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Here is the general cubic, with the x3 coefficient already divided into the other coefficients, right

hand side already set to zero because we are finding roots: x3 + ax2 + bx+ c = 0.
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Simplifying to get
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Anti-distributing to get
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From the first purple equation, we have v = e+ u, which we can put into the second to get
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Where we can solve for u with the quadratic formula.
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We can also get equations for v; the first equation gives u = v − e, which we stuff into the second

equation to get
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And from the definition above that (x = y − a
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However, there is a problem. The ± gives solutions that don’t satisfy e = v− u, so we just keep the

positive. And finally, if we want, we can plug in d and e to get the cubic formula
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This formula only gives one root; using roots of unity we can get the others.
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