CTY LIN: Markov Chains and the Google Ranking System

Daniel Rui

1 Matrices of Google

Reminders: In 1996, Google founders Sergey Brin and Larry Page developed the PageRank algorithm, based on the amount of links and page has going to and from it. A page with many inbound links is ranked higher, and a page that is off in the middle of nowhere will be ranked lower.

Note: The notation for the page rank, $r(A)$, will be shortened to just A in this paper.

1.1 Finding PageRanks

We have the websites A, B, and C and their web of connections.

We see that

$$
\begin{aligned}
A & =B+\frac{1}{2} C \\
B & =\frac{1}{2} A+\frac{1}{2} C \\
C & =\frac{1}{2} A
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 1 & 0.5 \\
0.5 & 0 & 0.5 \\
0.5 & 0 & 0
\end{array}\right] \vec{r}=\vec{r}} \\
& {\left[\begin{array}{ccc}
-1 & 1 & 0.5 \\
0.5 & -1 & 0.5 \\
0.5 & 0 & -1
\end{array}\right] \vec{r}=\overrightarrow{0}}
\end{aligned}
$$

We now row reduce this matrix:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
-1 & 1 & 0.5 \\
0.5 & -1 & 0.5 \\
0.5 & 0 & -1
\end{array}\right] \text { Flip } R_{3} \text { and } R_{1} } & =\left[\begin{array}{ccc}
0.5 & 0 & -1 \\
0.5 & -1 & 0.5 \\
-1 & 1 & 0.5
\end{array}\right] R_{3}=R_{3}+2 R_{1}, R_{2}=R_{2}-R_{1} \\
& =\left[\begin{array}{ccc}
0.5 & 0 & -1 \\
0 & -1 & 1.5 \\
0 & 1 & -1.5
\end{array}\right] R_{3}=R_{3}+R_{2} \\
& =\left[\begin{array}{ccc}
0.5 & 0 & -1 \\
0 & -1 & 1.5 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This matrix tells us that $\frac{1}{2} A=C$ and $B=\frac{3}{2} C$. If $C=2$, then $B=3$ and $A=4$, giving us the vector

$$
\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right]
$$

But because the entries must add to one, we divide by $2+3+4=9$ to get

The order of the pages on Google will be A, B, C.

1.2 Altered Transition Matrices

Sometimes, however, these matrices don't always work. If a webpage only has inbound links, then we'll get trapped there eventually, as is in the case of the following diagram.

$$
\begin{aligned}
A & =B \\
B & =\frac{1}{2} A+\frac{1}{2} D \\
C & =\frac{1}{2} A+\frac{1}{2} D \\
D & =0
\end{aligned}
$$

Which has the matrix

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0.5 & 0 & 0 & 0.5 \\
0.5 & 0 & 0 & 0.5 \\
0 & 0 & 0 & 0
\end{array}\right] \vec{r}=\vec{r}
$$

The column of zeroes is reflective of the problem of being trapped on webpage C. We can change that by changing C to have outbound links to all pages including itself.

We can now build an altered transition matrix, based on the altered diagram

$$
\begin{aligned}
A & =B+\frac{1}{4} C \\
B & =\frac{1}{2} A+\frac{1}{2} D+\frac{1}{4} C \\
C & =\frac{1}{2} A+\frac{1}{2} D+\frac{1}{4} C \\
D & =\frac{1}{4} C
\end{aligned}
$$

which has matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
0 & 1 & 0.25 & 0 \\
0.5 & 0 & 0.25 & 0.5 \\
0.5 & 0 & 0.25 & 0.5 \\
0 & 0 & 0.25 & 0
\end{array}\right] \vec{r}=\vec{r}} \\
& {\left[\begin{array}{cccc}
-1 & 1 & 0.25 & 0 \\
0.5 & -1 & 0.25 & 0.5 \\
0.5 & 0 & -0.75 & 0.5 \\
0 & 0 & 0.25 & -1
\end{array}\right] \vec{r}=0}
\end{aligned}
$$

An now we row reduce and solve for \vec{r}.

$$
\left[\begin{array}{cccc}
-1 & 1 & 0.25 & 0 \\
0.5 & -1 & 0.25 & 0.5 \\
0.5 & 0 & -0.75 & 0.5 \\
0 & 0 & 0.25 & -1
\end{array}\right] R_{2}=R_{1}+2 R_{2}, R_{3}=R_{1}+2 R_{3}
$$

$$
=\left[\begin{array}{cccc}
-1 & 1 & 0.25 & 0 \\
0 & -1 & 0.75 & 1 \\
0 & 1 & -1.25 & 1 \\
0 & 0 & 0.25 & -1
\end{array}\right] R_{3}=R_{2}+R_{3}
$$

$$
=\left[\begin{array}{cccc}
-1 & 1 & 0.25 & 0 \\
0 & -1 & 0.75 & 1 \\
0 & 0 & -0.5 & 2 \\
0 & 0 & 0.25 & -1
\end{array}\right] R_{4}=R_{3}+2 R_{4}
$$

$$
=\left[\begin{array}{cccc}
-1 & 1 & 0.25 & 0 \\
0 & -1 & 0.75 & 1 \\
0 & 0 & -0.5 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] R_{2}=3 R_{3}+2 R_{2}, R_{1}=2 R_{1}+R_{3}
$$

$$
=\left[\begin{array}{cccc}
-2 & 2 & 0 & 2 \\
0 & -2 & 0 & 8 \\
0 & 0 & -0.5 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] R_{2}=\frac{1}{2} R_{2}, R_{1}=\frac{1}{2}\left(R_{1}+R_{2}\right), R_{3}=2 I
$$

$$
=\left[\begin{array}{cccc}
-1 & 0 & 0 & 5 \\
0 & -1 & 0 & 4 \\
0 & 0 & -1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We can write the solution space as

$$
\left[\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right]=\left[\begin{array}{l}
5 D \\
4 D \\
4 D \\
D
\end{array}\right]=D\left[\begin{array}{l}
5 \\
4 \\
4 \\
1
\end{array}\right]
$$

We can set D to be the reciprocal of $5+4+4+1=14$ to get the PageRank vector

$$
\left[\begin{array}{c}
\frac{5}{14} \\
\frac{4}{14} \\
\frac{4}{14} \\
\frac{1}{14}
\end{array}\right]
$$

1.3 Ralph's Link Diagram

Given the link diagram,

and that Ralph clicks on a random link every minute, after four minutes, he's going to be on B. After all, no matter the starting probability vector (in this case $\left[\begin{array}{c}\frac{2}{3} \\ \frac{1}{3}\end{array}\right]$), once Ralph gets to B (which he will get to within 1 minute), he is trapped.

Now, given the more interesting problem, that Ralph will have a 50% chance of going to either A or B once he lands on B, we realize this is just a clever set-up for the altered link diagram,

$$
\begin{aligned}
& A=\frac{1}{2} B \\
& B=A+\frac{1}{2} B
\end{aligned}
$$

We aren't trying to find the PageRank vector this time, though. We are trying to find the probabily vector, which means we have to interpret this as a probability matrix $\tilde{P}=$

$$
\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]
$$

Now, after four minutes, the probability vector \vec{v} will just be the original probability vector $\left[\begin{array}{l}\frac{2}{3} \\ \frac{1}{3}\end{array}\right]$, multiplied by \tilde{P} four times.

$$
\begin{aligned}
\vec{v} & =\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{l}
\frac{1}{6} \\
\frac{5}{6}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{l}
\frac{5}{12} \\
\frac{7}{12}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0.5 \\
1 & 0.5
\end{array}\right]\left[\begin{array}{c}
\frac{7}{24} \\
\frac{17}{24}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{17}{48} \\
\frac{31}{48}
\end{array}\right]
\end{aligned}
$$

The probability that Ralph will be on page B after 4 minutes is $\frac{31}{48}$.

1.4 Circle of Links

If we have the link diagram

$$
\begin{gathered}
A=C \\
B=A \\
C=B \\
\tilde{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

Allow us to define $\vec{x}=\left[\begin{array}{l}0.2 \\ 0.3 \\ 0.5\end{array}\right]$. What happens when we multiply \vec{x} with \tilde{P} ?

$$
\begin{aligned}
& \tilde{P} \vec{x}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
0.2 \\
0.3 \\
0.5
\end{array}\right]=\left[\begin{array}{l}
0.5 \\
0.2 \\
0.3
\end{array}\right] \\
& \tilde{P}^{2} \vec{x}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
0.5 \\
0.2 \\
0.3
\end{array}\right]=\left[\begin{array}{l}
0.3 \\
0.5 \\
0.2
\end{array}\right] \\
& \tilde{P}^{3} \vec{x}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
0.3 \\
0.5 \\
0.2
\end{array}\right]=\left[\begin{array}{l}
0.2 \\
0.3 \\
0.5
\end{array}\right]
\end{aligned}
$$

We can see that the matrix \tilde{P} just creates cycles between 3 states. Thus, ALL $\tilde{P}^{n} \vec{x}$ for $n \equiv 0(\bmod 3)$ will be $\left[\begin{array}{l}0.2 \\ 0.3 \\ 0.5\end{array}\right]$, and all $\tilde{P}^{n} \vec{x}$ for $n \equiv 1(\bmod 3)$ will be $\left[\begin{array}{l}0.5 \\ 0.2 \\ 0.3\end{array}\right]$, and so on. Because $100 \equiv 1(\bmod 3)$, $\tilde{P}^{100} \vec{x}=\left[\begin{array}{l}0.5 \\ 0.2 \\ 0.3\end{array}\right]$.
$\tilde{P}^{k} \vec{x}$ will never approach $\vec{r}=\left[\begin{array}{c}\frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3}\end{array}\right]$, because it will only oscillate, never approaching any one particular value. Also, \tilde{P} is not regular. There will always be 0 's, because all it does is shuffle the rows, and the rows all have zeroes.

1.5 The Google Matrix

Reminders: $G_{\alpha}=\alpha P+(1-\alpha) M$, where P is the transition matrix, and M is a matrix with each entry as $\frac{1}{n}$ where n is the dimension of the matrix.

For the matrix above, we have $G_{0.5}$ as

$$
\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{lll}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{6} & \frac{1}{6} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{array}\right]
$$

The vector $\left[\begin{array}{c}\frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3}\end{array}\right](\vec{r})$ is also a steady-state vector of this Google matrix.

$$
\left[\begin{array}{ccc}
\frac{1}{6} & \frac{1}{6} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{array}\right]\left[\begin{array}{l}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{18}+\frac{1}{18}+\frac{4}{18} \\
\frac{4}{18}+\frac{1}{18}+\frac{1}{18} \\
\frac{1}{18}+\frac{4}{18}+\frac{1}{18}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right]
$$

Also, $G_{0.5}^{5} \vec{x}$ (same \vec{x} as above), is very close to \vec{r}. Because the Google matrix is a regular stochastic matrix, $G_{\alpha}^{k} \vec{x}$ converges to the steady-state vector of G_{α}, which in this case is \vec{r}.

