti) − S(ti−1)), which is iff (Sn(ti) − Sn(ti−1)) is distributed Normal(0, ti − ti−1). This is simply

an application of the CLT and Slutsky’s theorem:

Sn(ti)− Sn(ti−1) =
1√
n

bntic∑
i=bnti−1c+1

Xi =d
1√
n

bntic−bnti−1c∑
i=1

Xi

=

√
bntic − bnti−1c

n

1√
bntic − bnti−1c

bntic−bnti−1c∑
i=1

Xi

→d

√
ti − ti−1Normal(0, 1) ∼ Normal(0, ti − ti−1)

Now this holds for i ∈ {1, . . . , k} (setting t0 = 0), and as I said above, we can go from this to

convergence of ch.f.s by the continuity theorem, multiply everything together from independence, and

get back what we wanted to prove.

Problem 5
We have {Un} and {Vn} s.t. Un and Vn are independent for every n, and that Un →d U and

Un + Vn →d U for some U independent of the Vn. We want to prove that this implies that Vn →p 0.

Using Skorokhod’s convergence in distribution to almost sure convergence theorem, there is another

sequence {U ′n} s.t. U ′n =d Un and U ′ =d U , and U ′n →a.s. U
′ (where again U ′ is independent of the

Vn). Then by Slutsky’s theorem (and the fact that U ′n − U ′ →a.s. 0 =⇒ U ′n − U ′ →p 0), have that

U ′ + Vn = (U ′n + Vn) + (U ′ − U ′n) =d (Un + Vn) + (U ′ − U ′n)→d U =d U
′

We can add an absolutely continuous function A to U ′ in the expression (which keeps the →d if we

make A independent from everything; can see this because independence means ch.f.s can be multi-

plied, and if we multiply same thing on both sides the ch.f.s still converge to each other), we get that
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U ′ + A is absolutely continuous (see here; a quick gist is that fX+Y (t) =
∫
R fX(t − y)dFY (y) which

can be checked via integrating). So we can go ahead and assume that U ′ is absolutely continuous and

thus has a density.

Suppose that Vn 6→p 0, which means that there is ε1, p > 0 s.t. P (|Vn| ≥ ε1) = P (Vn ≥ ε1) + P (Vn ≤
−ε1) ≥ 2p for infinitely many n (denote this infinite sequence of n’s by S); w.l.o.g., assume that

P (Vn ≥ ε1) ≥ p for all n ∈ S (the case for P (Vn ≤ −ε1) ≥ p is just everything here flipped).

Now that U ′ has a density, FU ′(t) is continuous, and so s(t) = P (t < U ′ ≤ t+1) = FU ′(t+1)−FU ′(t)
is continuous as well with s(∞−) = 0 and s(−∞+) = 0, implying that it attains its maximum s at

some (or many) finite t. Let t0 be the left-most point at which s(t) attains its maximum. By the

continuity of s(t), there is some small enough ε2 > 0 s.t. supt≤t0−ε2 s(t) = r < s. Take ε = min{ε1, ε2}
and denote pn := P (Vn ≥ ε) (which means that for all n ∈ S, pn ≥ p > 0).

Now because U ′ and Vn are independent, P (t0 < U ′ + Vn ≤ t0 + 1|Vn) = P (t0 − Vn < U ′ ≤
t0−Vn + 1|Vn) = s(t0−Vn) for all n, which means that P (t0 < U ′+Vn ≤ t0 + 1|Vn ≥ ε) ≤ r. But we

know that P (t0 < U ′+ Vn ≤ t0 + 1) = P (t0 < U ′+ Vn ≤ t0 + 1|Vn ≥ ε)P (Vn ≥ ε) +P (t0 < U ′+ Vn ≤
t0 + 1|Vn < ε)P (Vn < ε), and so for n ∈ S, P (t0 < U ′+Vn ≤ t0 + 1) ≤ rpn + s(1− pn) ≤ rp+ s(1− p)
(because pn ≥ p > 0 and r ≤ s). Thus,

lim inf
n→∞

P (t0 < U ′ + Vn ≤ t0 + 1) ≤ rp+ s(1− p)

< s = P (t0 < U ′ ≤ t0 + 1)

= lim
n→∞

P (t0 < U ′ + Vn ≤ t0 + 1)

where the last step follows due to absolute continuity of U ′ (hence every real number is a continuity

point of FU ′). This is of course impossible, and so it must be that Vn →p 0.

Problem 6
The authors of this beautiful paper: https://arxiv.org/pdf/1810.01768.pdf (titled “Three re-

markable properties of the Normal distribution”, authored by Eric Benhamou, Beatrice Guez, and

Nocolas Paris), have explained the proof of the theorem in great detail. As an overview, they prove

4 lemmas, the latter 2 of which are used to prove the theorem. Their third lemma states that:

� If X is a real random variable with d.f. FX s.t. there exists η > 0 s.t. f(η) =
∫
R e

η2x2

dFX(x) is

finite, and that the ch.f. of X has no zeroes in C, then X has a normal distribution.

The fourth lemma gives another way of computing f(η):

� f(η) can be written as

f(η) = 1 +

∫ ∞
0

2xη2eη
2x2

P (|X| ≥ x)dx

For the first 2 lemmas and the proofs of all 4, please read the paper in its fine detail.
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Now in the proof of the theorem, they begin by ruling out the case where X1 +X2 has 0 variance as

trivial (which it is). They then prove that X1 and X2 can not both have atoms because then

0 < P (X1 = a)P (X2 = b) = P (X1 = a,X2 = b) ≤ P (X1 +X2 = a+ b) = 0

which is impossible. Thus w.l.o.g. they take X2 to be without atoms and so there is some m s.t.

P (X2 ≤ m) = P (X2 ≥ m) = 1
2 . Then they have the inequalities (for x > 0):

P (|X1| ≥ x) = 2P (X1 ≥ x,X2 ≥ m) + 2P (X1 ≤ −x,X2 ≤ m)

≤ 2P (X1 +X2 ≥ x+m) + 2P (X1 +X2 ≤ −x+m)

= 2P (|X1 +X2 −m| ≥ x)

Using the fourth lemma, we see that for the f(η) corresponding to X1,

0 ≤ f(η) = 1 +

∫ ∞
0

2xη2eη
2x2

P (|X1| ≥ x)dx

≤ 1 + 2

∫ ∞
0

2xη2eη
2x2

P (|X1 +X2 −m| ≥ x)dx

< 2 + 2

∫ ∞
0

2xη2eη
2x2

P (|X1 +X2 −m| ≥ x)dx

But this expression is 2 times the f(η) corresponding to the r.v. (X1 + X2 −m) (let’s call it g(η)).

Because (X1 +X2−m) is normal, g(η) is finite and so f(η) is finite as well. Finally, φX1
φX2

= φX1+X2

by independence of X1 and X2, and because φX1+X2
is never 0 in C (another property of the normal

distribution), φX1
can’t either. And thus by the third lemma, X1 is normal. Disregarding the trivial

case that X1 is 0 variance, we now know that X1 has no atoms, so we flip X1 and X2 to get that X2

is normal as well.

The crux of the proof lies in the third lemma; basically the key to cracking the problem was to

isolate enough properties of normal distributions that we could have some sort of checklist that would

guarantee that we had a normal distributed r.v..
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523 Homework 2
Daniel Rui - 4/15/20

Problem 1
Define a sequence of partitions Pn = {(tn,k−1, tnk] : k = 1, . . . , n} of [0, 1], where 0 = tn0 < . . . <

tnn = 1, and define the corresponding rth variation of S to be Vn(r) =
∑n
k=1 |S(tnk) − S(tn,k−1)|r.

The mesh of a partition Pn is ||Pn|| = sup1≤k≤n |tnk − tn,k−1|.

Let us now look at a special case: Pn = {(k−1
2n ,

k
2n ] : k = 1, . . . , 2n}. We want to prove that

as n → ∞ (i.e. as the mesh = 1
2n goes to 0), Vn(1) →a.s. ∞. With this partition and because of

Brownian motion’s stationary and independent increment property, S(tnk)−S(tn,k−1) are all Gaussian,

mean 0 and variance 1
2n , and so can be thought of as 1√

2n
Zk for Zk i.i.d. Normal(0,1). Thus

E[Vn(1)] =
∑2n

k=1
1√
2n

E[|Zk|] and Var[Vn(1)] =
∑2n

k=1
1

2nVar[|Zk|]. The mean and variance of a folded

normal are
√

2
π and 1− 2

π respectively, and so putting everything together we have

E[Vn(1)] =
1√
2n

(2n)

√
2

π
=

√
2n+1

π
and Var[Vn(1)] =

1

2n
(2n)

(
1− 2

π

)
= 1− 2

π

As the hint suggests, we use the Paley-Zygmund inequality: for λ ∈ [0, 1],

P
(
Vn(1) > λE[Vn(1)]

)
≥ (1− λ)2 (E[Vn(1)])2

Var[Vn(1)] + (E[Vn(1)])2
= (1− λ)2 2n+1

(π − 2) + 2n+1
→ (1− λ)2

Now we fix an arbitrary (small) λ ∈ (0, 1), (small) ε > 0, and (large) c > 0. The above limit can

be written as: there exists some N1 s.t. n > N1 =⇒ P (Vn(1) > λE[Vn(1)]) ≥ (1 − λ)2 − ε.

Clearly, E[Vn(1)] grows without bound as n→∞, and so there will exist some N2 large enough that

λE[Vn(1)] > c, which means that for all n > max{N1, N2}, P (Vn(1) > c) ≥ P (Vn(1) ≥ λE[Vn(1)]) ≥
(1−λ)2− ε. Now because the partitions are nested so nicely, we can use the triangle inequality to get

that Vn+1(1) ≥ Vn(1), and so [Vn+1(1) > c] ⊇ [Vn(1) > c]. If we denote V∞(1) := lim
n→∞

Vn(1), we get

that [V∞(1) > c] =
⋃∞
n=1[Vn(1) > c], and due to limit-measure commutativity for monotone sets,

P ([V∞(1) > c]) = P

( ∞⋃
n=1

[Vn(1) > c]

)
= lim
n→∞

P (Vn(1) > c) ≥ (1− λ)2 − ε

And because λ and ε can get arbitrarily close to 0 and this inequality will still hold, we have that for

any c > 0, P (V∞(1) > c) = 1, which means that V∞(1) =a.s. ∞.

Problem 3
Let Y1, . . . , Yn+1 i.i.d. Exp(1), and define Sk = Y1 + . . .+Yk for 1 ≤ k ≤ n+ 1. We want to show that(

S1

Sn+1
, . . . ,

Sn
Sn+1

)
=d (ξn:1, . . . , ξn:n)
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where ξn:i are the order statistics of n i.i.d. Uniform(0,1) r.v.’s (as above in Problem 2). The joint

density of order statistics in general is f(Xn:1,...,Xn:n)(x1, . . . , xn) = n!fX(x1) · · · fX(xn)1[x1<...<xn],

and so applying this to our case we have that f(ξn:1,...,ξn:n)(x1, . . . , xn) = n!1[0<x1...xn<1].

Now we just have to show that ( S1

Sn+1
, . . . , Sn

Sn+1
) has the above density. First, let us establish that

(Y1, . . . , Yn) has density f(Y1,...,Yn)(y1, . . . , yn) = fY1
(y1) · · · fYn(yn) =

∏n
k=1 e

−yk1[y1≥0,...,yn≥0] due

to independence. The change of variable theorem for p.d.f.’s (whose proof stems from the basic

change of variables theorem for multi-dimensional integration) says that if there is a continuous(ly

differentiable?) 1-1 function G : Rn → Rn s.t. (B1, . . . , Bn) = G(A1, . . . , An) with H as its inverse,

we have that

f(B1,...,Bn)(b1, . . . , bn) = |JH(b1, . . . , bn)|f(A1,...,An)(H(b1, . . . , bn))

for all (b1, . . . , bn) ∈ G(S) where S ⊆ Rn is a set for which P ((A1, . . . , An) ∈ S) = 1 (and of course

JH is the Jacobian matrix of H). Outside of G(S), f(B1,...,Bn) will be 0.

We now find our G: denote Σk = Sk
Sn+1

(for k ∈ {1, . . . , n}), and Σn+1 = Sn+1; then we have Σn+1 :=

(Σ1, . . . ,Σn+1) = G(Yn+1) where G(yn+1) = ( y1
y1+...+yn+1

, y1+y2
y1+...+yn+1

, . . . , y1+...+yn
y1+...+yn+1

, y1 + . . .+ yn+1).

Inversely, H(s1, . . . , sn+1) = (s1sn+1, (s2−s1)sn+1, . . . , (sn−sn−1)sn+1, sn+1−snsn+1). The Jacobian

of H = (H1, . . . ,Hn+1) is therefore

|JH(sn+1)| =

∣∣∣∣∣∣∣∣
[∂1H1](sn+1) · · · [∂1Hn+1](sn+1)

...
. . .

...

[∂n+1H1](sn+1) · · · [∂n+1Hn+1](sn+1)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sn+1 −sn+1 0 · · · · · · 0 0
0 sn+1 −sn+1 · · · · · · 0 0

0 0 sn+1
. . . · · · 0 0

...
...

...
. . .

. . .
...

...

0 0 · · · · · · . . . −sn+1 0
0 0 · · · · · · · · · sn+1 −sn+1

s1 (s2 − s1) · · · · · · · · · (sn − sn−1) 1− sn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Because adding columns to each other does not affect the determinant (see (iii) of here), we can add

column 1 to column 2, then 2 to 3, and so on (making sure to keep track of changes to the bottom row)

until we have a lower left triangular matrix, which of course has determinant equal to the product of

the entries along the diagonal, which are n of sn+1 and one 1, yielding |JH(sn+1)| = snn+1.

Finally, take our set S to be S = {(y1, . . . , yn) : yi > 0, yi = yj =⇒ i = j} (probability that different

Yi take the same value is 0, so P ((Y1, . . . , Yn+1) ∈ S) = 1) so that G(S) = {(s1, . . . , sn+1) : 0 < s1 <

. . . < sn < 1, sn+1 > 0}. Putting this into the formula above we get

f(Σ1,...,Σn+1)(s1, . . . , sn+1) = snn+1f(Y1,...,Yn+1)(H(s1, . . . , sn+1)) · 1G(S)

= snn+1e
−(s1sn+1+(s2−s1)sn+1+...+(sn−sn−1)sn+1+sn+1−snsn+1) · 1G(S)

= snn+1e
−sn+1 · 1G(S)
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Finally, to release our dependency on sn+1, we find the marginal p.d.f. via integration:

f(Σ1,...,Σn)(s1, . . . , sn) =

∫ ∞
−∞

snn+1e
−sn+1 · 1G(S) dsn+1

=

∫ ∞
0

snn+1e
−sn+1 · 1[0<s1<...<sn<1] dsn+1

= Γ(n+ 1) · 1[0<s1<...<sn<1] = n! · 1[0<s1<...<sn<1]

which is indeed the distribution we got from the order statistics of the uniform r.v.’s.

Problem 2
Let ξ1, . . . , ξn be i.i.d. Uniform(0,1), and let 0 = ξn:0 ≤ ξn:1 ≤ . . . ≤ ξn:n ≤ ξn:n+1 = 1 be the order

statistics, and let δn:i = ξn:i − ξn:i−1 for i ∈ {1, . . . , n + 1} be the spacings. We want to prove that
√
n max

1≤i≤n+1
δn:i →p 0.

From Problem 3, we saw that ( S1

Sn+1
, . . . , Sn

Sn+1
) =d (ξn:1, . . . , ξn:n), and so intuitively, by taking differ-

ences, ( Y1

Sn+1
, . . . , Yn

Sn+1
, Yn+1

Sn+1
) =d (δn:1, . . . , δn:n, δn:n+1) (a rigorous proof could be carried out using the

p.d.f. transformation method from above). Thus, max1≤i≤n+1 δn:i =d max1≤i≤n+1 Yi/Sn+1. Because
Yi
Sn+1

is independent to Sn+1, max1≤i≤n+1 Yi/Sn+1 is also independent to Sn+1, and so

E
[

max
1≤i≤n+1

Yi

]
= E

[
max1≤i≤n+1 Yi

Sn+1
Sn+1

]
= E

[
max

1≤i≤n+1
δn:i

]
E[Sn+1] = (n+ 1)E

[
max

1≤i≤n+1
δn:i

]
The order statistics of samples from an exponential distribution are well known; we will just use the

fact that max1≤i≤n+1 Yi =d

∑n+1
i=1

Y1

i (see here; proved using p.d.f. transformations like we did in

Problem 3). This of course means that the expectation is

(n+ 1)E
[

max
1≤i≤n+1

δn:i

]
= E

[
max

1≤i≤n+1
Yi

]
=

n+1∑
i=1

1

i
⇐⇒ E

[
max

1≤i≤n+1
δn:i

]
=
Hn+1

n+ 1

where Hn is the nth harmonic number. Markov’s inequality gives us that for any (small) c > 0,

P

(√
n max

1≤i≤n+1
δn:i > c

)
= P

(
max

1≤i≤n+1
δn:i >

c√
n

)
≤
√
nHn+1

c(n+ 1)
→ 0

which implies that
√
nmax1≤i≤n+1 δn:i > c →p 0. As for other constants cn s.t. cn max1≤i≤n+1 δn:i

is bounded in probability up to an exceptional event of arbitrarily small probability (i.e. for any ε,

there is Cε and Nε s.t. for n ≥ Nε, P (cn max1≤i≤n+1 ≤ Cε) > 1 − ε), we could e.g. take cn = n
logn ,

which would yield

P

(
n+ 1

log(n+ 1)
max

1≤i≤n+1
δn:i > c

)
= P

(
max

1≤i≤n+1
δn:i >

c log(n+ 1)

n+ 1

)
≤ (n+ 1)Hn+1

c(n+ 1) log(n+ 1)
→ 1

c

and so for every ε > 0, take Cε = 1
ε as the bound for cn max1≤i≤n+1 δn:i (up to exceptional event).
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Problem 4
Strassen’s function LIL gives that for Zn(t) = S(nt)/

√
2n log log n and continuous (w.r.t. the uniform

metric) g : C[0, 1]→ R, that

lim sup
n→∞

g(Zn) = sup
f∈K

g(f) a.s.

where K is defined as

K =

{
f ∈ C[0, 1] : f(0) = 0, f(t) =

∫ t

0

f ′(s)ds,

∫ 1

0

[f ′(s)]2 ds ≤ 1

}

In our case, we have g(f) =
∫ 1

0
f0(t)f(t)dt for some fixed f0(t) s.t. f0(0) = 0, f0(t) =

∫ t
0
f ′0(s)ds, and∫ 1

0
[f ′0(s)]2 ds < ∞. This is continuous w.r.t. the uniform metric because sup0≤t≤1 |f1(t) − f2(t)| <

3
2ε||f

′
0||2 implies that∣∣∣∣∫ 1

0

f0(t)(f1(t)− f2(t))

∣∣∣∣dt ≤ ∫ 1

0

|f0(t)|3
2
ε||f ′0||2 dt ≤

3

2
ε||f ′0||2

∫ 1

0

√
tdt = ε

because

|f0(t)| =
∣∣∣∣∫ 1

0

1[0,t]f
′
0(s)ds

∣∣∣∣ ≤
√∫ 1

0

12
[0,t] ds

∫ 1

0

[f ′0(s)]2 ds =
√
t||f ′0||2

Similarly, we have for f ∈ K that |f(t)| ≤
√
t. We now establish several different bounds:∫ 1

0

f0(t)f(t)dt ≤
∣∣∣∣∫ 1

0

f0(t)f(t)dt

∣∣∣∣ ≤ ∫ 1

0

|f0(t)|
√
tdt

Second:

|f0(t)f(t)| ≤
√
t||f ′0||2

√
t = t||f ′0||2

implying that ∫ 1

0

f0(t)f(t)dt ≤
∫ 1

0

|f0(t)f(t)|dt ≤ ||f ′0||2
∫ 1

0

tdt =
||f ′0||2

2

Third: ∫ 1

0

f0(t)f(t)dt ≤

√∫ 1

0

f2
0 (t)dt

∫ 1

0

f2(t)dt ≤ ||f0||2

√∫ 1

0

tdt =
||f0||2√

2

The third bound is in fact stronger than the second:∫ 1

0

f2
0 (t)dt ≤

∫ 1

0

t||f ′0||22 dt =
||f ′0||22

2
=⇒ ||f0||2 ≤

||f ′0||2√
2
⇐⇒ ||f0||2√

2
≤ ||f

′
0||2
2

The first bound is rather mysterious. I could not find any functions f ∈ K that could actually

attain these bounds. However, consulting with other people in the class led to this bound: denote
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f̃0(s) =
∫ 1

s
f0(t)dt; then

∫ 1

0

f0(t)f(t)dt =

∫ 1

0

∫ t

0

f0(t)f ′(s)dsdt =

∫ 1

0

∫ 1

s

f0(t)f ′(s)dtds

=

∫ 1

0

f ′(s)f̃0(s)ds ≤

√∫ 1

0

[f ′(s)]2 ds

∫ 1

0

f̃2
0 (s)ds ≤ ||f̃2

0 ||2

with equality holding for f defined by f(t) =
∫ t

0
f ′(s)ds with f ′(s) = f̃0(s)

||f̃0||2
:

∫ 1

0

f0(t)f(t)dt =

∫ 1

0

f0(t)

∫ t

0

f ′(s)dsdt =

∫ 1

0

∫ 1

s

f0(t)f ′(s)dtds

=

∫ 1

0

f̃0(s)

||f̃0||2

∫ 1

s

f0(t)dsdt =
1

||f̃2
0 ||2

∫ 1

0

f̃2
0 (s)ds = ||f̃2

0 ||2

f ∈ K because the derivative obviously has square integral of 1, and the integral definition satisfies

the other two properties. Therefore, we have found our supremum:

lim sup
n→∞

g(Zn) =a.s. sup
f∈K

g(f) = ||f̃2
0 ||2

Problem 5
Let φ(t) be a characteristic function (so for some r.v. X, φ(t) = E

[
eitX

]
). Fix c > 0, t ∈ R, and

define g(u) = φ(tu) and U ∼ Unif(0, c). The law of the unconscious statistician gives that

E[g(U)] =

∫ ∞
−∞

g(u)fU (u)du =

∫ c

0

φ(tu)

c
du

Thus for any t ∈ R, we have that E
[
eitXU

]
=
∫ c

0
φ(tu)
c du and so ϕ(t) =

∫ c
0
φ(tu)
c du is the characteristic

function of the random variable XU .

Problem 6
The p.d.f. of the Logistic(0,1) distribution is ex

(1+ex)2 and so the characteristic function is φ(t) =∫∞
−∞ eitx ex

(1+ex)2 dx. Looking at φ only along the line t = iy for y ∈ R:

φ(iy) =

∫ ∞
−∞

e−yx
ex

(1 + ex)2
dx =

∫ ∞
−∞

(ex)−y
ex

(1 + ex)2
dx

Using the substitution u = 1
1+ex =⇒ du = − ex

(1+ex)2 dx and also =⇒ ex = 1
u − 1 = 1−u

u , we have

φ(iy) =

∫ 0

1

(
1− u
u

)−y
(−1)du =

∫ 1

0

uy(1− u)−y du = B(1 + y, 1− y)

where B is the beta function defined as B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt. Finally, we use the identity

relating the beta and gamma functions: B(x, y) = Γ(x)Γ(y)
Γ(x+y) , the fact that Γ(1 + z) = zΓ(z), and the
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gamma reflection formula: Γ(z)Γ(1− z) = π
sin(πz) , to get that

φ(iy) =
Γ(1 + y)Γ(1− y)

Γ(2)
=
yΓ(y)Γ(1− y)

1
=

πy

sin(πy)

Defining ψ(z) = πz
sinh(πz) , we get that ψ(iy) = iπy

sinh(iπy) = iπy
i sin(πy) = πy

sin(πy) , and so φ(iy) = ψ(iy).

Because both functions are analytic and agree on the imaginary axis, they must be identical, and so
πz

sinh(πz) is the characteristic function of the Logistic(0,1) distribution.
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523 Homework 1
Daniel Rui - 4/8/20

Problem 1
Given X with E[X] = 0 ( =⇒ E[X+] = E[X−]) with d.f. F , We want to prove that

H(a, b) =
1

E[X+]

∫
[0,a]

∫
(0,b]

u+ v dF (−u)dF (v) =
1

E[X+]

∫
[0,a]

∫
[−b,0)

−u+ v dF (u)dF (v)

is a bivariate distribution function on [0,∞)× (0,∞). First we prove it has mass 1:

H(∞,∞) =
1

E[X+]

(∫
[0,∞)

∫
(−∞,0)

−udF (u)dF (v) +

∫
[0,∞)

∫
(−∞,0)

v dF (u)dF (v)

)

=
1

E[X+]

(∫
[0,∞)

∫
X−1((−∞,0))

−X dP dF (v) +

∫
[0,∞)

vF ((−∞, 0))dF (v)

)

=
1

E[X+]

(∫
[0,∞)

E
[
X−
]
dF (v) + F ((−∞, 0))

∫
X−1([0,∞))

X dP

)

=
1

E[X+]

(
E
[
X−
]
F ([0,∞)) +

(
1− F ([0,∞))

)
E
[
X+
])

=
1

E[X+]

(
E
[
X+
]

+ F ([0,∞))(E
[
X−
]
− E

[
X+
]
)
)

= 1

Furthermore, H is increasing w.r.t. both variables (with the other fixed) because u+v is non-negative

and the measure F (−u) and F (v) are of course also non-negative. Lastly, it is “right-continuous” in

each of the its variables (with the other fixed): I will show the one where b is held constant here; the

other case follows similarly.

lim
a↘a0

H(a, b0) = lim
a↘a0

1

E[X+]

∫
[0,a]

∫
(0,b0]

u+ v dF (−u)dF (v)

= lim
a↘a0

(
E
[
−X · 1X−1([−b0,0))

]
F ([0, a]) + F ([−b0, 0))E

[
X · 1X−1([0,a])

])
E[X+]

which converges to H(a0, b0) because F (a) converges to F (a0) by right continuity of F , and because

E
[
X · 1X−1((a0,a])

]
goes to 0 by the DCT (dominated by |X| which must have finite integral because

E[X] exists, and because 1X−1((a0,a]) goes to 0 everywhere as a↘ a0).

Problem 2
(a) From lecture one, the sums of i.i.d. r.v.’s have the strong Markov property; in particular, if we

have n balls, R of them red, letting Xi be 1 if the ith sample is red and 0 otherwise (i.i.d. because

we are sampling with replacement), Sn =
∑n
i=1Xi (which counts the number of red balls drawn)

is a strong Markov process (and hence also a Markov process).
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(b) see (a).

(c) What if we do not replace? Is it still a Markov process then? Let us remind ourselves what a

Markov process is: {St} is a Markov process if ∀B ∈ B and all s, t ∈ N, s < t, P (St ∈ B|As) =

P (St ∈ B|Ss) (where in this case As = σ[S1, . . . , Ss]) — alternative definition here. We utilize

the formula from last quarter: if Ω =
⊔
i=I Di for finite/countable I, and D = σ[{D1, . . .}], we

have that

P (A|D) =
∑
i∈I

P (A ∩Di)

P (Di)
1Di

In our case, we have that σ[Ss] = σ[{[Ss = 0], [Ss = 1], . . .}] and As = σ[X1, . . . , Xs] =

σ[{[Xs = (0, . . . , 0)], [Xs = (1, . . . , 0)], . . .}] (running over every vector of {0, 1}s and where

Xs = (X1, . . . , Xs)). Thus,

P (St = k|St−1) =
∞∑
i=1

P (St = k ∩ St−1 = i)

P (St−1 = i)
1[St−1=i]

=
P (St = k ∩ St−1 = k)

P (St−1 = k)
1[St−1=k] +

P (St = k ∩ St−1 = k − 1)

P (St−1 = k − 1)
1[St−1=k−1]

= P (St = k|St−1 = k)1[St−1=k] + P (St = k|St−1 = k − 1)1[St−1=k−1]

=

(
1− R− k

n− (t− 1)

)
1[St−1=k] +

(
R− (k − 1)

n− (t− 1)

)
1[St−1=k−1]

On the other hand, denoting xt−1 = (x1, . . . , xt−1) and |xt−1| = x1 + . . .+ xt−1, we have

P (St = k|At−1) =
∑

xt−1∈{0,1}t−1

|xt−1|=k

P ([Xt = 0] ∩ [Xt−1 = xt−1])

P ([Xt−1 = xt−1])
· 1[Xt−1=xt−1]

+
∑

xt−1∈{0,1}t−1

|xt−1|=k−1

P ([Xt = 1] ∩ [Xt−1 = xt−1])

P ([Xt−1 = xt−1])
· 1[Xt−1=xt−1]

=
∑

xt−1∈{0,1}t−1

|xt−1|=k

(
1− R− k

n− (t− 1)

)
· 1[Xt−1=xt−1]

+
∑

xt−1∈{0,1}t−1

|xt−1|=k−1

(
R− (k − 1)

n− (t− 1)

)
· 1[Xt−1=xt−1]

=

(
1− R− k

n− (t− 1)

)
1[St−1=k] +

(
R− (k − 1)

n− (t− 1)

)
1[St−1=k−1]

because

[St−1 = k] =
⊔

xt−1∈{0,1}t−1

|xt−1|=k

[Xt−1 = xt−1]

(which can be verified using a rather trivial ⊆-⊇ argument). Thus even without replacement this

process is a Markov process.
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Problem 3
Consider C∞ := C0([0,∞)), i.e. the set of a all continuous functions on [0,∞]. We want to define the

following metric:

ρ∞(x, y) :=

∞∑
k=1

1

2k
ρk(x, y)

1 + ρk(x, y)

where ρk(x, y) := sup
0≤t≤k

|x(t)− y(t)|.

(a) We verify that (C∞, ρ∞) is indeed a metric space:

� ρ∞(x, y) ≥ 0 obviously because everything we are working with is ≥ 0.

� ρ∞(x, y) = ρ∞(y, x) obviously because ρk(x, y) = ρk(y, x) for all k.

� ρ∞(x, y) = 0 ⇐⇒ x = y : ( ⇐= ) is obvious because then ρk(x, y) = 0 for all k; ( =⇒ ) is

also pretty easy because the only way for the sum to be 0 is if every term is 0, which means

for all k, x must equal y everywhere on [0, k], which of course means that x = y on [0,∞).

� Finally, the triangle inequality:

ρk(x, y)

1 + ρk(x, y)
=

(
1− 1

1 + ρk(x, y)

)
=

(
1− 1

1 + sup0≤t≤k |x(t)− y(t)|

)
= sup

0≤t≤k

(
1− 1

1 + |x− y|

)
= sup

0≤t≤k

(
1− 1

1 + |x− z + z − y|

)
≤ sup

0≤t≤k

(
1− 1

1 + |x− z|+ |z − y|

)
= sup

0≤t≤k

(
|x− z|+ |z − y|

1 + |x− z|+ |z − y|

)
= sup

0≤t≤k

(
|x− z|

1 + |x− z|+ |z − y|
+

|z − y|
1 + |x− z|+ |z − y|

)
≤ sup

0≤t≤k

(
|x− z|

1 + |x− z|
+
|z − y|

1 + |z − y|

)
≤ sup

0≤t≤k

(
|x− z|

1 + |x− z|

)
+ sup

0≤t≤k

(
|z − y|

1 + |z − y|

)
= ρk(x, z) + ρk(z, y)

Yay!

(b) We now want to show that ρ∞(x, y) → 0 ⇐⇒ ρk(x, y) → 0 for all k ∈ N. Because |C∞| = |R|
(see here), we just have to concern ourselves with sequences of functions xt where t ∈ [0,∞).

( =⇒ ) Because all the terms are positive, ρ∞(xt, y) is of course ≥ 1
2k

ρk(xt,y)
1+ρk(xt,y) for any k. Thus,

as t → ∞, ρ∞(xt, y) → 0 =⇒ 1
2k

ρk(xt,y)
1+ρk(xt,y) → 0. The only way for this to approach 0 is if

ρk(xt, y)→ 0, and so we’re done with this direction.

(⇐= ) Fix an ε > 0, and fix an N s.t. 1
2N

< ε
2 . Now because ρk(xt, y)→ 0 for every k, we know

there is tk s.t. ρk(xt, y) < ε
2 for every t ≥ tk. This means that for t ≥ max{t1, . . . , tN}, we have
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that

ρ∞(xt, y) =

N∑
k=1

1

2k
ρk(xt, y)

1 + ρk(xt, y)
+

∞∑
k=N+1

1

2k
ρk(xt, y)

1 + ρk(xt, y)

≤
N∑
k=1

1

2k
ρk(xt, y) +

∞∑
k=N+1

1

2k
· 1 <

N∑
k=1

1

2k
ε

2
+

1

2N
< 1 · ε

2
+
ε

2
= ε

which means of course that ρ∞(xt, y)→ 0 as t→∞.

Problem 4

Let X0 = 0 and X1, . . . be i.i.d. with mean 0 and variance σ2 < ∞. Of course, Sk =
∑k
i=1Xi for

k ∈ Z≥0.

(a) We wish to find the asymptotic distribution of 1
cn

∑n
i=1 Si for “appropriate” cn. We will proceed

using the machinery developed in 12.8: define Sn(t) = 1√
n

∑bntc
i=1 Xi. Writing Si in terms of Sn,

we have that Si =
√
nSn( in ), and so 1

cn

∑n
i=1 Si =

√
n
cn

∑n
i=1 Sn( in ). This is kind of looking like

a Riemann sum; we can make the connection more obvious by setting cn = n3/2. Intuitively, it

feels like the sum 1
n

∑n
i=1 Sn( in ) would go to

∫ 1

0
S(t)dt. We prove this rigorously below:

Letting S′n(t) = Sn(t)
σ (so it has variance 1), the Skorokhod embedding theorem gives that

||S′n − S|| := sup0≤t≤1 |S′n(t) − S(t)| →p 0 as n → ∞. Thus | 1n
∑n
i=1 S′n( in ) − 1

n

∑n
i=1 S( in )| ≤

1
n

∑n
i=1 |S′n( in )− S( in )| ≤ 1

n

∑n
i=1 ||S′n − S|| = ||S′n − S|| →p 0. Because S is almost surely every-

where continuous, 1
n

∑n
i=1 S( in )→a.s.

∫ 1

0
S(t)dt, and so putting things together, we can say that

1
n

∑n
i=1 S′n( in )→p

∫ 1

0
S(t)dt ⇐⇒ 1

n

∑n
i=1 Sn( in )→p σ

∫ 1

0
S(t)dt.∫ 1

0
S(t) is ∼ Normal(0, 1) (see here). It has mean 0, and variance that we calculate below:

E

[(∫ 1

0

S(t)dt

)2
]

= E
[∫ 1

0

S(t)dt

∫ 1

0

S(s)ds

]
= E

[∫ 1

0

∫ 1

0

S(t)S(s)dtds

]
=

∫ 1

0

∫ 1

0

E[S(t)S(s)]dtds =

∫ 1

0

∫ 1

0

min{t, s} dtds

= 2

∫ 1

0

∫ 1

0

t · 1t≤s dtds = 2

∫ 1

0

∫ s

0

tdtds = 2 · 1

6
=

1

3

Thus all in all we have 1
n

∑n
i=1 Sn( in ) →p σ

∫ 1

0
S(t) =⇒ 1

n

∑n
i=1 Sn( in ) →d σ

∫ 1

0
S(t) ∼

Normal(0, σ2/3).

(b) If we take the absolute value of |Si above, we will still have |Si| =
√
n|Sn( in )| and so 1

cn

∑n
i=1 |Si| =√

n
cn

∑n
i=1 |Sn( in )|. Furthermore, we have

∣∣ 1
n

∑n
i=1 |S′n( in )| − 1

n

∑n
i=1 |S( in )|

∣∣ ≤ 1
n

∑n
i=1

∣∣|S′n( in )| −
|S( in )|

∣∣ ≤ 1
n

∑n
i=1 |S′n( in ) − S( in )| ≤ 1

n

∑n
i=1 ||S′n − S|| = ||S′n − S|| →p 0. 1

n

∑n
i=1 |S( in )| →a.s.∫ 1

0
|S(t)|dt with the same reasoning as above, and so 1

n

∑n
i=1 |S′n( in )| →p

∫ 1

0
|S(t)|dt ⇐⇒

1
n

∑n
i=1 |Sn( in )| →p σ

∫ 1

0
|S(t)|dt.
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Problem 5
I’ve narrowed things down to three potential topics, from which you can help me pick the one that

I’ll do my project on:

� Fleming-Viot particle model: problem 6 from https://sites.math.washington.edu/~burdzy/

open.pdf, and https://arxiv.org/pdf/0905.1999.pdf. I could study this problem, try to

understand the Arxiv paper, consider variations on it, or even (with astronomically small prob-

ability) crack the open problem given by Burdzy at the end of his discussion of problem 6.

� Maybe a variant/further study of “longest increasing subsequences”, https://www.stat.washington.

edu/jaw/RESEARCH/PAPERS/lis.pdf? I mean, you wrote the paper so I would assume that you

have some ideas on further paths to pursue (assuming of course I am of the ability to do the

pursuing).

� In class a couple days ago you mentioned a topic that you said your colleague from grad school

should write a book on (something do with optimal transport and Brownian motion?). Perhaps

there is something from this area that I could write a little bit on?

� These past few days contained a lot of material (Markov and strong Markov, Skorokhod em-

bedding, the LIL) that I would like to go over in depth (the pacing was too fast for me to fully

understand what was going on). Perhaps the paper could allow me the time and place to go

through everything and write up proofs in detail of the things I mentioned above. My only

concern is that this topic is too “simple” in that you already covered the material in class, albeit

at a quick pace. Do you have any suggestions about how I could make this topic work?

Problem 6
Let us remind ourselves with the reflection principle and Mill’s ratio: for a > 0 and τa = inf{t : S(t) =

a}, and X(t) = S(t+ τa)− S(τa) = S(t+ τa)− a,

P

([
sup

0≤s≤t
S(s) ≥ a

])
= P

([
sup

0≤s≤t
S(s) ≥ a

]
∩ [S(t) ≥ a]

)
+ P

([
sup

0≤s≤t
S(s) ≥ a

]
∩ [S(t) < a]

)
= P ([S(t) ≥ a]) + P

([
sup

0≤s≤t
S(s) ≥ a

]
∩ [X(t− τa) < 0]

)
but the second term is (because X(t) is independent of Fτa and [sup0≤s≤t S(s) ≥ a] = [τa ≤ t] ∈ Fτa):

P

([
sup

0≤s≤t
S(s) ≥ a

]
∩ [X(t− τa) < 0]

)
= E

[
P

([
sup

0≤s≤t
S(s) ≥ a

]
∩ [X(t− τa) < 0]

∣∣∣Fτa)]
= E

[
1[sup0≤s≤t S(s)≥a] · P

(
X(t− τa) < 0

∣∣Fτa)]
= E

[
1[sup0≤s≤t S(s)≥a] · P ([X(t− τa) < 0])

]
=

1

2
P

(
sup

0<s<t
S(s) ≥ a

)
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where the 1
2 comes from the fact that the probability of a Brownian motion being < 0 at any given

time is 1
2 . Combining everything together gives that

P

([
sup

0≤s≤t
S(s) ≥ a

])
= P ([τa ≤ t]) = 2P ([S(t) ≥ a])

Mill’s ratio is that
λ

λ2 + 1
φ(λ) < 1− Φ(λ) <

1

λ
φ(λ)

We want to show that
|S(τn)− S(n)|√

2n log log n
→a.s. 0

where the stopping times τn are such that Sn =
∑n
k=1Xk is embedded in S: Sn = S(τn). Fixing

c > 0 and r > 1 s.t. c2

r−1 ≥ 1 + δ (for some fixed δ > 0), defining X(t) = S(t+ rn)− S(rn) (which is a

standard Brownian motion on t ∈ [0,∞)), and recalling that S(t) ∼ Normal(0, t), we have

P

(
sup

rn≤t≤rn+1

|S(t)− S(rn)|√
2rn log log(rn)

> c

)
≤ P

(
sup

0≤t≤rn+1−rn
X(t) > c

√
2rn log log(rn)

)

= 2P
(
X(rn(r − 1)) > c

√
2rn log log(rn)

)
= 2P

(√
rn(r − 1)Z > c

√
2rn log log(rn)

)
= 2P

(
Z > c

√
2 log log(rn)

r−1

)
≤ 2√

2π

√
r−1

2c2 log(n log r) exp
(
− c2

r−1 log n
)

≤ 4√
2π

√
r−1

2c2 lognn
−c2/(r−1) for n large.
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