The Cubic Formula and Derivation

Daniel Rui

Here is the general cubic, with the x^{3} coefficient already divided into the other coefficients, right hand side already set to zero because we are finding roots: $x^{3}+a x^{2}+b x+c=0$.

We substitute in $x=y-\frac{a}{3}$ to get

$$
\begin{array}{r}
\left(y^{3}-\frac{2 a}{3} y^{2}+\frac{a^{2}}{9} y-\frac{a}{3} y^{2}+\frac{2 a^{2}}{9} y-\frac{a^{3}}{27}\right) \\
+a\left(y^{2}-\frac{2 a}{3} y+\frac{a^{2}}{9}\right) \\
+b\left(y-\frac{a}{3}\right) \\
+c=0
\end{array}
$$

Simplifying to give

$$
\begin{aligned}
& y^{3}-a y^{2}+\frac{a^{2}}{3} y-\frac{a^{3}}{27} \\
&+a y^{2}-\frac{2 a^{2}}{3} y+ \frac{a^{3}}{9} \\
&+b y-\frac{a b}{3} \\
&+c=0
\end{aligned}
$$

Simplifying more to give

$$
y^{3}-\frac{a^{2}}{3} y+b y-\frac{a^{3}}{27}+\frac{a^{3}}{9}-\frac{a b}{3}+c=0
$$

This is of the form $y^{3}+d y+e=0$ where

$$
d=b-\frac{a^{2}}{3} \text { and } e=-\frac{a^{3}}{27}+\frac{a^{3}}{9}-\frac{a b}{3}+c
$$

We substitute $y=\sqrt[3]{u}-\sqrt[3]{v}$ to get

$$
\sqrt[3]{u}^{3}-3 \sqrt[3]{u}^{2} \sqrt[3]{v}+3 \sqrt[3]{u}_{u}^{\sqrt[3]{v}^{2}}-\sqrt[3]{v}^{3}+d \sqrt[3]{u}-d \sqrt[3]{v}+e=0
$$

Simplifying to get

$$
(u-v)-d \sqrt[3]{v}-3 \sqrt[3]{u} \sqrt[3]{v}+d \sqrt[3]{u}+3 \sqrt[3]{u} \sqrt[3]{v}^{2}+e=0
$$

Anti-distributing to get

$$
(u-v)-\sqrt[3]{v}\left(d-3 \sqrt[3]{u}^{2}\right)+\sqrt[3]{u}\left(d+3 \sqrt[3]{v}^{2}\right)+e=0
$$

Let's define $v-u=e$ ('cause we can), causing $-\sqrt[3]{v}\left(d-3 \sqrt[3]{u}^{2}\right)+\sqrt[3]{u}\left(d+3 \sqrt[3]{v}^{2}\right)=0$, which can be simplified to

$$
\begin{aligned}
\sqrt[3]{u}\left(d+3 \sqrt[3]{v}^{2}\right) & =\sqrt[3]{v}\left(d+3 \sqrt[3]{u}^{2}\right) \\
d \sqrt[3]{u}+3 \sqrt[3]{u} \sqrt[3]{v}^{2} & =d \sqrt[3]{v}+3 \sqrt[3]{v} \sqrt[3]{u}^{2} \\
d \sqrt[3]{u}-d \sqrt[3]{v} & =3 \sqrt[3]{v} \sqrt[3]{u}^{2}-3 \sqrt[3]{u}^{u} \sqrt[3]{v}^{2} \\
d(\sqrt[3]{u}-\sqrt[3]{v}) & =3 \sqrt[3]{v} \sqrt[3]{u}(\sqrt[3]{u}-\sqrt[3]{v}) \\
d & =3 \sqrt[3]{v} \sqrt[3]{u} \\
\frac{d}{3} & =\sqrt[3]{u v} \\
\frac{d^{3}}{27} & =u v
\end{aligned}
$$

From the first purple equation, we have $v=e+u$, which we can put into the second to get

$$
u(e+u)=\frac{d^{3}}{27} \rightarrow u^{2}+e u-\frac{d^{3}}{27}=0
$$

Where we can solve for u with the quadratic formula.

$$
u=\frac{-e \pm \sqrt{e^{2}+4 \frac{d^{3}}{27}}}{2}
$$

We can also get equations for v; the first equation gives $u=v-e$, which we stuff into the second equation to get

$$
v(v-e)=\frac{d^{3}}{27} \rightarrow v^{2}-e v-\frac{d^{3}}{27}
$$

Quadratic formula yielding

$$
v=\frac{e \pm \sqrt{e^{2}+4 \frac{d^{3}}{27}}}{2}
$$

Via our definition above $(y=\sqrt[3]{u}-\sqrt[3]{v})$, we get

$$
y=\sqrt[3]{\frac{-e \pm \sqrt{e^{2}+4 \frac{d^{3}}{27}}}{2}}-\sqrt[3]{\frac{e \pm \sqrt{e^{2}+4 \frac{d^{3}}{27}}}{2}}
$$

And from the definition above that $\left(x=y-\frac{a}{3}\right)$, we have

$$
x=\sqrt[3]{\frac{-e \pm \sqrt{e^{2}+4 \frac{d^{3}}{27}}}{2}}-\sqrt[3]{\frac{e \pm \sqrt{e^{2}+4 \frac{d^{3}}{27}}}{2}}-\frac{a}{3}
$$

However, there is a problem. The \pm gives solutions that don't satisfy $e=v-u$, so we just keep the positive. And finally, if we want, we can plug in d and e to get the cubic formula

$$
\begin{aligned}
x & =\sqrt[3]{\frac{-\left(-\frac{a^{3}}{27}+\frac{a^{3}}{9}-\frac{a b}{3}+c\right)+\sqrt{\left(-\frac{a^{3}}{27}+\frac{a^{3}}{9}-\frac{a b}{3}+c\right)^{2}+4 \frac{\left(b-\frac{a^{2}}{3}\right)^{3}}{27}}}{2}} \\
& -\sqrt[3]{\frac{\left(-\frac{a^{3}}{27}+\frac{a^{3}}{9}-\frac{a b}{3}+c\right)+\sqrt{\left(-\frac{a^{3}}{27}+\frac{a^{3}}{9}-\frac{a b}{3}+c\right)^{2}+4 \frac{\left(b-\frac{a^{2}}{3}\right)^{3}}{27}}}{2}}-\frac{a}{3}
\end{aligned}
$$

This formula only gives one root; using roots of unity we can get the others.

