
CTY LIN: Markov Chains and the Google Ranking System

Daniel Rui

1 Matrices of Google

Reminders: In 1996, Google founders Sergey Brin and Larry Page developed the PageRank algo-

rithm, based on the amount of links and page has going to and from it. A page with many inbound

links is ranked higher, and a page that is off in the middle of nowhere will be ranked lower.

Note: The notation for the page rank, r(A), will be shortened to just A in this paper.

1.1 Finding PageRanks

We have the websites A, B, and C and their web of connections.

A

B

C

We see that

A = B +
1

2
C

B =
1

2
A+

1

2
C

C =
1

2
A

1



 0 1 0.5

0.5 0 0.5

0.5 0 0

 r⃗ = r⃗

−1 1 0.5

0.5 −1 0.5

0.5 0 −1

 r⃗ = 0⃗

We now row reduce this matrix:

−1 1 0.5

0.5 −1 0.5

0.5 0 −1

Flip R3 and R1 =

0.5 0 −1

0.5 −1 0.5

−1 1 0.5

R3 = R3 + 2R1, R2 = R2 −R1

=

0.5 0 −1

0 −1 1.5

0 1 −1.5

R3 = R3 +R2

=

0.5 0 −1

0 −1 1.5

0 0 0



This matrix tells us that 1
2A = C and B = 3

2C. If C = 2, then B = 3 and A = 4, giving us the

vector 43
2


But because the entries must add to one, we divide by 2 + 3 + 4 = 9 to get

4
9
3
9
2
9



The order of the pages on Google will be A,B,C.

2



1.2 Altered Transition Matrices

Sometimes, however, these matrices don’t always work. If a webpage only has inbound links, then

we’ll get trapped there eventually, as is in the case of the following diagram.

AB

D C

A = B

B =
1

2
A+

1

2
D

C =
1

2
A+

1

2
D

D = 0

Which has the matrix 
0 1 0 0

0.5 0 0 0.5

0.5 0 0 0.5

0 0 0 0

 r⃗ = r⃗

The column of zeroes is reflective of the problem of being trapped on webpage C. We can change

that by changing C to have outbound links to all pages including itself.

AB

D C

We can now build an altered transition matrix, based on the altered diagram

3



A = B +
1

4
C

B =
1

2
A+

1

2
D +

1

4
C

C =
1

2
A+

1

2
D +

1

4
C

D =
1

4
C

which has matrix 
0 1 0.25 0

0.5 0 0.25 0.5

0.5 0 0.25 0.5

0 0 0.25 0

 r⃗ = r⃗


−1 1 0.25 0

0.5 −1 0.25 0.5

0.5 0 −0.75 0.5

0 0 0.25 −1

 r⃗ = 0

An now we row reduce and solve for r⃗.
−1 1 0.25 0
0.5 −1 0.25 0.5
0.5 0 −0.75 0.5
0 0 0.25 −1

R2 = R1 + 2R2, R3 = R1 + 2R3

=


−1 1 0.25 0
0 −1 0.75 1
0 1 −1.25 1
0 0 0.25 −1

R3 = R2 +R3

=


−1 1 0.25 0
0 −1 0.75 1
0 0 −0.5 2
0 0 0.25 −1

R4 = R3 + 2R4

=


−1 1 0.25 0
0 −1 0.75 1
0 0 −0.5 2
0 0 0 0

R2 = 3R3 + 2R2, R1 = 2R1 +R3

=


−2 2 0 2
0 −2 0 8
0 0 −0.5 2
0 0 0 0

R2 =
1

2
R2, R1 =

1

2
(R1 +R2), R3 = 2R3

=


−1 0 0 5
0 −1 0 4
0 0 −1 4
0 0 0 0



4



We can write the solution space as 
A

B

C

D

 =


5D

4D

4D

D

 = D


5

4

4

1



We can set D to be the reciprocal of 5 + 4 + 4 + 1 = 14 to get the PageRank vector
5
14
4
14
4
14
1
14



1.3 Ralph’s Link Diagram

Given the link diagram,

A B

and that Ralph clicks on a random link every minute, after four minutes, he’s going to be on B.

After all, no matter the starting probability vector (in this case

[
2
3
1
3

]
), once Ralph gets to B (which

he will get to within 1 minute), he is trapped.

Now, given the more interesting problem, that Ralph will have a 50% chance of going to either A

or B once he lands on B, we realize this is just a clever set-up for the altered link diagram,

A B

A =
1

2
B

B = A+
1

2
B

We aren’t trying to find the PageRank vector this time, though. We are trying to find the probabily

vector, which means we have to interpret this as a probability matrix P̃ =[
0 0.5

1 0.5

]

5



Now, after four minutes, the probability vector v⃗ will just be the original probability vector

[
2
3
1
3

]
,

multiplied by P̃ four times.

v⃗ =

[
0 0.5

1 0.5

][
0 0.5

1 0.5

][
0 0.5

1 0.5

][
0 0.5

1 0.5

][
2
3
1
3

]

=

[
0 0.5

1 0.5

][
0 0.5

1 0.5

][
0 0.5

1 0.5

][
1
6
5
6

]

=

[
0 0.5

1 0.5

][
0 0.5

1 0.5

][
5
12
7
12

]

=

[
0 0.5

1 0.5

][
7
24
17
24

]

=

[
17
48
31
48

]

The probability that Ralph will be on page B after 4 minutes is 31
48 .

1.4 Circle of Links

If we have the link diagram

A

B

C

A = C

B = A

C = B

P̃ =

0 0 1

1 0 0

0 1 0



Allow us to define x⃗ =

0.20.3

0.5

. What happens when we multiply x⃗ with P̃?

6



P̃ x⃗ =

0 0 1

1 0 0

0 1 0


0.20.3

0.5

 =

0.50.2

0.3


P̃ 2x⃗ =

0 0 1

1 0 0

0 1 0


0.50.2

0.3

 =

0.30.5

0.2


P̃ 3x⃗ =

0 0 1

1 0 0

0 1 0


0.30.5

0.2

 =

0.20.3

0.5


We can see that the matrix P̃ just creates cycles between 3 states. Thus, ALL P̃nx⃗ for n ≡ 0 (mod 3)

will be

0.20.3

0.5

, and all P̃nx⃗ for n ≡ 1 (mod 3) will be

0.50.2

0.3

, and so on. Because 100 ≡ 1 (mod 3),

P̃ 100x⃗ =

0.50.2

0.3

.
P̃ kx⃗ will never approach r⃗ =


1
3
1
3
1
3

, because it will only oscillate, never approaching any one particular

value. Also, P̃ is not regular. There will always be 0’s, because all it does is shuffle the rows, and

the rows all have zeroes.

1.5 The Google Matrix

Reminders: Gα = αP + (1− α)M , where P is the transition matrix, and M is a matrix with each

entry as 1
n where n is the dimension of the matrix.

For the matrix above, we have G0.5 as

1

2


0 0 1

1 0 0

0 1 0

+
1

2


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 =


1
6

1
6

2
3

2
3

1
6

1
6

1
6

2
3

1
6



The vector


1
3
1
3
1
3

(r⃗) is also a steady-state vector of this Google matrix.

7




1
6

1
6

2
3

2
3

1
6

1
6

1
6

2
3

1
6




1
3
1
3
1
3

 =


1
18 + 1

18 + 4
18

4
18 + 1

18 + 1
18

1
18 + 4

18 + 1
18

 =


1
3
1
3
1
3



Also, G5
0.5x⃗ (same x⃗ as above), is very close to r⃗. Because the Google matrix is a regular stochastic

matrix, Gk
αx⃗ converges to the steady-state vector of Gα, which in this case is r⃗.

8


