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Chapter 1

1.1 The Gamma Function
Reminders: We can prove quite easily (using integraton by parts) that: Γ(x+ 1) = xΓ(x), which is

a fundamental property of the factorial function. The gamma function is defined to be:

Γ(x) :=

∫ ∞
0

tx−1e−t dt = (x− 1)! for positive integers x

The whole purpose of the Gamma Function was to continuously define the factorial function for all

numbers (we’ll ignore the non-continuous negative half in this paper). Therefore, we should be able

to find the “factorial” of a half, also known as Γ
(

3
2

)
, but as you may have guessed, the integral∫ ∞

0

√
te−t dt

is not a very easy integral to solve! And guess what we do in this paper? We do it anyways.

1.2 The Reflection Formula
Let’s begin with another introduction. This is the gamma reflection formula:

Γ(z)Γ(1− z) =
π

sin(πz)

With the gamma reflection formula, solving for 1
2 ! is really easy. Set z = 1

2 to get:

Γ

(
1

2

)
Γ

(
1− 1

2

)
=

π

sin(π2 )

so Γ( 1
2 )2 = π, Γ( 1

2 ) =
√
π, and because Γ(x+ 1) = xΓ(x), Γ( 3

2 ) =
√
π

2 , so

1

2
! =

√
π

2

Now that we have established the fact that we can find one half factorial from the reflection formula,

we set out to prove it.
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1.2.1 Integration
First things first, we plug in variables into the definition of the gamma function, in this case t and

s, to allow combining the integrals together. This works because the s integral is a ‘constant’ in the

eyes of the t integral, and constants can be pulled inside, allowing us to simplify the two integrals

into just one integral with two variables

Γ(z)Γ(1− z) =

∫ ∞
0

sz−1e−s ds

∫ ∞
0

t(1−z)−1e−t dt

=

∫ ∞
0

(∫ ∞
0

sz−1e−s ds
)
t−ze−t dt

=

∫ ∞
0

∫ ∞
0

sz−1e−st−ze−t ds dt

=

∫ ∞
0

∫ ∞
0

sz−1

tz
e−(s+t) ds dt

=

∫ ∞
0

∫ ∞
0

sz−1

tz−1

1

t
e−(s+t) ds dt

We do a variable change u = s+ t and v = s
t . Notice that 1 + v = u

t , so 1+v
u = 1

t .∫ ∞
0

∫ ∞
0

vz−1

u
(1 + v)e−u ds dt

In order to go from ds dt to du dv however,we have to do something fancier: the Jacobian

du dv = det

[
∂u
∂t

∂v
∂t

∂u
∂s

∂v
∂s

]
ds dt

Where ‘det’ means determinant and ∂ is just the partial derivative. For more info on Jacobians, visit

https://www.quora.com/What-is-an-intuitive-explanation-of-Jacobians-and-a-change-of-basis. Fill-

ing the matrix out, we get

du dv = det

[
1 − s

t2

1 1
t

]
ds dt

Calculating, we get

du dv =
1

t
+
s

t2
ds dt

=
t+ s

t2
ds dt

= u
(1 + v)2

u2
ds dt

=
(1 + v)2

u
ds dt
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Rearranging the equation to be more useful,

1

1 + v
du dv =

1 + v

u
ds dt

and substituting back, we get ∫ ∞
0

∫ ∞
0

vz−1

1 + v
e−u du dv

Now that we have everything in u and v, we can pull the the integrals apart, the same way we

originally combined them ∫ ∞
0

vz−1

1 + v
dv

∫ ∞
0

e−u du

The u integral tells us that it goes to 1 (verify on your own), so all we have left is our v integral:∫ ∞
0

vz−1

1 + v
dv

This integral is not a particularly easy integral to evaluate, so we split it up into two integrals:∫ 1

0

vz−1

1 + v
dv +

∫ ∞
1

vz−1

1 + v
dv

We then do b-substitution on the second integral where v = 1
b (so dv = − 1

b2 db and the bounds from

1 to 0), we get: ∫ 0

1

b1−z

b+1
b

−1

b2
db =

∫ 0

1

b2−z

b+ 1

−1

b2
db =

∫ 1

0

b−z

b+ 1
db

Now, we can rename b to v (yes, we can do that), to get:∫ 1

0

vz−1

1 + v
dv +

∫ 1

0

v−z

v + 1
dv =

∫ 1

0

vz−1 + v−z

1 + v
dv

But 1
1+v can be represented as an infinite geometric series:

∞∑
n=0

(−v)n, and replacing the fraction

with the sum, we get: ∫ 1

0

(vz−1 + v−z)

∞∑
n=0

(−v)n dv

In the sum’s eyes, vz−1 + v−z is a constant because it doesn’t have any n’s in it, so we can pull it

inside and rearrange (sum of integrals = integral of sum)

∫ 1

0

∞∑
n=0

(vz−1 + v−z)(v)n(−1)n dv =

∞∑
n=0

∫ 1

0

(vz−1 + v−z)(v)n(−1)n dv

In the integral’s eyes, the (−1)n is a constant because it doesn’t have any v’s

∞∑
n=0

(−1)n
∫ 1

0

(vz−1 + v−z) vn dv
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And distributing the vn
∞∑
n=0

(−1)n
∫ 1

0

(vn+z−1 + v−z+n) dv

then integrating (power rule)

∞∑
n=0

(−1)n
(
vn+z

n+ z
+

v−z+n+1

−z + n+ 1

)∣∣∣∣∣
v=1

v=0

=

∞∑
n=0

(−1)n
(

1

n+ z
+

1

n+ 1− z

)

and then writing it out and shrinking it again (verify on your own), we get

1

z
+

∞∑
n=1

(−1)n
(

1

n+ z
+

1

n− z

)

Of course, this is yet again another problem we can’t easily solve. We now take a step back, and

look for another way to approach the problem: trig!

1.3 Fourier Series

Fourier Series are all about representing any periodic function in the form

∞∑
n=0

an cos(nx). Let’s

start with the periodic function cos(zx), where z ∈ < but not necessarily an integer.

1.3.1 Trig Integration
Note: all following integrals without a dx should have a dx.

Trig flashback: recall that

cos2(x) + sin2(x) = 1

and

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

Setting α = β = x, we get

cos(2x) = cos2(x)− sin2(x)

Adding the first equation and the one right above this sentence, we get

2 cos2(x) = 1 + cos(2x) =⇒ cos2(x) =
cos(2x) + 1

2

Keep this in mind as we keep going. Next, we must evaluate the tricky integral (the Fourier series)∫ π

0

cos(zx) cos(nx) dx
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Integration by parts (verify on your own) gives

1
n cos(zx) sin(nx)− z

n2 cos(nx) sin(zx)

1− z2

n2

∣∣∣∣∣
x=π

x=0

If n and z are integers and n 6= z, then everything is zero because sin(kπ) = 0 for all integers k.

If n = z and n and z are integers, we get∫ π

0

cos2(nx) dx =
1

2

∫ π

0

cos(2nx) + 1 dx

=
1

2

(
1

2
sin(2nx) + x

)∣∣∣∣π
0

=
π

2

If n is an integer and z not an integer, sin(nπ) will always be 0, and cos(nπ) will go back and forth

between −1 and 1, so we can replace it with (−1)n

−(−1)n
z sin(zπ)

n2 − z2

Splitting 1
n2−z2 into two fractions, we get 1

2z(n−z) −
1

2z(z+n) , and because n− z = −(z − n), we can

simplify

−(−1)nz sin(zπ)

(
− 1

2z(z − n)
− 1

2z(z + n)

)
=

1

2
(−1)n sin(zπ)

(
1

z − n
+

1

z + n

)

To find the Fourier Series of cos(zx) we need to find an’s such that

cos(zx) := a0 cos(0x) + a1 cos(x) + a2 cos(2x) + . . .+ an cos(nx) + . . .

First, let’s find a0. Take cos(zx) := a0 cos(0x) + a1 cos(x) + a2 cos(2x) + . . .+ an cos(nx) + . . ., and

integrate it from 0 to π.∫ π

0

cos(zx) =

∫ π

0

a0 cos(0x) +

∫ π

0

a1 cos(x) + . . .+

∫ π

0

an cos(nx) + . . .

but what is
∫ π

0
cos(nx) where n is an integer but not 0? It’s just 0! (Think graphically; all the peaks

cancel out the troughs)∫ π

0

cos(zx) =

∫ π

0

a0 dx =⇒ 1

z
sin(zx)

∣∣∣∣π
0

= πa0 =⇒ a0 =
1

zπ
sin(zπ)

Next, let’s find an. Multiplying everything by cos(nx),

cos(zx) cos(nx) = a0 cos(nx) + a1 cos(x) cos(nx) + . . .+ an cos(nx) cos(nx) + . . .
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And then integrating from 0 to π∫ π

0

cos(zx) cos(nx) =

∫ π

0

a0 cos(nx) +

∫ π

0

a1 cos(x) cos(nx) + . . .+

∫ π

0

an cos(nx) cos(nx) + . . .

But remember the red stuff above? All the cos(integerx) cos(nx) are all zero!∫ π

0

cos(zx) cos(nx) = 0 + 0+ . . .+

∫ π

0

an cos(nx) cos(nx) + . . .

But remember all the orange stuff above?∫ π

0

an cos(nx) cos(nx) = an
π

2

But remember all the turqoise stuff above?

1

2
(−1)n sin(zπ)

(
1

z − n
+

1

z + n

)
= an

π

2

And now, we have a formula for an where n > 0!

2

π

1

2
(−1)nsin(zπ)

(
1

z − n
+

1

z + n

)
= an =

1

π
(−1)nsin(zπ)

(
1

z − n
+

1

z + n

)
And now we just put it back in for the original Fourier series

cos(zx) =
1

zπ
sin(zπ) cos(0x)

+
1

π
(−1)1sin(zπ)

(
1

z − 1
+

1

z + 1

)
cos(x)

+
1

π
(−1)2sin(zπ)

(
1

z − 2
+

1

z + 2

)
cos(2x) + . . .

+
1

π
(−1)nsin(zπ)

(
1

z − n
+

1

z + n

)
cos(nx) + . . .

and setting x = 0, we get

1 =
1

zπ
sin(zπ) +

1

π
(−1)1sin(zπ)

(
1

z − 1
+

1

z + 1

)
+

1

π
(−1)2sin(zπ)

(
1

z − 2
+

1

z + 2

)
+ . . .

and FINALLY, multiplying by π and dividing by sin(πz), we get

π

sin(πz)
=

1

z
+ (−1)1

(
1

z − 1
+

1

z + 1

)
+ (−1)2

(
1

z − 2
+

1

z + 2

)
+ . . .

and writing in summation notation, we get

π

sin(πz)
=

1

z
+

∞∑
n=0

(−1)n
(

1

z − n
+

1

z + n

)
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AND WHAT DOES THE RIGHT PART OF THIS EQUAL? WE SHOWED THAT IT EQUALS

Γ(z)Γ(1− z)!
Γ(z)Γ(1− z) =

π

sin(πz)
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Chapter 2

2.1 Factorials
Reminders: The factorial is defined as n! = n · (n− 1) · · · 2 · 1, and the gamma function is defined as∫ ∞

0

tx−1e−t d =
x!

x

2.1.1 The Infinite Product
The factorial function can also be represented as an infinite product. To start, we must accept that

for any integer m,

lim
n→∞

n!(n+ 1)m

(n+m)!
= 1

This makes sense because both the top and the bottom have a nm term. It turns out that this also

holds for any complex number z.

1 = lim
n→∞

n!(n+ 1)z

(n+ z)!

Multiplying both sides by z!

z! = lim
n→∞

n!
z!

(n+ z)!
(n+ 1)z

Simplifying, we get

z! = lim
n→∞

1 · · · n
(1 + z) · · · (n+ z)

(n+ 1)z

Condensing into product notation, we get

z! = lim
n→∞

(
n∏
i=1

i

i+ z

)
(n+ 1)z

We can express (n + 1)z as
∏∞
i=1

(n+1)z

nz which becomes obvious when we write out the product
2
1 ·

3
2 ·

4
3 . . . ·

(n+1)z

nz where everything cancels except for lim
n→∞

(n+1)z. Condensing the product further

we get

z! =

∞∏
n=1

n

n+ z

(n+ 1)z

nz
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We will write this as the equivalent expression

z! =

∞∏
n=1

1

1 + z
n

(
1 +

1

n

)z
=

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

Using this definition, the Gamma Function can be written as

Γ(z) =
1

z

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

2.1.2 The Digamma Function
The digamma function ψ is defined as the derivative of the log gamma function; d

dx ln(Γ(x)).

ln(Γ(z)) = ln

(
1

z

∞∏
n=1

(1 + 1
n )z

1 + z
n

)

Using log rules, we get

− ln(z) +

∞∑
n=1

z ln

(
1 +

1

n

)
− ln

(
1 +

z

n

)
Now taking the derivative with respect to z

−1

z
+

∞∑
n=1

ln

(
1 +

1

n

)
−

1
n

1 + z
n

And simplifying we get

ψ = −1

z
+

∞∑
n=1

ln

(
1 +

1

n

)
− 1

n+ z

For our purposes, the derivative of digamma function is more useful; ψ′

ψ′ =
1

z2
+

∞∑
n=1

1

(n+ z)2
=

∞∑
n=0

1

(n+ z)2

Now, if we find an approximation to the sum of reciprocal of squares, we can approximate the gamma

function.

2.1.3 Approximating ψ′

To approximate ψ′, we will use
∑

1
n2 just for ease of writing and notation. We can write

∑
1
n2 as a

sum of telescopic series, helping us approximate it.

∑ 1

n2
=
∑ 1

n(n+ 1)
+
∑ 1

n2(n+ 1)

=
∑(

1

n
− 1

n+ 1

)
+
∑ 1

n2(n+ 1)
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The next telescopic term is
∑(

1
n2 − 1

(n+1)2

)
=
∑

2n+1
n2(n+1)2 . Now we can design the series for the

leftover term from above:
∑

1
n2(n+1) .

∑
1

n2(n+1) −
∑

2n+1
n2(n+1)2 =

∑
n

n2(n+1)2 doesn’t work because

there is an n left in the numerator, so we do
∑

1
n2(n+1) −

1
2

∑
2n+1

n2(n+1)2 = 1
2

∑
1

n2(n+1)2

∑ 1

n2(n+ 1)
=

1

2

∑ 2n+ 1

n2(n+ 1)2
+

1

2

∑ 1

n2(n+ 1)2∑ 1

n2
=
∑(

1

n
− 1

n+ 1

)
+

1

2

∑(
1

n2
− 1

(n+ 1)2

)
+

1

2

∑ 1

n2(n+ 1)2

The next telescopic term is
∑(

1
n3 − 1

(n+1)3

)
=
∑

3n2+3n+1
n3(n+1)3 . Now we can design the series for the

leftover term from above: 1
2

∑
1

n2(n+1)2 . We will leave the 1
2 out for now and add it back on later.∑

1
n2(n+1)2 −

1
3

∑
3n2+3n+1
n3(n+1)3 = − 1

3

∑
1

n3(n+1)3 . The 1
3 was put there to cancel out the n2 and n and

just leave the constant term. After we bring back the one half, and simplify, we get

∑ 1

n2
=
∑(

1

n
− 1

n+ 1

)
+

1

2

∑(
1

n2
− 1

(n+ 1)2

)
+

1

6

∑(
1

n3
− 1

(n+ 1)3

)
− 1

6

∑ 1

n3(n+ 1)3

The next telescopic term is
∑(

1
n4 − 1

(n+1)4

)
=
∑

4n3+6n2+4n+1
n4(n+1)4 . However,

∑
1

n3(n+1)3 −∑
4n3+6n2+4n+1

n4(n+1)4 will always have an n3 in the numerator, so we move on. From now on, Ta will

signify
∑(

1
na −

1
(n+1)a

)
to save space and effort.

The next telescopic term is T5 = 5n4+10n3+10n2+5n+1
n5(n+1)5 . Now we can design the series for the

leftover term from above: − 1
6

∑
1

n3(n+1)3 . We will leave the − 1
6 out for now and add it back on

later.
∑

1
n3(n+1)3 −

1
5

5n4+10n3+10n2+5n+1
n5(n+1)5 = − 1

5

∑
5n2+5n+1
n5(n+1)5 . We added the 1

5 to cancel out the n4

and n3. After we bring back the − 1
6 , and simplify, we get

∑ 1

n2
= T1 +

1

2
T2 +

1

6
T3 −

1

30
T5 +

1

30

∑ 5n2 + 5n+ 1

n5(n+ 1)5

Now that we have enough precision in our approximation for
∑

1
n2 , we can clarify the bounds of

the sum and evaluate Ta. We redefine Ta =
∑∞
n=z

(
1
na −

1
(n+1)a

)
, and using the folding properties

of telescopic sums, we get that

∞∑
n=z

1

n2

(
aka

∞∑
n=0

1

(n+ z)2

)
=

1

z
+

1

2z2
+

1

6z3
− 1

30z5
+ . . .

Which we can write in terms of ψ′ as

ψ′ =
1

z
+

1

2z2
+

1

6z3
− 1

30z5
+ . . .

2.1.4 Integrating Back to Γ

We will use big-O notation from now on, which looks like this: ψ′ = 1
z + 1

2z2 + 1
6z3 +O

(
1
z5

)
which

means that there are higher order terms starting with some constant times 1
z5 . Back to integration.
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Integrating with respect to z, we get

ψ

(
aka

d

dz
ln(Γ(z))

)
= ln(z)− 1

2z
− 1

12z2
+O

(
1

z4

)
+ c1

Integrating again with respect to z

ln(Γ(z)) = z ln(z)− z − 1

2
ln(z) +

1

12z
+O

(
1

z3

)
+ c1z + c2

Grouping terms together

ln(Γ(z)) =

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c1z + c2

On the first page of this document, I wrote the defining characteristic of the gamma function:

Γ(z) = z!
z or in other words Γ(z+1)

Γ(z) = z. Now taking the logarithm of both sides, we get ln Γ(z +

1)− ln Γ(z) = ln z. Using the equation above, we get

(
(z + 1)− 1

2

)
ln(z + 1)− (z + 1) +

1

12(z + 1)
+O

(
1

z3

)
+ c1(z + 1) + c2

−
((

z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c1z + c2

)
= ln z

And distributing the negatives and simplifying a bit, we get

(
z +

1

2

)
ln(z + 1)− z − 1 +

1

12(z + 1)
+O

(
1

z3

)
+ c1z + c1 + c2

−
(
z − 1

2

)
ln(z) + z − 1

12z
+O

(
1

z3

)
− c1z − c2 = ln z

And simplifying more,(
z +

1

2

)
ln(z + 1)−

(
z − 1

2

)
ln(z) +

1

12(z + 1)
− 1

12z
+O

(
1

z3

)
+ c1 − 1 = ln z

Subtracting the ln z from the right side (being extremely careful of the minus signs everywhere of

course), and grouping terms together(
z +

1

2

)
(ln(z + 1)− ln(z)) +

1

12(z + 1)
− 1

12z
+O

(
1

z3

)
+ c1 − 1 = 0

Now as we take the limit as z goes to infinity, we get

lim
z→∞

(
z +

1

2

)
(ln(z + 1)− ln(z)) + c1 − 1 = 0
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Using log properties,

lim
z→∞

ln

(
1 +

1

z

)z+ 1
2

+ c1 − 1 = 0

And as one of the major definitions of e = limz→∞
(
1 + 1

z

)z
, the limit evaluates to

ln e+ c1 − 1 = 1 + c1 − 1 = c1 = 0

Plugging in c1

ln(Γ(z)) =

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c2

We still have the c2 constant, which we will figure out using Legendre’s Duplication Formula:

Γ(x)Γ

(
x+

1

2

)
=
√
π21−2xΓ(2x)

2.2 Legendre’s Duplication Formula
To prove the duplication formula, we first begin with our old friend, the gamma reflection formula.

Γ(z)Γ(1− z) =
π

sin(πz)
(2.1)

Secondly, we establish an identity for a product of sines:

n−1∏
k=1

sin

(
kπ

n

)
=

n

2n−1
(2.2)

The famous complex exponential formula gives us that eiθ = cos(θ) + i sin(θ). If we use −θ instead

of θ, we get e−iθ = cos(θ) − i sin(θ). If we subtract the second from the first, we get eiθ − e−iθ =

2i sin(θ)→ 1
2i (e

iθ − e−iθ) = sin(θ) and plugging in θ = kπ
n , we get

1

2i
(ei

kπ
n − e−i kπn ) = sin(

kπ

n
)

Plugging into the product above
n−1∏
k=1

1

2i
(ei

kπ
n − e−i kπn )

Manipulating, we get

1

2n−1

n−1∏
k=1

ei
kπ
n

i
(1− e−2i kπn )

12



We know from looking at roots of unity that

zn − 1 =

n∏
k=1

(z − e2i kπn )

where e2i kπn are the roots of unity, just like z4 − 1 = (z − 1)(z + 1)(z − 1)(z + i) =
∏4
k=1(z − e2i kπ4 )

where 1,−1, i,−i are the fourth roots of unity. Also, note that
∏n
k=1(z−e2i kπn ) =

∏n
k=1(z−e−2i kπn )

due to the symmetry of the unit circle; one goes clockwise from zero, one goes counterclockwise.

Rearranging the formula a bit, we get

zn − 1 =

n−1∏
k=1

(z − e−2i kπn ) · (z − e−2iπ)→ zn − 1 =

n−1∏
k=1

(z − e−2i kπn ) · (z − 1)

which we can write as
zn − 1

z − 1
=

n−1∏
k=1

(z − e−2i kπn )

Taking the limit as z → 1, using L’Hopital’s rule, we get

n =

n−1∏
k=1

(1− e−2i kπn )

Plugging in above, we get

n

2n−1

n−1∏
k=1

ei
kπ
n

i

n−1∏
k=1

ei
kπ
n

i
evaluates to

exp(
∑n−1
k=1

iπ
n (1 + 2 + 3 + . . .+ (n− 1)))

in−1

which is just

exp( iπn
n(n−1)

2 )

in−1
=

exp(iπ)(n−1
2 )

in−1
=

(−1)
n−1
2

in−1
=
in−1

in−1
= 1

And finally, going back to the beginning, we get

n−1∏
k=1

sin

(
kπ

n

)
=

n

2n−1

Now that we have all our identities written out, we will begin. We define a function f(x)

f(x) =

n−1∏
k=0

Γ

(
x+

k

n

)
(2.3)
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Multiplying by x and manipulating, we get

x f(x) = x

n−1∏
k=0

Γ

(
x+

k

n

)

= xΓ(x)

n−1∏
k=1

Γ

(
x+

k

n

)

= Γ(x+ 1)

n−2∏
k=0

Γ

(
x+

k + 1

n

)

= Γ

(
x+

(n− 1) + 1

n

) n−2∏
k=0

Γ

(
x+

k + 1

n

)

=

n−1∏
k=0

Γ

(
x+

k + 1

n

)

=

n−1∏
k=0

Γ

((
x+

1

n

)
+
k

n

)
= f

(
x+

1

n

)
Changing the variable x = x

n , we get

x

n
f
(x
n

)
= f

(
x+ 1

n

)
(2.4)

Multiplying nx+1 1

nf( 1
n )

on both sides

xnxf
(x
n

) 1

nf
(

1
n

) = nx+1f

(
x+ 1

n

)
1

nf
(

1
n

)
And if we set G(x) = nxf

(
x
n

)
1

nf( 1
n )

, we get that

xG(x) = G(x+ 1)

Which is the gamma function identity! This hints that G(x) = Γ(x). A fully rigorous proof of

G(x) = Γ(x) can be acheived through the Bohr-Mollerup Theorem, a theorem I will not prove in

this paper. We can set

Γ(x) = nxf
(x
n

) 1

nf
(

1
n

)
And manipulating, we get

f
(x
n

)
= nf

(
1

n

)
Γ(x)

nx
(2.5)

To find f
(

1
n

)
, we first find f2

(
1
n

)
.
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f2

(
1

n

)
=

n−1∏
k=1

Γ

(
1

n
+
k

n

)
Γ

(
1

n
+
k

n

)

where

n−1∏
k=1

Γ

(
k

n

)
=

n−1∏
k=0

Γ

(
1

n
+
k

n

)
because Γ(

(
n
n

)
= Γ(

(
1− 0

n

)
= 1 and

n−1∏
k=1

Γ

(
k

n

)
=

n−1∏
k=1

Γ

(
1− k

n

)
because of symmetry.

f2

(
1

n

)
=

n−1∏
k=1

Γ

(
k

n

)
Γ

(
1− k

n

)
Using the reflection formula, (1), we get

f2

(
1

n

)
=

n−1∏
k=1

π

sin(kπ/n)

Simplifying and using the product of sines, (2), we get

f2

(
1

n

)
=

1

n
2n−1πn−1

Square rooting and multiplying by the n in (5)

f
(x
n

)
=
√
n2n−1πn−1

Γ(x)

nx

and finally variable change x = nx, we get Gauss’s multiplication formula, or the generalized version

of the duplication formula

f(x) =

n−1∏
k=0

Γ

(
x+

k

n

)
=
√
n2n−1πn−1

Γ(nx)

nnx
(2.6)

Setting n = 2, we get the duplication formula.

Γ(x)Γ

(
x+

1

2

)
=
√
π21−2xΓ(2x)

2.3 The Grand Finale
Taking the natural log of the duplication formula

ln (Γ(x)) + ln

(
Γ

(
x+

1

2

))
= ln

√
π + ln(21−2x) + ln(Γ(2x))
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Taking our approximation of ln Γ(x) from Section 1

ln(Γ(z)) =

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c2

and pluggin it in the log duplication formula, we get

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c2

+ z ln(z +
1

2
)− z − 1

2
+

1

12z + 6
+O

(
1

z3

)
+ c2

= ln
√
π + ln(21−2x) +

(
2z − 1

2

)
ln(2z)− z +

1

24z
+O

(
1

z3

)
+ c2

Distributing and using log rules, we get

z ln(z)− 1

2
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c2

+ z ln(z +
1

2
)− z − 1

2
+

1

12z + 6
+O

(
1

z3

)
+ c2

= ln
√
π + (1− 2z) ln(2) +

(
2z − 1

2

)
ln(2) + 2z ln(z)− 1

2
ln(z)− 2z +

1

24z
+O

(
1

z3

)
+ c2

Simplifying,

z ln(z +
1

2
)− z ln(z)− 1

2
+O

(
1

z

)
+ c2 = ln

√
π +

1

2
ln(2)

Simplifying more,

ln

(
z + 1

2

z

)z
− 1

2
+O

(
1

z

)
+ c2 = ln

√
2π

And taking the limit as z →∞

ln
(
e

1
2

)
− 1

2
+ 0 + c2 = ln

√
2π → c2 = ln

√
2π

And putting everything back together, we have

ln(Γ(z)) =

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ ln
√

2π

And exponentiating both sides,

Γ(z) = zz−
1
2 · e−z · exp

(
1

12z
+O

(
1

z3

))
· eln

√
2π
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And simplifying, we get

Γ(z) =

√
2π

z

(z
e

)z
exp

(
1

12z
+O

(
1

z3

))

AND BECAUSE z! = zΓ(z), WE GET

z! =
√

2πz
(z
e

)z
exp

(
1

12z
+O

(
1

z3

))
≈
√

2πz
(z
e

)z

and we are done.
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Chapter 3

Prime numbers are notoriously difficult beasts to study. They appear rather unpredictably, some-

times appearing in bursts (e.g. twin primes) or sometimes not at all (e.g. 1000!+1, 2, 3, 4, . . . , 999, 1000).

Furthermore, they are purely discrete entities, so it’s not immediately obvious how we use the math-

ematical tools we’ve developed (calculus/analysis, mainly), which are mostly based on continuous

functions, to study them. However, there’s a particularly nice result that’s not too difficult to prove

that will serve nicely as an introduction to analytic number theory – Bertrand’s Postulate: there

must be at least one prime between any positive integer n and 2n.

3.1 Some Useful Functions & Identities
I will now introduce the star functions of the show. Just a note about notation: p is a prime number;

n, i, d, k ∈ Z+; and x ∈ R+. You might see me drop the 1 ≤ . . . on the bounds of sums sometimes,

but because we are only looking at positive integers in those bounds, the 1 ≤ . . . is implicitly there.

Let us define a function Λ(n) (the Von-Mangoldt function) as

Λ(n) =

ln(p) if n = pk (for some prime p and positive integer k)

0 otherwise

The first couple values of Λ(n) are

0, ln 2, ln 3, ln 2, ln 5, 0, ln 7, ln 2, ln 3, 0, ln(11), 0, ln(13), 0, 0, ln 2, ln(17)

In plain English, Λ(n) finds pure powers of primes and returns the log of the prime. As we will

see, the log allows us to multiply prime factors together by sum over values of Λ(n) because of the

property that ln a+ ln b = ln(ab).

Our next function, ϑ(x) (the first Chebyshev function), is defined as

ϑ(x) =
∑
p≤x

ln(p)
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The first couple values of ϑ(x) evaluated at the integers are

0, ln 2, ln 6, ln 6, ln(30), ln(30), ln(210), ln(210), ln(210), ln(210), ln(2310), ln(2310)

In other words, ϑ(x) = ln(product of all the primes ≤ x). Also, ϑ(x) is an increasing function.

Our last function, ψ(x) (the second Chebyshev function), is defined as

ψ(x) =

bxc∑
n=1

Λ(n) =

x∑
n=1

Λ(n) =
∑
n≤x

Λ(n) =
∑
pk≤x

ln(p) =
∑
i≥1

∑
pi≤x

ln(p)

The first couple values of ψ(x) evaluated at the integers are

0, ln 2, ln 6, ln(12), ln(60), ln(60), ln(420), ln(840), ln(2920), ln(2920), ln(32120), ln(32120)

The definition ψ(x) =
∑
i≥1

∑
pi≤x ln p in English means that ψ(x) = ln(the product of the highest

pure prime powers ≤ x for every prime). Another equivalent definition that you can verify for

yourself is the following:

ψ(x) = ln(LCM(all the integers from 1 . . . x))

Also, note that

lnn =
∑
d|n

Λ(d)

where
∑
d|n means that we sum over all d ∈ Z+ that divide n (all the divisors of n). The identity

makes sense because this is essentially just looking through the divisors of n, finding the pure prime

powers (the others go to 0), and multiplying the corresponding primes together. More explicitly, if

33 is the highest pure power of 3 divisor of n, then Λ makes note of 31, 32 and 33, a total of 3 times,

in essence finding the prime factorization of n.

Futhermore, you have probably noticed that ϑ(x) is pretty similar to ψ(x)
(∑

p≤x versus
∑
pk≤x

)
,

and naturally there’s a nice identity that relates them (the clever trick is to see that for p, x, i > 0,

p ≤ x1/i ⇐⇒ pi ≤ x):

exp

∑
i≥1

ϑ(x1/i)

 =
∏
i≥1

exp
(
ϑ(x1/i)

)
=
∏
i≥1

exp

 ∑
p≤x1/i

ln(p)

 =
∏
i≥1

∏
p≤x1/i

p

=
∏
i≥1

∏
pi≤x

p = exp

ln

∏
i≥1

∏
pi≤x

p

 = exp

∑
i≥1

∑
pi≤x

ln p

 = eψ(x)

which means that
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∑
i≥1

ϑ(x1/i) = ψ(x) (3.1)

Our final identity, building upon all our prior definitions and identities, is as follows:

ln(bxc!) = ln

 bxc∏
n=1

n

 =

bxc∑
n=1

ln(n) =
∑
n≤x

ln(n) =
∑
n≤x

∑
d|n

Λ(d) =
∑
n≤x

∑
dk=n

Λ(d)

=
∑
dk≤x

Λ(d) (i.e. summing over all distinct pairs (d, k) where dk ≤ x) =

x∑
k=1

∑
dk≤x

Λ(d)

=

x∑
k=1

 ∑
d≤x/k

Λ(d)

 =

x∑
k=1

ψ(x/k) =
∑
k≥1

ψ
(x
k

)

We can ignore the upper bound on k in the final equality because once k exceeds x, ψ(x/k) becomes

0 (just a little simplification to remove unnecessary information). The identity in its final form is

ln(bxc!) =
∑
k≥1

ψ
(x
k

)
(3.2)

3.2 Inequalities Galore!
Now that I’ve set things up, our goal is to establish certain inequalities on our three star functions

using functions we understand better. From equation (1) (ψ(x) =
∑
i≥1 ϑ(x1/i)), we get that

2ψ(x1/2) = 2
∑
i≥1

ϑ(x
1/2i)

Subtracting this from (1), all the even numbered terms turn negative as follows

ψ(x)− 2ψ(x1/2) = ϑ(x)− ϑ(
√
x) + ϑ( 3

√
x)− . . .

As I stated above, ϑ(x) is increasing, so for x > 1 and i < j, x1/i > x1/j =⇒ ϑ(x1/i) ≥ ϑ(x1/j).

For x ≤ 1, ϑ(x) and ψ(x) are 0. Thus the sum is an alternating series with the magnitude of the

terms decreasing. Visualizing this, we get something like this (it’s not exact, but you get the idea):

ϑ(x)− ϑ(
√
x)

ψ(x)− 2ψ(x1/2)

ϑ(x)− ϑ(
√
x) + ϑ( 3

√
x)

ϑ(x)
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From the figure (or just thinking about the fact that the series is alternating with the magnitude of

the terms decreasing), it’s clear that ϑ(x) is greater than ψ(x) − 2ψ(x1/2). Furthermore, we know

that

ϑ(x) =
∑
p1≤x

ln(p) ≤
∑
i≥1

∑
pi≤x

ln(p) = ψ(x)

so we have our first bounds on ϑ(x):

ψ(x)− 2ψ(x1/2) ≤ ϑ(x) ≤ ψ(x) (3.3)

Similarly, using equation (2), we can get that

ln(bxc!)− 2 ln
(⌊x

2

⌋
!
)

=
∑
k≥1

ψ
(x
k

)
− 2

∑
k≥1

ψ
( x

2k

)
= ψ(x)− ψ

(x
2

)
+ ψ

(x
3

)
− . . .

I’ll show a not-exact plot for reference:

ψ(x)− ψ
(
x
2

)
ln(bxc!)− 2 ln

(⌊
x
2

⌋
!
)ψ(x)− ψ

(
x
2

)
+ ψ

(
x
3

)ψ(x)

from which we can see clearly that

ψ(x)− ψ
(x

2

)
≤ ln(bxc!)− 2 ln

(⌊x
2

⌋
!
)
≤ ψ(x)− ψ

(x
2

)
+ ψ

(x
3

)
(3.4)

Now that we’ve established those two bounds, let’s use our beloved Gamma function Γ(x) to rework

some of the inequalities involving bxc! — keeping in mind that n! = Γ(n+ 1) = nΓ(n).

For x ≥ 1, Γ(x) is increasing: x ≤ y =⇒ Γ(x) ≤ Γ(y) (hence preserving inequalities), so

x− 1 ≤ bxc ≤ x =⇒ x ≤ bxc+ 1 ≤ x+ 1

=⇒ Γ(x) ≤ Γ(bxc+ 1) ≤ Γ(x+ 1)

=⇒ Γ(x) ≤ bxc! ≤ Γ(x+ 1)

The second half of the inequality applied to x
2 −

1
2 yields that for x ≥ 2,

Γ

(
1

2
x− 1

2

)
≤
⌊
x

2
− 1

2

⌋
! ≤ Γ

(
1

2
x+

1

2

)
Armed with these inequalities
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ln Γ(x+ 1)− 2 ln Γ

(
1

2
x+

1

2

)
≥ ln(bxc!)− 2 ln

(⌊x
2

⌋
!
)
≥ ln Γ(x)− 2 ln Γ

(
1

2
x+

1

2

)
as pictured below:

3.3 Stirling’s Approximation
Now that we have our inequalities all listed out, we can use Stirling’s Aprroximation. Recall that

nΓ(n) = n! =
√

2πn
(n
e

)n
Thus

Γ(n) =

√
2π

n

(n
e

)n
Using it in our first inequality,

1

2
ln

(
2π

n+ 1

)
+ (n+ 1) ln

(
n+ 1

e

)
− ln

(
4π

n+ 1

)
− (n+ 1) ln

(
n+ 1

2e

)
≥ ln(bnc!)− 2 ln

(⌊n
2

⌋
!
)

which is just

1

2
ln

(
n+ 1

8π

)
+ (n+ 1) ln 2 ≥ ln(bnc!)− 2 ln

(⌊n
2

⌋
!
)

Using it in our second inequality,

1

2
ln

(
2π

n

)
+ n ln

(n
e

)
− ln

(
4π

n+ 1

)
− (n+ 1) ln

(
n+ 1

2e

)
≤ ln(bnc!)− 2 ln

(⌊n
2

⌋
!
)

which is just

1

2
ln

(
(n+ 1)2

8πn

)
+ (n+ 1) ln

(
2n

n+ 1

)
− ln

(n
e

)
≤ ln(bnc!)− 2 ln

(⌊n
2

⌋
!
)

These two new bounds are easier to work with as they are just logarithmic functions compared

to Gamma functions; a bit of luck (or some graphing and deriving to ensure the difference the linear

and logarithmic bounds is increasing and thus will always enclose ln(bnc!)− 2 ln
(⌊
n
2

⌋
!
)
) will reveal

that for big enough x,

2

3
x < ln(bnc!)− 2 ln

(⌊n
2

⌋
!
)
<

3

4
x (3.5)
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3.4 Finale
From (5),

ψ(x)− ψ
(x

2

)
≤ ln(bxc!)− 2 ln

(⌊x
2

⌋
!
)
≤ ψ(x)− ψ

(x
2

)
+ ψ

(x
3

)
and from (6),

2

3
x < ln(bnc!)− 2 ln

(⌊n
2

⌋
!
)
<

3

4
x

which means that

ψ(x)− ψ
(x

2

)
<

3

4
x, and for x greater than say 200,

2

3
x < ψ(x)− ψ

(x
2

)
+ ψ

(x
3

)
(3.6)

Summing the first inquality over x values that half each time yields

ψ(x)− ψ
(x

2

)
+ ψ

(x
2

)
− ψ

(x
4

)
+ ψ

(x
4

)
− ψ

(x
8

)
+ . . . <

3

4
x+

3

8
x+

3

16
+ . . .

which means

ψ(x) <
3

2
x for x > 0 (3.7)

From (4),

ψ(x) ≥ ϑ(x) ≥ ψ(x)− 2ψ(x1/2)

Thus, we have

ψ(x) ≤ ϑ(x) + 2ψ(
√
x)

−ψ
(x

2

)
≤ −ϑ

(x
2

)
ψ
(x

3

)
= ψ

(x
3

)
Adding everything, we get that

ψ(x)− ψ
(x

2

)
+ ψ

(x
3

)
≤ ϑ(x) + 2ψ(

√
x)− ϑ

(x
2

)
+ ψ

(x
3

)
Using (8), we can simplify the inequality to be

ψ(x)− ψ
(x

2

)
+ ψ

(x
3

)
< ϑ(x)− ϑ

(x
2

)
+
x

2
+ 3
√
x

For large x, we can use the second inequality of (7)
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2

3
x < ϑ(x)− ϑ

(x
2

)
+
x

2
+ 3
√
x

which yields

ϑ(x)− ϑ(x/2) >
1

6
x− 3

√
x (3.8)

And from basic algebra and/or graphing

1

6
x− 3

√
x ≥ 0, if x ≥ 324, which is in fact large enough

we know that for x = 2n n ≥ 162,

ϑ(2n)− ϑ(n) > 0

WHICH MEANS THERE MUST BE A PRIME IN BETWEEN n AND 2n for n ≥ 162!!! We

can very easily verify that for n < 162, there is indeed a prime between n and 2n, thus proving once

and for all Bertrand’s Postulate!
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