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Abstract
Recently (8/23/21 – see green 2021 math notebook) I became interested in getting a semi-serious

first dose of analytic number theory (I do claim to have a deep enough interest in the subject to

pursue graduate studies in it, but I have not actually seriously looked over it much detail).

1 Motivation

My starting point was 3b1b’s video “Pi hiding in prime regularities”, as it does introduce Dirichlet

characters at the end and is an excellent problem for developing interesting ideas, and serving as a

springboard for more complicated work. However, I did feel that the introduction of the Dirichlet

character χ was just too slick/genius (as of now; let’s hope someone writes a good answer to my

MSE question), so I began looking into how Dirichlet came up with them. We proceed here intro-

ducing/motivating Dirichlet’s work on prime in arithmetic progressions, mainly just leaving links and

thoughts about those links (and I suppose the brilliant Gauss circle problem would be left as a sup-

plementary/bonus section/exercise in this article).

Great article (https://arxiv.org/pdf/1404.4832.pdf – a lot of it is meta-mathematical/philosophy,

but Section 3 talks about the math, and Appendix (pg. 48) talks about how Dirichlet may have come

up with the idea of his characters, stemming from the study of Lagrange resolvents) detailing starting

motivation of studying divergence of
∑
p≡a mod q

1
p , by starting off with Euler product proof (we’ll

discuss that in a later section, Section 2) that there are infinitely many primes, i.e. proving that for

s > 1 (using Taylor expansion of log x):
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The hope is that we can write “similar formulas” to this line, where instead of summing over all a with

weight 1, we have different weights so that via clever linear combinations we can isolate
∑
p≡a mod q

1
p

on the RHS. These “similar formulas” would then hopefully be finite on the LHS, or at the very least

not −∞ at s = 1 so that the divergence of log
(∑∞

n=1
1
n

)
would lead to the divergence of

∑
p≡a mod q

1
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on the RHS. Writing this idea out, we want something like

mysterious LHS, hopefully not −∞ at 1 =
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where w is a “weight function” defined on {0, . . . , q−1}, mapping into anything (Z,R,C) with the hope

that with enough of these weight functions, doing linear combinations of them will result in cancella-

tion in all but one a ∈ {0, . . . , q − 1}. In other words, we want enough w : {0, . . . , q − 1} → C so that

their span (in the vector space of these such functions) contain the functions δa : {0, . . . , q − 1} → C
(1 at a, 0 everywhere else); note that as these δa form a basis of these such functions, this is equivalent

to asking that our collection of w spans this vector space.

Also, note that in the a = 0 case above, there is at most one prime p ≡ 0 mod q ⇐⇒ q divides p.

Similarly, in the case that q is not prime and a, q share a factor other than 1 (i.e. gcd(a, q) 6= 1), then

there is again at most one prime p ≡ a mod q. Such a are not interesting to consider (the “at most

one” prime can just be absorbed into the constant O(1), not impacting anything at all), so we can

simply set w(a) = 0. In other words, we really only care about the values of w on a ∈ {0, . . . , q − 1}
relatively prime to q. The set of such a is otherwise known as group of units (Z/qZ)× (though right

now only thought of as a set). Sometimes we will abbreviate (Z/qZ)× as Z×q . We may then think of

w as either a function w : (Z/qZ)× → C, or as a q-periodic function w : N→ C with zeroes at certain

values; taking this latter viewpoint (i.e. the notion that w may be extended to all inputs N), we may

“bring the w inside” as follows:
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This looks very similar to the above sum
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, so is there a simi-

lar log expression for our weighted sum? Well, in that formula, we just used the Taylor expansion

− log(1− x) = x+ x2

2 + x3

3 + . . . and took a sum over all primes p, meaning that if we set “x” to be

instead w(p)
ps , the sum over all primes

∑
p
w(p)
ps + O(1) (again higher order terms, even in | • |, shrink

fast enough like above, assuming w bounded, which is totally reasonable assumption — could even

bound |w| ≤ 1 by dividing by bound B) would simply be the sum over all primes
∑
p− log

(
1− w(p)

ps

)
.

Can we go one step further back, to something like log
(∑∞
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)
? Recall that the Euler product

formula was noting that
∏
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fundamental theorem of arithmetic every n ∈ N can be written as a product of primes in unique way

n = pe11 · · · perr , implying that every n on the RHS is attained exactly once (coefficient of n−s for each

n ∈ N equals 1). If we instead have
∏
p(1−w(p)p−s)−1 =

∏
p(1 +w(p)p−s+w(p)2(p2)−s+ . . .), again
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by the fundamental theorem of arithmetic each n ∈ N is attained on the RHS exactly once, except

the coefficient of n = pe11 · · · perr is now w(p1)e1 · · ·w(pr)
er .

In general (i.e. for general w : (Z/qZ)× → C), there is not much we can say about this product

— basically this product takes the prime factorization of n and “hijacks” the primes pi into w(pi),

making the product highly dependent on the exact way n factors. However, this product LOOKS

very similar to one that is much much simpler; SUPPOSING we could “pull” all these prime factors

and exponents into one w, we would get very neatly w(p1)e1 · · ·w(pr)
er = w(pe11 · · · perr ) = w(n) (so

going from an expression that requires knowledge of how exactly n factors, to an expression of just

n). In this “dream scenario”, we can write that for some (very hopefully extant!) “special” w,
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The property of “pulling everything in” that we really wanted w to have is simply multiplicativity, i.e.

w(mn) = w(m)w(n) for all m,n ∈ Z. This allows us to pull the exponents ei inside w(pi)
ei = w(peii ),

and also allow us to pull the product over all prime factors inside. So, to summarize, we have found

that multiplicative functions w : (Z/qZ)× → C seem to be a very promising direction of study in

considering our question of primes in classes modulo q. It is remarkable that a condition as simple

as multiplicativity allows us to write the extremely neat Euler product type formula above. MAJOR

OBSERVATION: the multiplicative functions w : (Z/qZ)× → C are EXACTLY the group homomor-

phisms (Z/qZ)× → C, where we now think of (Z/qZ)× as a GROUP, not just a set. TIP: it’s always

a good sign in math when something from another field/problem shows up!

Using the fact that w is a group homomorphism (Z/qZ)× → C, we see that w(1) = 1 because

for any a ∈ (Z/qZ)×, w(a) = w(a · 1) = w(a)w(1). Lagrange’s theorem can also be used to prove

that w(a)|Z
×
q | =: w(a)ϕ(q) = w(aϕ(q)) = w(1) = 1 (as indicated by the “=:”, I’m defining the Euler

totient function ϕ(q) := |Z×q |). Thus, there is a cute notational coincidence because we just proved

that w(a) must be a root of unity in C, which are usually denoted by some variant of the symbol

“ω”. However, in the literature, group homomorphisms G → C are called group characters, and

specifically the group homomorphisms (Z/qZ)× → C are called Dirichlet characters, and so from here

on out, we will use χ instead of w. Finally, we note that the “mysterious LHS, hopefully not −∞
at 1” that appeared in an above displayed equation is in fact log

(∑∞
n=1

w(n)
ns

)
; defining the Dirichlet

L-function L(s, χ) :=
∑∞
n=1

χ(n)
ns , we see the “hopefully not −∞ at 1” refers to the hope/conjecture

that L(1, χ) 6= 0 for Dirichlet characters χ.

From this much, we already see an OUTLINE. Somehow, we must understand these Dirichlet

characters well enough to see if they EXIST first of all, and if they do, see if δa : (Z/qZ)× → C
can be written as a linear combination of such characters, or equivalently if these characters span

(i.e. linearly combine into) the Z/R/C-vector space of set-functions (Z/qZ)× → C. This is the

CHARACTER THEORY portion of the proof. We then must understand the L-functions L(s, χ) well

enough to determine that L(1, χ) is non-vanishing. This is the COMPLEX ANALYSIS portion.
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2 Euler Product

Before we do all that, I want to say a few words on the Euler product. On formulas that yield

information about additive decomposition. Easiest/earliest entry point is related to the identity (a2−
b2) = (a−b)(a+b), more specifically x2−1 = (x−1)(x+1) and the geometric series. Upon seeing the

formula (a2 − b2) = (a− b)(a+ b) =⇒ x2 − 1 = (x− 1)(x+ 1), a high-schooler (such as myself; I do

remember doing this) may see that with powers of 2 in exponent this formula can be iterated to yield

x2
n − 1 = (x− 1)(1 + x)(1 + x2)(1 + x4)(1 + x8) · · · (1 + x2

n−1

). One may recall from geometric series

(literally the first series a high-schooler would learn) that xn−1
x−1 = 1 + x+ x2 + . . .+ xn−1. Combining

the two ideas/formulas/expressions we have

1 + x+ x2 + . . .+ x2
n−1 = x2n−1

x−1 = (1 + x)(1 + x2)(1 + x4)(1 + x8) · · · (1 + x2
n−1

)

Already note of interest, we have a pure sum on the LHS and product on RHS. Also, every exponent

{1, . . . , 2n − 1} appears on the LHS with coefficient exactly 1. I think I can be confident in saying

that even without understanding particularly deep math, this is very eye-catching at first glance. But

why is this equation true (conceptual proof instead of algebraic manipulation)? When we multiply

out the RHS, we see that this equation corresponds to the fact that every number {1, . . . , 2n− 1} can

be written in a unique way as 1/0-weighted sum of powers of 2 {1, 2, . . . , 2n−1}. In other words, I

have n choices (i.e. digit places) where at choice i I choose between +2i or +0 (corresponding to n

factors (1 + x)(1 + x2)(1 + x4)(1 + x8) · · · (1 + x2
n−1

) where each factor has choice between x2
i

or x0).

So exponents of this “dummy variable” x encode information about additive decomposition based

on some “basis elements” {0 or 1, 0 or 2, 0 or 4, . . .} (the “or” is exclusive, which we henceforth de-

note “xor” for “exclusive or”). The reason why I call x a “dummy variable” is because it is ac-

tually not doing anything/representing anything, it is just sort of serving as a “clothes line” on

which the “clips” (the exponents of x) are interesting. Three more examples: for base-3 decomposi-

tion, we have “basis elements” {0 xor 1 xor 2, 0 xor 3 xor 2 · 3, 0 xor 32 xor 2 · 32, . . .}, in other words

(1 + x + x2)(1 + x3 + x6)(1 + x9 + x18) · · · = 1 + x + x2 + x3 + . . . and so on (again coefficient one

means unique decomposition in base-3).

Next two examples very similar: consider product (1 + x)(1 + x2)(1 + x3) · · · corresponding to

basis elements {0 xor 1, 0 xor 2, 0 xor 3, . . .} results in a polynomial/formal power series (i.e. infinite

clothes line) where coefficient of xn is the number of ways to write n as sum of distinct numbers. For

coefficient of xn equal to number of ways to partition n into positive integers, we want for instance

the option to have multiple 1’s; however, if 1 appears in multiple “basis elements”, say in three “basis

elements”, there are
(
3
2

)
ways of choosing two 1’s. So then all possible number of 1’s must appear in

one “basis element”, and indeed as each partition can have either zero 1’s XOR one 1’s XOR two 1’s

XOR etc. we see that the basis {0 xor 1 xor 1+1 xor . . . , 0 xor 2 xor 2+2 xor . . . , . . .} corresponding

to (1+x+x2 + . . .)(1+x2 +x4 + . . .)(1+x3 +x6 + . . .) · · · and so on. In other words we have encoded

the partition number p(n) in the formula above, which we can write succinctly (think of it just as

notation representing above product) as
∑∞
n=1 p(n)xn =

∏∞
n=1

1
1−xn .
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Because multiplying xm, xn adds exponent, above techniques allow us to understand some combi-

natorics of additive decompositions in terms of coefficient of resulting formal power series. For multi-

plicative decomposition, exponent not useful, so we forget about the x entirely. But the idea/principle

remains. We know that n ∈ N can be factored uniquely into product of primes, so in the spirit of

our say base-2 additive decomposition above, we have for N a multiplicative decomposition based

on some “basis elements” {1 xor 2 xor 22 xor . . . , 1 xor 3 xor 32 xor . . . , 1 xor 5 xor 52 xor . . . , . . .}
corresponding to (1+2+22+23+. . .)(1+3+32+. . .)(1+5+52+. . .)(1+7+. . .) · · · = 1+2+3+4+. . ..

This makes sense from a conceptual point of view — for any n ∈ N, going up on the LHS to a large

enough but finite number of “basis elements” with large but finite “length” for each “basis element”

(so like length l meaning [1 + 2 + 22 + . . . + 2l]), we see that n appears; and indeed no matter how

many basis elements you take and how long you take each basis element n appears ONLY ONCE. At

face value though both sides are ∞. No worries, we can still use this EXACT principle to encode this

same fundamental theorem of arithmetic fact but with convergence on both sides; simply consider

∏
p

1

1−
[

1
p2

] =
∏
p

(
1 +

[
1
p2

]
+
[

1
p2

]2
+ . . .

)
=
∞∑
n=1

1
n2

Indeed, this works for any exponent n−s for s > 1. There’s probably more to say regarding conver-

gence of sum and product, and rigorously proving this equality, but really this document is more of a

guide than an actual account of the detailed proof.

Last remarks: if we truncate the above (two paragraphs up) series of prime power basis elements,

like {1 xor 2 xor 22 xor . . . xor 2e1 , 1 xor 3 xor 32 xor . . . xor 3e2 , . . . , 1 xor p xor p2 xor . . . xor per},
we get on the RHS the sum of all divisors of 2e1 · 3e2 · · · per . In general, defining the sum-of-divisors

function σ(n) :=
∑
d|n d, we have σ(pe11 · · · perr ) =

∏r
i=1(1 + pi + . . .+ peii ) =

∏r
i=1

p
ei+1

i −1
pi−1 .

3 Preliminary Concrete Examples

https://abel.math.harvard.edu/~elkies/M259.02/dirichlet.pdf has examples for q = 4, 8.

4 Character Theory (References)

Almost every source I looked at had a section on this. It’s covered in first halves of https://math.

mit.edu/classes/18.785/2015fa/LectureNotes17.pdf (18.785 Number theory I Lecture #17 Fall

2015 11/10/2015 ), https://fse.studenttheses.ub.rug.nl/17834/1/bMATH_2018_MintjesMW.pdf

(“The Proof of Dirichlet’s Theorem on Arithmetic Progressions and its Variations”, M. W. Mintjes

Bachelor’s Project Mathematics, University of Groningen — beautifully typeset!). Basically a form of

Fourier analysis, as the characters are orthogonal basis of L2(G) — see also https://www-users.cse.

umn.edu/~garrett/m/mfms/notes_c/dirichlet.pdf (“Primes in arithmetic progressions” (April 12,

2011) Paul Garrett). For textbook, I’m sure Dummit & Foote has section on character theory; really

any algebra/representation theory textbook.
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5 Complex Analysis (References)

https://mathoverflow.net/a/26096/112504 provides sketch: assume L(1, χ) = 0; then because

ζ(s) has pole at s = 1, product ζ(s)L(s, χ) should extend nicely past s = 1. Coefficients of Dirich-

let series for this product are c(n) =
∑
d|n χ(d). Converge absolutely on Re(s) > 1, but because

ζ(s)L(s, χ) extend analytically to Re(s) > 0, the Dirichlet series converge conditionally for Re(s) > 0

(LANDAU THEOREM). However, c(n2) > 0, and
∑∞
n=1 c(n)n−1/2, leading to contradiction.

Requires knowledge that ζ(s), L(s, χ) extend meromorphically/analytically to Re(s) > 0. Refer to

Terry Tao’s Notes 2 of his 254A 2014 blog post; ctrl-F “meromorphic extension” and “holomorphic

on this region”. Basically the method is to prove the local uniform convergence of partial sums.

Terry’s whole Notes 2 is VERY long and chock full of information: https://terrytao.wordpress.

com/2014/12/09/254a-notes-2-complex-analytic-multiplicative-number-theory/.

OVERVIEW/REVIEW OF MANY DIFFERENT PROOFS: https://fse.studenttheses.ub.

rug.nl/17834/1/bMATH_2018_MintjesMW.pdf (“The Proof of Dirichlet’s Theorem on Arithmetic

Progressions and its Variations”, M. W. Mintjes Bachelor’s Project Mathematics, University of Gronin-

gen) referenced above in character theory section, has SECTION 4 devoted to proving the complex

analysis portion in a different way then what author did in SECTION 3 (SECTION 4 proof similar

to above sketched proof from MathOverflow). SECTION 5 reviews different proofs, pointing out

strenghts/weaknesses.

More Terry: https://mathoverflow.net/a/29435/112504 and then blog post https://terrytao.

wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-

conspiracies/. More on analytic continuation of ζ(s): https://mathoverflow.net/questions/

58004/how-does-one-motivate-the-analytic-continuation-of-the-riemann-zeta-function. For

REALLY heavy duty machinery complex analysis, we have Terry’s ENORMOUS blog post on func-

tional equations + gamma, beta, digamma functions + reflection/duplication/multiplication + Pois-

son summation + Fourier inversion https://terrytao.wordpress.com/2014/12/15/254a-supplement-

3-the-gamma-function-and-the-functional-equation-optional/.

https://math.uchicago.edu/~may/REU2012/REUPapers/LiAng.pdf (“DIRICHLET’S THEOREM

ABOUT PRIMES IN ARITHMETIC PROGRESSIONS” Ang Li) contains proof of this complex anal-

ysis portion using a lot of really hands on bounding. May be nice approach if one doesn’t want to

introduce so much complex analysis theory.

Another approach of interest (though probably more complicated/messy) is Mathologer’s “super

sum” approach in his masterclass video “Numberphile v. Math: the truth about 1+2+3+...=-1/12”.
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6 Algebraic Number Theory

Part of the reason why I love the 3b1b video “Pi hiding in prime regularities” that I started off with

in Section 1 is because all that work with factorization in Z[i] is the first step into algebraic number

theory, and connections with quadratic fields, and Dirichlet’s class number formula. I don’t know

anything about any of that now (maybe good reference is https://people.reed.edu/~jerry/361/

lectures/iqclassno.pdf “THE DIRICHLET CLASS NUMBER FORMULA FOR IMAGINARY

QUADRATIC FIELDS” Jerry Shurman Reed College), but I do know enough that I can see what a

brilliant problem this Gauss circle problem is. All the more crucial that I find a good answer to my

MSE question “How would one motivate/know to introduce the Dirichlet character in the formula for

the number of lattice points on a circle of radius
√
N”.

And about imaginary quadratic fields, I recently heard about a professor at CU, Katherine Stange

(https://math.katestange.net/ — brilliant website, well designed, nice to look at, full of resources

for students, visualizations, obviously the work of someone who loves teaching) who has some work on

visualizing them: http://math.colorado.edu/~kstange/papers/Stange-short-exp.pdf (“Visual-

izing imaginary quadratic fields”) with a tiny bit of explanation in the form of a Reddit thread https:

//www.reddit.com/r/math/comments/2xs4t7/visualising_complex_quadratic_number_fields/;

see also her fully-fledged paper on the topic https://arxiv.org/pdf/1410.0417.pdf (“Visualising

the arithmetic of imaginary quadratic fields”).

7 Collected Links

If one would like to have most of these above mentioned links in one list, see https://www.one-

tab.com/page/uLC4YXuWT0WZxMWfER2_qg.

As concluding words, I mention Andrew Granville’s excellent survey/overlook of basically the

entire subject of analytic number theory (asymptotics, large/small prime gaps, sieve methods, circle

method, Selberg/Langlands class of L-functions, etc.) https://dms.umontreal.ca/~andrew/PDF/

PrinceComp.pdf.

8 The Möbius Function

It is 9/1/21 (everything prior written 8/25/21 - 8/26/21), and I have returned to add a bit on my

MSE question “How would one motivate/know to introduce the Dirichlet character in the formula for

the number of lattice points on a circle of radius
√
N”. Although the answers/comments/pointers

are very brief, we can spin up some ideas from them. First, given the Euler product formula

ζ(s) :=
∑∞
n=1

1
ns =

∏
p(1−

1
ps )−1, we can easily (forgetting about convergence issues for now) invert

and get an equally nice/concise formula 1
ζ(s) =

∏
p(1−

1
ps ).
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Expanding out the RHS, we get 1
ζ(s) =

∏
p(1 −

1
ps ) =

∑∞
n=1

µ(n)
ns where µ(n) is 0 if the prime

factorization of n has any exponent > 1, and otherwise if the prime factorization of n is n = p11 ·p12 · · · p1r
then µ(n) = (−1)r. It’s a bit crazy to me that the reciprocal of

∑∞
n=1

1
ns is something that looks very

very similar... like even though the formula for µ(n) is not super trivial (it is quite irregular, unlike the

periodic Dirichlet characters discussed in previous sections), it’s still amazingly simple for something

that describes the multiplicative inverse of some infinite sum. This function µ(n) is the famous Möbius

function. Let us plot its first couple values (taken from https://oeis.org/A008683/list):

10 20 30 40 50 60 70

−1

1

Looking at this picture, the values of µ seem to be pretty evenly distributed between −1, 0, 1; indeed

in the first 78 values of µ(n), the values −1, 0, 1 respectively appear 26, 29, 23 times. A very natural

question is to ask what proportion of n (as n tends to∞) has µ(n) = −1, 0, 1 respectively, i.e. consider

the limits limn→∞
|µ−1(−1,0,1)∩[n]|

n (if they even exist). With our current data, one may reasonably

suggest that maybe it’s exactly even, that each of these limits is 1
3 .

A nice way of investigating this question is to compare the proportions of −1 and 1 by taking a

running average 1
N

∑N
n=1 µ(n). If the limit as N →∞ is positive, we know that there are slightly more

1’s than (−1)’s, and if its negative, we know that there are slightly more (−1)’s than 1’s. If it’s 0, then

we know the proportions are equal. Spoiler alert: it indeed turns out that limN→∞
1
N

∑N
n=1 µ(n) = 0

(i.e. the proportions between −1 and 1 are equal). This is already a very nice/aesthetically pleasing

result, but the most shocking thing (at least to me, when I thought up this question today) is that

this fact is EQUIVALENT to the prime number theorem!

With this result, we see that the partial sums M(n) :=
∑N
n=1 µ(n) grow (in absolute value) at

rate O(N) (little-o of N). Determining the exact nature of how far M(n) can deviate from 0 is a very

complicated question — indeed the assertion that M(n) is O(x1/2+ε) for all ε > 0 is EQUIVALENT to

the Riemann hypothesis. Due to the disproof of Merten’s conjecture (linked in the previous sentence)

where in particular lim supn→∞
M(n)√

n
> 1.8 was shown in 2016 by Hurst, this hypothesized upper

bound is extremely tight.

Anyways, knowing the proportions between −1 and 1 are equal, we still have yet to find the pro-

portion of 0’s. A good way to do this is to consider the running average 1
N

∑N
n=1 |µ(n)|. If our “exactly

evenly 1
3” conjecture is right, then this running average would approach → 2

3 . I did some Googling

and found a ResearchGate article with link http://dx.doi.org/10.5831/HMJ.2014.36.2.467 or in

PDF form http://koreascience.or.kr/article/JAKO201418964310493.pdf that seems to claim

that this limit is limN→∞
1
N

∑N
n=1 |µ(n)| = 6

π2 ≈ 0.608, so slightly below our conjectured 2
3 . Actually

Wolfram says that this limit appears in Landau 1974 pgs. 604-609.
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Last remarks: like above with the Dirichlet characters where we could write

∞∑
n=1

χ(n)
ns =

∏
p

(
1− χ(p)

ps

)−1
=
∏
p

(
1 + χ(p)

ps + χ(p2)
p2s + . . .

)
,

we can write something similar
∑∞
n=1

µ(n)
ns =

∏
p(1 + µ(p)

ps + µ(p2)
p2s + . . .) =

∏
p(1−

1
ps ) because µ(p) =

−1 for any prime p and µ(pe) = 0 for any exponent e ≥ 2. In other words, we could write this red

equality because µ(pe11 · · · perr ) = µ(pe11 ) · · ·µ(perr ); however we could not write something like the mid-

dle expression in the green equality above because that would require µ(pe) = µ(p)e, which is not true

for the Möbius function (but is true for the Dirichlet characters from previous sections). A function

f (like µ) that can decompose into its values at prime powers like f(pe11 · · · perr ) = f(pe11 ) · · · f(perr )

is called multiplicative, and a function (like the Dirichlet characters) f that further decomposes into

its values at pure primes like f(pe11 · · · perr ) = f(p1)e1 · · · f(pr)
er is called totally multiplicative. The

absolute value of the Möbius function (briefly discussed above) is also multiplicative, where |µ|(p) = 1

and |µ|(pe) = 0 for e ≥ 2.

9 Average Order

(EDIT 9/23/22: best read Sections 10 and later before this one. Section 11 can be regarded as more

motivated/in-context version of this section). I got a bit sidetracked from my original goal of talking

about the miraculous appearance of the Dirichlet character in the Gauss circle problem. I think the

starting spark for this investigation (like the starting spark to Dirichlet’s approach to prime in arith-

metic progressions was the proof of the existence of infinitely many primes using the Euler product;

or the starting spark of coming up with the Euler product was seeing how products of sums of terms

could encode arithmetical/combinatorial information about those terms) is the question of what the

average number of divisors of a number is (so again a running average taken over n ∈ [N ] for N large).

The number-of-divisors τ(n) (τ for German Teiler, divisors) is obviously defined as
∑
d|n 1. So, we

are looking at the average number of divisors up to N , τN := 1
N

∑N
n=1 τ(n) = 1

N

∑N
n=1

∑
d|n 1. The

brilliant insight (or “spark”) is to notice that for each divisor d, approximately N
d (or exactly

⌊
N
d

⌋
)

n ∈ [N ] have that d as a divisor, meaning that
∑N
n=1

∑
d|n 1 =

∑N
d=1

⌊
N
d

⌋
. One can also think of this

as a summation interchange, going from
∑N
n=1

∑
d|n 1 to

∑N
d=1

∑
d|n,n∈[N ] 1 =

∑N
d=1

⌊
N
d

⌋
.

We can bound this sum by
∑N
d=1(Nd − 1) ≤

∑N
d=1

⌊
N
d

⌋
≤
∑N
d=1

N
d , or in other words defining the

Nth harmonic number to be HN := 1 + 1
2 + . . .+ 1

N , we have 1
N (NHN −H) ≤ τN ≤ 1

N (NHN ). We

thus get that limN→∞
τN

HN
= 1. Another notation for this is τN ∼ HN . Interpreting HN as a Riemann

sum for the integral
∫ N+1

1
1
x dx = log(N + 1), the slivers of area 1 · 1n −

∫ n+1

n
1
x dx can be translated

horizontally until they all lie in [0, 1] without overlap, meaning HN − log(N + 1) is an increasing

sequence of real numbers bounded above by 1, meaning the limit γ := limN→∞HN − log(N + 1) =

limN→∞Hn − log(N) + log( N
N+1 ) = limN→∞Hn − log(N) exists (the Euler-Mascheronic constant),

and so obviously limN→∞
HN

logN = 1 ⇐⇒ HN ∼ logN . Putting everything together, we get that

τN ∼ logN , or the average order of τ(n) is log n.
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The reason this is so profound (or the “spark” of an entire investigation) is because the “1” in the

above sum
∑
d|n 1 was not special at all; in fact we can generalize this to any function f : if g(n) =∑

d|n f(d), then gN := 1
N

∑N
n=1

∑
d|n f(d) = 1

N

∑N
d=1 f(d)

⌊
N
d

⌋
≈ 1

N

∑N
d=1 f(d)Nd =

∑N
d=1

f(d)
d . We

can give more quantitative information about how exactly this is approximated (i.e. the symbol “≈”

is quite vague) as follows:∣∣∣∣ N∑
d=1

f(d)
d − gN

∣∣∣∣ ≤ 1
N

N∑
d=1

∣∣f(d)
(
N
d −

⌊
N
d

⌋)∣∣ = 1
N

N∑
d=1

|f(d)| ·
∣∣N
d −

⌊
N
d

⌋∣∣ ≤ 1
N

N∑
d=1

|f(d)| · 1 = |f |N .

If for instance f is bounded (so |f | ≤ B for all inputs n), then the RHS would be bounded by B. Such a

constant would be negligible if gN →∞ as N →∞, like in our above example where τN ∼ logN →∞
as N →∞.

This is where we return to my MSE question. In the notation in that question, we have that the

total number of lattice points at distance ≤
√
N from the origin (forgetting about the origin itself, as

3b1b does in his video) is
∑N
n=1 #(n). Having primed our brains with sums of the form 1

N

∑N
n=1 g(n)

above, we see that if we could express #(n) as
∑
d|n f(n) for some other function f , we can apply our

above knowledge to get something promising for the formula for the total number of lattice points

within a circle of radius
√
N .

10 Möbius Inversion

Today is 2/7/22, and I suddenly remembered this after glancing over 246B Notes 4, which we are

going to cover soon. I think I have given decent motivation for the Riemann zeta function and the

Euler product formula in Section 2, so that assuages my concerns about 246B Notes 4 not sufficiently

motivating the right-off-the-bat definition of ζ(s). I do remember wanting to say more about Möbius

inversion back in September 2021, but I guess I never got around to it. Having introduced the Möbius

function in a natural way from the Euler product formula, I think it is more natural to build up the

inversion formula, before doing the above Section 9, since sums over divisors naturally show up in the

inversion formula.

First, recall that 1
ζ(s) =

∏
p(1−

1
ps ) =

∑∞
n=1

µ(n)
ns and ζ(s) =

∏
p(1−

1
ps )−1 =

∑∞
n=1

1
ns . Of course

from the product representations it’s clear that these multiply to 1, but it is not at all obvious from

the sum representation. But now that we know it’s true, we simply have to multiply out the series

term by term, and see how things work out (should result in identically 1!). Because a
ns · b

ms = ab
(nm)s ,

the product will remain a series of the same form as ζ(s), 1
ζ(s) ; such series are given the name Dirichlet

series. The way to produce a •
ns term in the product is to multiply a

ds and b
(n/d)s for any divisor

d | n. In other words, the coefficient of 1
ns in the product is

∑
d|n µ(d) · 1, or more generally the 1

ns

coefficient of the product of two Dirichlet series
∑∞
n=1

f(n)
ns ,

∑∞
n=1

g(n)
ns is

∑
d|n f(d)g(nd ). Commuta-

tivity suggests that
∑
d|n f(d)g(nd ) =

∑
d|n g(d)f(nd ), and indeed one can see this directly from

∑
d|n

by symmetry traversing the sum “forwards” i.e. d starts at 1 and goes up to n, vs. “backwards” i.e.
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d starts at n and goes down to 1.

Also note that this operation of taking f, g defined on N to
∑
d|n f(d)g(nd ) (again defined for every

n ∈ N) looks a lot like convolution (a convolution integral is
∫
f(x)g(y−x)dx, and discretized it might

look like
∑n
k=0 f(k)g(n−k), which is basically our formula except with a distinct multiplicative flavor

from n − k  n
d and

∑n
k=0  

∑
d|n). This is pretty good justification for using the convolution

notation [f ∗ g](n) :=
∑
d|n f(d)g(nd ). So the above Dirichlet series product can be written succinctly

as ( ∞∑
n=1

f(n)

ns

)
·

( ∞∑
n=1

g(n)

ns

)
=

∞∑
n=1

[f ∗ g](n)

ns
.

We also pointed out above that this “product” operation is commutative, and similarly it inherits

associativity from just multiplication of numbers (although we are multiplying infinite sums, for any

fixed 1
ns term, only a finite number of multiplications/additions go into that coefficient). Deserving of

the title “product” because it does distribute over addition: [(f + g) ∗ h](n) =
∑
d|n[f + g](d)h(nd ) =∑

d|n
(
f(d)h(nd ) + g(d)h(nd )

)
=
∑
d|n f(d)h(nd ) +

∑
d|n g(d)h(nd ) = [f ∗ h](n) + [g ∗ h](n).

Anyways, because (
∑∞
n=1

µ(n)
ns ) · (

∑∞
n=1

1
ns ) ≡ 1 (for any s > 1), we have that

∑
d|n µ(d) = 0 for

all n > 1, and = 1 for n = 1, so denoting 1 to be the function identically 1 on N, and δ to be the

spike function 1 at n = 1 and 0 elsewhere, this can be written µ ∗1 = δ. These functions 1 and δ look

particularly simple (especially the latter one), so let us see how they “convolve” with some arbitrary

f : [f ∗ 1](n) =
∑
d|n f(d), and [f ∗ δ](n) =

∑
d|n f(d)δ(nd ) = f(n)δ(1) + 0 + . . . + 0 = f(n). To

summarize, convolving with 1 is “summing over divisors”, and δ is the identity for the “∗” product

operation. Therefore, combining this with associativity and commutativity, we get for any f : f =

f ∗ δ = f ∗ (1 ∗ µ) = µ ∗ (f ∗ 1), so if g = f ∗ 1 =
∑
d|n f(d), then one can recover f from g via µ:

f = µ ∗ g =
∑
d|n µ(d)g(nd )! This is the Möbius inversion formula.

11 Summing Over Divisors

More written 2/12/22. The Möbius inversion formula tells us there is a very natural way to rep-

resent any arithmetic function as the sum over divisors of some other arithmetic function (divisor

sums/Möbius inversion overlays space of arithmetic functions on top of itself). Thus, a promising

direction in which to travel would be to try to understand the behaviors of these sums
∑
d|n. Un-

fortunately, divisors behave in an extremely irregular way — looking at the rows of the below table,

there seems to be no discernible pattern going from one value of n to the next.
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1 2 3 4 5 6 7 8 9 10 11 12

F (1) = f(1)

F (2) = f(1) f(2)

F (3) = f(1) f(3)

F (4) = f(1) f(2) f(4)

F (5) = f(1) f(5)

F (6) = f(1) f(2) f(3) f(6)

F (7) = f(1) f(7)

F (8) = f(1) f(2) f(4) f(8)

F (9) = f(1) f(3) f(9)

F (10) = f(1) f(2) f(5) f(10)

F (11) = f(1) f(11)

F (12) = f(1) f(2) f(3) f(4) f(6) f(12)

F (n)
∖
d

However, the columns of the above table behave extremely regularly, in that every n is divisible

by 1, every 2nd n is divisible by 2, every 3rd n is divisible by 3, and so on. Thus, although for just

single values of n it is difficult to understand the behavior of the divisors, over multiple values of n the

regularity of the rows might be able to help. In other words, the individualized behavior of divisors

for any given n may be hard to understand, but the average behavior over the divisors of n over all

n ∈ [1, N ] = {1, . . . , N} is approximately that 1 will contribute all the time, 2 will contribute about

half the time, 3 will contribute about a third of the time, and so on. More rigorously, the previous

sentence says that the average 1
N

∑N
n=1 F (n), although difficult to analyze when summed over the

rows first and then the columns, becomes much easier when summed over the columns first and then

the rows, yielding

F ([N ]) :=
1

N

N∑
n=1

F (n) =
1

N

N∑
n=1

∑
d|n

f(d) =
1

N

N∑
d=1

∑
n∈[N ]:d|n

f(d) =
1

N

N∑
d=1

f(d)

⌊
N

d

⌋

≈ 1

N

N∑
d=1

f(d)
N

d
=

N∑
d=1

f(d)

d
.

We can give more quantitative information about how exactly this is approximated (i.e. the symbol

“≈” is quite vague) as follows:∣∣∣∣∣
N∑
d=1

f(d)

d
− F ([N ])

∣∣∣∣∣ ≤ 1

N

N∑
d=1

∣∣∣∣f(d)

(
N

d
−
⌊
N

d

⌋)∣∣∣∣ =
1

N

N∑
d=1

|f(d)| ·
∣∣∣∣Nd −

⌊
N

d

⌋∣∣∣∣
≤ 1

N

N∑
d=1

|f(d)| · 1 = |f |([N ]).

Therefore, if |f |([N ]) = O

(
F ([N ])

)
or = O(

∑N
d=1

f(d)
d ), then

∑N
d=1

f(d)
d ∼ F ([N ]) as N →∞ (or equiv-

alently N
∑N
d=1

f(d)
d ∼

∑N
n=1 F (n), since a(N) ∼ b(N) ⇐⇒ limN→∞

a(N)
b(N) = 1 ⇐⇒ limn→∞

Na(N)
Nb(N) =

1 ⇐⇒ Na(N) ∼ Nb(N)).
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For instance, taking f = 1, the average value of f , i.e. 1 is indeed little-o of
∑N
d=1

1
d ∼ logN , so

the above formula gives that the average number of divisors d(n) :=
∑
d|n 1 of an integer in [N ] grows

as logN . To emphasize how “nicely” d(n) behaves on average compared to for individual values of

n, observe that lim infn→∞ d(n) = 2 (because there are infinitely many prime numbers, and the only

divisors of a prime number are 1 and itself), and lim supn→∞ d(n) =∞ (given the prime factorization

of n = pα1
1 · · · p

αk

k , the number of divisors is exactly d(n) = (α1 + 1) · · · (αk + 1), since there are

(αi + 1) choices for the exponent of each pi, so taking n = 2α for huge α d(n) = α+ 1 shows that

the maximum number of divisors grows at least ≥ log2(n)).

This already shows that d(n) can vary quite wildly generally all over N, but more specifically, we

can show that d(n) varies quite wildly just from one n to the next! Let ΠK denote the product of the

first K primes  d(ΠK) = 2K . Dirichlet’s theorem on primes in arithmetic progressions tells us that

there are infinitely many primes of the form ΠK + 1, so in fact for any K there are infinitely many

n s.t. |d(n + 1) − d(n)| = 2K − 2. In particular, lim supn→∞ |d(n + 1) − d(n)| = ∞. In 1984, Roger

Heath-Brown showed that lim infn→∞ |d(n+ 1)− d(n)| = 0.

This section motivates the idea of studying averages of functions defined as sums over divisors,

and introduces a technique (the Fubini trick, or interchanging rows and columns in a double sum)

that can be used to understand such averages for a decent number of arithmetic functions. Because of

the usefulness of this technique, a good strategy to study sums
∑
n≤N F (n) would be to use Möbius

inversion to find f s.t. F (n) =
∑
d|n f(n), and then use the Fubini trick. In particular, this section

presents the best motivation I can come up with (at this point) for the material of Section 9 (especially

that bit at the end where I talk about the 3b1b Gauss circle problem).

12 Upper Bound for Divisors

So we’ve talked about the the average behavior of d(n), and the best-case behavior of d(n) (2 for n = p

prime), but we have not talked about the worst-case behavior (only mentioned that the worst-case

of d(n) grows at least log2(n), but no mention of upper bound). Obviously, we have d(n) ≤ n. We

can do a bit better by noticing that divisors come in pairs (d, nd ) where the first smaller number is

always ≤
√
n, meaning the number of such pairs is ≤

√
n  d(n) ≤ 2

√
n (this is the same reasoning

behind the easiest optimization of the most näıve primality checking algorithm, going from checking

all k ≤ n to see if they divide n, to checking all k ≤
√
n).

Let us try to prove this another way. I already pointed out that for n = pα1
1 · · · p

αk

k , the number

of divisors is exactly d(n) = (α1 + 1) · · · (αk + 1), so our upper bound can be rephrased as

k∏
i=1

αi + 1

p
1
2αi

i

≤ 2.

Intuitively, this makes sense because the numerator grows linearly in αi, while the denominator grows
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exponentially. Expanding on this idea to give a proof for the n1/2 case essentially leads straight to

the nε case; see https://terrytao.wordpress.com/2008/09/23/the-divisor-bound/.
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