The Γ Function and the Gaussian Integral

Daniel Rui

1 The Gaussian Integral

The Gaussian integral is defined to be:

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

Which is an integral seen often in statistics, because $f(x)=e^{-x^{2}}$ is the basis of the bell curve.

Because $e^{-x^{2}}$ is symmetrical across the y-axis,

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=2 \int_{0}^{\infty} e^{-x^{2}} d x
$$

Changing the variable $t=x^{2}$, we get $\frac{1}{2 \sqrt{t}} d t=d x$, and substituting back into the integral, we get

$$
2 \int_{0}^{\infty} e^{-t} \frac{1}{2 \sqrt{t}} d t=\int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} d t
$$

We know from the other paper (0.5 edition) that

$$
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} d t=\sqrt{\pi}
$$

And connecting the dots, we can conclude that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

