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Abstract
Recently (8/23/21 – see green 2021 math notebook) I became interested in getting a semi-serious

first dose of analytic number theory (I do claim to have a deep enough interest in the subject to

pursue graduate studies in it, but I have not actually seriously looked over it much detail).

1 Motivation

My starting point was 3b1b’s video “Pi hiding in prime regularities”, as it does introduce Dirichlet

characters at the end and is an excellent problem for developing interesting ideas, and serving as a

springboard for more complicated work. However, I did feel that the introduction of the Dirichlet

character χ was just too slick/genius (as of now; let’s hope someone writes a good answer to my

MSE question), so I began looking into how Dirichlet came up with them. We proceed here intro-

ducing/motivating Dirichlet’s work on prime in arithmetic progressions, mainly just leaving links and

thoughts about those links (and I suppose the brilliant Gauss circle problem would be left as a sup-

plementary/bonus section/exercise in this article).

Great article (https://arxiv.org/pdf/1404.4832.pdf – a lot of it is meta-mathematical/philosophy,

but Section 3 talks about the math, and Appendix (pg. 48) talks about how Dirichlet may have come

up with the idea of his characters, stemming from the study of Lagrange resolvents) detailing starting

motivation of studying divergence of
∑
p≡a mod q

1
p , by starting off with Euler product proof (we’ll

discuss that in a later section, Section 2) that there are infinitely many primes, i.e. proving that for

s > 1 (using Taylor expansion of log x):
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The hope is that we can write “similar formulas” to this line, where instead of summing over all a with

weight 1, we have different weights so that via clever linear combinations we can isolate
∑
p≡a mod q

1
p

on the RHS. These “similar formulas” would then hopefully be finite on the LHS, or at the very least

not −∞ at s = 1 so that the divergence of log
(∑∞

n=1
1
n

)
would lead to the divergence of

∑
p≡a mod q

1
p

on the RHS. Writing this idea out, we want something like

mysterious LHS, hopefully not −∞ at 1 =
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where w is a “weight function” defined on {0, . . . , q−1}, mapping into anything (Z,R,C) with the hope

that with enough of these weight functions, doing linear combinations of them will result in cancella-

tion in all but one a ∈ {0, . . . , q − 1}. In other words, we want enough w : {0, . . . , q − 1} → C so that

their span (in the vector space of these such functions) contain the functions δa : {0, . . . , q − 1} → C
(1 at a, 0 everywhere else); note that as these δa form a basis of these such functions, this is equivalent

to asking that our collection of w spans this vector space.

Also, note that in the a = 0 case above, there is at most one prime p ≡ 0 mod q ⇐⇒ q divides p.

Similarly, in the case that q is not prime and a, q share a factor other than 1 (i.e. gcd(a, q) 6= 1), then

there is again at most one prime p ≡ a mod q. Such a are not interesting to consider (the “at most

one” prime can just be absorbed into the constant O(1), not impacting anything at all), so we can

simply set w(a) = 0. In other words, we really only care about the values of w on a ∈ {0, . . . , q − 1}
relatively prime to q. The set of such a is otherwise known as group of units (Z/qZ)× (though right

now only thought of as a set). Sometimes we will abbreviate (Z/qZ)× as Z×q . We may then think of

w as either a function w : (Z/qZ)× → C, or as a q-periodic function w : N→ C with zeroes at certain

values; taking this latter viewpoint (i.e. the notion that w may be extended to all inputs N), we may

“bring the w inside” as follows:
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This looks very similar to the above sum
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, so is there a simi-

lar log expression for our weighted sum? Well, in that formula, we just used the Taylor expansion

− log(1− x) = x+ x2

2 + x3

3 + . . . and took a sum over all primes p, meaning that if we set “x” to be

instead w(p)
ps , the sum over all primes

∑
p
w(p)
ps + O(1) (again higher order terms, even in | • |, shrink

fast enough like above, assuming w bounded, which is totally reasonable assumption — could even

bound |w| ≤ 1 by dividing by bound B) would simply be the sum over all primes
∑
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)
.

Can we go one step further back, to something like log
(∑∞
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)
? Recall that the Euler product

formula was noting that
∏
p(1 − p−s)−1 =

∏
p(1 + p−s + (p2)−s + . . .) =

∑
n n
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fundamental theorem of arithmetic every n ∈ N can be written as a product of primes in unique way

n = pe11 · · · p
ek
k , implying that every n on the RHS is attained exactly once (coefficient of n−s for each

n ∈ N equals 1). If we instead have
∏
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by the fundamental theorem of arithmetic each n ∈ N is attained on the RHS exactly once, except

the coefficient of n = pe11 · · · p
ek
k is now w(p1)e1 · · ·w(pk)ek .

In general (i.e. for general w : (Z/qZ)× → C), there is not much we can say about this product

— basically this product takes the prime factorization of n and “hijacks” the primes pi into w(pi),

making the product highly dependent on the exact way n factors. However, this product LOOKS

very similar to one that is much much simpler; SUPPOSING we could “pull” all these prime factors

and exponents into one w, we would get very neatly w(p1)e1 · · ·w(pk)ek = w(pe11 · · · p
ek
k ) = w(n) (so

going from an expression that requires knowledge of how exactly n factors, to an expression of just

n). In this “dream scenario”, we can write that for some (very hopefully extant!) “special” w,
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The property of “pulling everything in” that we really wanted w to have is simply multiplicativity, i.e.

w(mn) = w(m)w(n) for all m,n ∈ Z. This allows us to pull the exponents ei inside w(pi)
ei = w(peii ),

and also allow us to pull the product over all prime factors inside. So, to summarize, we have found

that multiplicative functions w : (Z/qZ)× → C seem to be a very promising direction of study in

considering our question of primes in classes modulo q. It is remarkable that a condition as simple

as multiplicativity allows us to write the extremely neat Euler product type formula above. MAJOR

OBSERVATION: the multiplicative functions w : (Z/qZ)× → C are EXACTLY the group homomor-

phisms (Z/qZ)× → C, where we now think of (Z/qZ)× as a GROUP, not just a set. TIP: it’s always

a good sign in math when something from another field/problem shows up!

Using the fact that w is a group homomorphism (Z/qZ)× → C, we see that w(1) = 1 because

for any a ∈ (Z/qZ)×, w(a) = w(a · 1) = w(a)w(1). Lagrange’s theorem can also be used to prove

that w(a)|Z
×
q | =: w(a)ϕ(q) = w(aϕ(q)) = w(1) = 1 (as indicated by the “=:”, I’m defining the Euler

totient function ϕ(q) := |Z×q |). Thus, there is a cute notational coincidence because we just proved

that w(a) must be a root of unity in C, which are usually denoted by some variant of the symbol

“ω”. However, in the literature, group homomorphisms G → C are called group characters, and

specifically the group homomorphisms (Z/qZ)× → C are called Dirichlet characters, and so from here

on out, we will use χ instead of w. Finally, we note that the “mysterious LHS, hopefully not −∞
at 1” that appeared in an above displayed equation is in fact log

(∑∞
n=1

w(n)
ns

)
; defining the Dirichlet

L-function L(s, χ) :=
∑∞
n=1

χ(n)
ns , we see the “hopefully not −∞ at 1” refers to the hope/conjecture

that L(1, χ) 6= 0 for Dirichlet characters χ.

From this much, we already see an OUTLINE. Somehow, we must understand these Dirichlet

characters well enough to see if they EXIST first of all, and if they do, see if δa : (Z/qZ)× → C
can be written as a linear combination of such characters, or equivalently if these characters span

(i.e. linearly combine into) the Z/R/C-vector space of set-functions (Z/qZ)× → C. This is the

CHARACTER THEORY portion of the proof. We then must understand the L-functions L(s, χ) well

enough to determine that L(1, χ) is non-vanishing. This is the COMPLEX ANALYSIS portion.
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2 Euler Product

Before we do all that, I want to say a few words on the Euler product. On formulas that yield

information about additive decomposition. Easiest/earliest entry point is related to the identity (a2−
b2) = (a−b)(a+b), more specifically x2−1 = (x−1)(x+1) and the geometric series. Upon seeing the

formula (a2 − b2) = (a− b)(a+ b) =⇒ x2 − 1 = (x− 1)(x+ 1), a high-schooler (such as myself; I do

remember doing this) may see that with powers of 2 in exponent this formula can be iterated to yield

x2
n − 1 = (x− 1)(1 + x)(1 + x2)(1 + x4)(1 + x8) · · · (1 + x2

n−1

). One may recall from geometric series

(literally the first series a high-schooler would learn) that xn−1
x−1 = 1 + x+ x2 + . . .+ xn−1. Combining

the two ideas/formulas/expressions we have

1 + x+ x2 + . . .+ x2
n−1 =

x2
n − 1

x− 1
= (1 + x)(1 + x2)(1 + x4)(1 + x8) · · · (1 + x2

n−1

)

Already note of interest, we have a pure sum on the LHS and product on RHS. Also, every exponent

{1, . . . , 2n − 1} appears on the LHS with coefficient exactly 1. I think I can be confident in saying

that even without understanding particularly deep math, this is very eye-catching at first glance. But

why is this equation true (conceptual proof instead of algebraic manipulation)? When we multiply

out the RHS, we see that this equation corresponds to the fact that every number {1, . . . , 2n− 1} can

be written in a unique way as 1/0-weighted sum of powers of 2 {1, 2, . . . , 2n−1}. In other words, I

have n choices (i.e. digit places) where at choice i I choose between +2i or +0 (corresponding to n

factors (1 + x)(1 + x2)(1 + x4)(1 + x8) · · · (1 + x2
n−1

) where each factor has choice between x2
i

or x0).

So exponents of this “dummy variable” x encode information about additive decomposition based

on some “basis elements” {0 or 1, 0 or 2, 0 or 4, . . .} (the “or” is exclusive, which we henceforth de-

note “xor” for “exclusive or”). The reason why I call x a “dummy variable” is because it is ac-

tually not doing anything/representing anything, it is just sort of serving as a “clothes line” on

which the “clips” (the exponents of x) are interesting. Three more examples: for base-3 decomposi-

tion, we have “basis elements” {0 xor 1 xor 2, 0 xor 3 xor 2 · 3, 0 xor 32 xor 2 · 32, . . .}, in other words

(1 + x + x2)(1 + x3 + x6)(1 + x9 + x18) · · · = 1 + x + x2 + x3 + . . . and so on (again coefficient one

means unique decomposition in base-3).

Next two examples very similar: consider product (1 + x)(1 + x2)(1 + x3) · · · corresponding to

basis elements {0 xor 1, 0 xor 2, 0 xor 3, . . .} results in a polynomial/formal power series (i.e. infinite

clothes line) where coefficient of xn is the number of ways to write n as sum of distinct numbers. For

coefficient of xn equal to number of ways to partition n into positive integers, we want for instance

the option to have multiple 1’s; however, if 1 appears in multiple “basis elements”, say in three “basis

elements”, there are
(
3
2

)
ways of choosing two 1’s. So then all possible number of 1’s must appear in

one “basis element”, and indeed as each partition can have either zero 1’s XOR one 1’s XOR two 1’s

XOR etc. we see that the basis {0 xor 1 xor 1 + 1 xor . . . , 0 xor 2 xor 2 + 2 xor . . . , . . .} correspond-

ing to (1 + x+ x2 + . . .)(1 + x2 + x4 + . . .)(1 + x3 + x6 + . . .) · · · and so on. In other words we have

encoded the partition number p(n) in the formula above, which we can write succinctly (think of it
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just as notation representing above product) as
∑∞
n=1 p(n)xn =

∏∞
n=1

1
1−xn .

Because multiplying xm, xn adds exponent, above techniques allow us to understand some combi-

natorics of additive decompositions in terms of coefficient of resulting formal power series. For multi-

plicative decomposition, exponent not useful, so we forget about the x entirely. But the idea/principle

remains. We know that n ∈ N can be factored uniquely into product of primes, so in the spirit of

our say base-2 additive decomposition above, we have for N a multiplicative decomposition based

on some “basis elements” {1 xor 2 xor 22 xor . . . , 1 xor 3 xor 32 xor . . . , 1 xor 5 xor 52 xor . . . , . . .}
corresponding to (1+2+22+23+ . . .)(1+3+32+ . . .)(1+5+52+ . . .)(1+7+ . . .) · · · = 1+2+3+4+ . . .

and so on.

This makes sense from a conceptual point of view — for any n ∈ N, going up on the LHS to a large

enough but finite number of “basis elements” with large but finite “length” for each “basis element”

(so like length l meaning [1 + 2 + 22 + . . . + 2l]), we see that n appears; and indeed no matter how

many basis elements you take and how long you take each basis element n appears ONLY ONCE. At

face value though both sides are ∞. No worries, we can still use this EXACT principle to encode this

same fundamental theorem of arithmetic fact but with convergence on both sides; simply consider

∏
p

1

1−
[

1
p2

] =
∏
p

(
1 +

[
1

p2

]
+

[
1

p2

]2
+ . . .

)
=

∞∑
n=1

1

n2

Indeed, this works for any exponent n−s for s > 1. There’s probably more to say regarding convergence

of sum and product, and rigorously proving this equality, but really this document is more of a guide

than an actual account of the detailed proof.

3 Preliminary Concrete Examples

https://abel.math.harvard.edu/~elkies/M259.02/dirichlet.pdf talks a bit about concrete ex-

amples of q = 4, 8.

4 Character Theory (References)

Almost every source I looked at had a section on this. It’s covered in first halves of https://math.

mit.edu/classes/18.785/2015fa/LectureNotes17.pdf (18.785 Number theory I Lecture #17 Fall

2015 11/10/2015 ), https://fse.studenttheses.ub.rug.nl/17834/1/bMATH_2018_MintjesMW.pdf

(“The Proof of Dirichlet’s Theorem on Arithmetic Progressions and its Variations”, M. W. Mintjes

Bachelor’s Project Mathematics, University of Groningen — beautifully typeset!). Basically a form of

Fourier analysis, as the characters are orthogonal basis of L2(G) — see also https://www-users.cse.

umn.edu/~garrett/m/mfms/notes_c/dirichlet.pdf (“Primes in arithmetic progressions” (April 12,

2011) Paul Garrett). For textbook, I’m sure Dummit & Foote has section on character theory; really

any algebra/representation theory textbook.
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5 Complex Analysis (References)

https://mathoverflow.net/a/26096/112504 provides sketch: assume L(1, χ) = 0; then because

ζ(s) has pole at s = 1, product ζ(s)L(s, χ) should extend nicely past s = 1. Coefficients of Dirich-

let series for this product are c(n) =
∑
d|n χ(d). Converge absolutely on Re(s) > 1, but because

ζ(s)L(s, χ) extend analytically to Re(s) > 0, the Dirichlet series converge conditionally for Re(s) > 0

(LANDAU THEOREM). However, c(n2) > 0, and
∑∞
n=1 c(n)n−1/2, leading to contradiction.

Requires knowledge that ζ(s), L(s, χ) extend meromorphically/analytically to Re(s) > 0. Refer to

Terry Tao’s Notes 2 of his 254A 2014 blog post; ctrl-F “meromorphic extension” and “holomorphic

on this region”. Basically the method is to prove the local uniform convergence of partial sums.

Terry’s whole Notes 2 is VERY long and chock full of information: https://terrytao.wordpress.

com/2014/12/09/254a-notes-2-complex-analytic-multiplicative-number-theory/.

OVERVIEW/REVIEW OF MANY DIFFERENT PROOFS: https://fse.studenttheses.ub.

rug.nl/17834/1/bMATH_2018_MintjesMW.pdf (“The Proof of Dirichlet’s Theorem on Arithmetic

Progressions and its Variations”, M. W. Mintjes Bachelor’s Project Mathematics, University of Gronin-

gen) referenced above in character theory section, has SECTION 4 devoted to proving the complex

analysis portion in a different way then what author did in SECTION 3 (SECTION 4 proof similar

to above sketched proof from MathOverflow). SECTION 5 reviews different proofs, pointing out

strenghts/weaknesses.

More Terry: https://mathoverflow.net/a/29435/112504 and then blog post https://terrytao.

wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-

conspiracies/. More on analytic continuation of ζ(s): https://mathoverflow.net/questions/

58004/how-does-one-motivate-the-analytic-continuation-of-the-riemann-zeta-function. For

REALLY heavy duty machinery complex analysis, we have Terry’s ENORMOUS blog post on func-

tional equations + gamma, beta, digamma functions + reflection/duplication/multiplication + Pois-

son summation + Fourier inversion https://terrytao.wordpress.com/2014/12/15/254a-supplement-

3-the-gamma-function-and-the-functional-equation-optional/.

https://math.uchicago.edu/~may/REU2012/REUPapers/LiAng.pdf (“DIRICHLET’S THEOREM

ABOUT PRIMES IN ARITHMETIC PROGRESSIONS” Ang Li) contains proof of this complex anal-

ysis portion using a lot of really hands on bounding. May be nice approach if one doesn’t want to

introduce so much complex analysis theory.

Another approach of interest (though probably more complicated/messy) is Mathologer’s “super

sum” approach in his masterclass video “Numberphile v. Math: the truth about 1+2+3+...=-1/12”.
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6 Algebraic Number Theory

Part of the reason why I love the 3b1b video “Pi hiding in prime regularities” that I started off with

in Section 1 is because all that work with factorization in Z[i] is the first step into algebraic number

theory, and connections with quadratic fields, and Dirichlet’s class number formula. I don’t know

anything about any of that now (maybe good reference is https://people.reed.edu/~jerry/361/

lectures/iqclassno.pdf “THE DIRICHLET CLASS NUMBER FORMULA FOR IMAGINARY

QUADRATIC FIELDS” Jerry Shurman Reed College), but I do know enough that I can see what a

brilliant problem this Gauss circle problem is. All the more crucial that I find a good answer to my

MSE question “How would one motivate/know to introduce the Dirichlet character in the formula for

the number of lattice points on a circle of radius
√
N”.

And about imaginary quadratic fields, I recently heard about a professor at CU, Katherine Stange

(https://math.katestange.net/ — brilliant website, well designed, nice to look at, full of resources

for students, visualizations, obviously the work of someone who loves teaching) who has some work on

visualizing them: http://math.colorado.edu/~kstange/papers/Stange-short-exp.pdf (“Visual-

izing imaginary quadratic fields”) with a tiny bit of explanation in the form of a Reddit thread https:

//www.reddit.com/r/math/comments/2xs4t7/visualising_complex_quadratic_number_fields/;

see also her fully-fledged paper on the topic https://arxiv.org/pdf/1410.0417.pdf (“Visualising

the arithmetic of imaginary quadratic fields”).

7 Collected Links

If one would like to have most of these above mentioned links in one list, see https://www.one-

tab.com/page/uLC4YXuWT0WZxMWfER2_qg.

As concluding words, I mention Andrew Granville’s excellent survey/overlook of basically the

entire subject of analytic number theory (asymptotics, large/small prime gaps, sieve methods, circle

method, Selberg/Langlands class of L-functions, etc.) https://dms.umontreal.ca/~andrew/PDF/

PrinceComp.pdf.
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