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1 The Gamma Function

Reminders: We can prove (using integraton by parts) that: Γ(x + 1) = xΓ(x) (It’s not even very

difficult to prove!)

This is one of the properties of the Gamma Function that tells us it is related to the factorial

function.

The gamma function is defined to be:

Γ(x) :=

∫ ∞

0

tx−1e−t dt = (x− 1)!

The whole purpose of the Gamma Function was to continuously define the factorial function for

all numbers. Technically, we should be able to find 1
2 !, also known as Γ

(
3
2

)
, but as you may have

guessed, this: ∫ ∞

0

√
te−t dt

is not a very easy integral to solve! And guess what we do in this paper? We figure it out.
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2 The Reflection Formula

Let’s begin with another introduction. This is the gamma reflection formula:

Γ(z)Γ(1− z) =
π

sin(πz)

With the gamma reflection formula, solving for 1
2 ! is really easy. Set z = 1

2 to get:

Γ

(
1

2

)
Γ

(
1− 1

2

)
=

π

sin(π2 )

so Γ( 12 )
2 = π, Γ( 12 ) =

√
π, and because Γ(x+ 1) = xΓ(x), Γ( 32 ) =

√
π
2 , so

1

2
! =

√
π

2

Now that we have established that we can find one half factorial from the reflection formula, we set

out to prove it.

2.1 Integration

First things first, we plug in numbers into the definition of the gamma function, but we use different

variables, in this case, t and s to allow combining the integrals together, which works because the s

integral is a ‘constant’ according the the t integral, and constants can be pulled inside, allowing us

to simplify two integrals into just one integral with two variables
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Γ(z)Γ(1− z) =

∫ ∞

0

sz−1e−s ds

∫ ∞

0

t(1−z)−1e−t dt

=

∫ ∞

0

(∫ ∞

0

sz−1e−s ds
)
t−ze−t dt

=

∫ ∞

0

∫ ∞

0

sz−1e−st−ze−t ds dt

=

∫ ∞

0

∫ ∞

0

sz−1

tz
e−(s+t) ds dt

=

∫ ∞

0

∫ ∞

0

sz−1

tz−1

1

t
e−(s+t) ds dt

We do a variable change u = s+ t and v = s
t . Notice that 1 + v = u

t , so
1+v
u = 1

t .

∫ ∞

0

∫ ∞

0

vz−1

u
(1 + v)e−u ds dt

In order to go from ds dt to du dv however,we have to do something fancier: the Jacobian

du dv = det

 ∂u
∂t

∂v
∂t

∂u
∂s

∂v
∂s

 ds dt

Where det means determinant and ∂ is just the partial derivative. For more info on Jacobians, visit

https://www.quora.com/What-is-an-intuitive-explanation-of-Jacobians-and-a-change-of-basis. Fill-

ing the matrix out, we get

du dv = det

 1 − s
t2

1 1
t

 ds dt
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Calculating, we get

du dv =
1

t
+

s

t2
ds dt

=
t+ s

t2
ds dt

= u
(1 + v)2

u2
ds dt

=
(1 + v)2

u
ds dt

And rearranging to be more useful,

1

1 + v
du dv =

1 + v

u
ds dt

and substituting back, we get ∫ ∞

0

∫ ∞

0

vz−1

1 + v
e−u du dv

Now that we have everything in u and v, we can pull the the integrals apart, the same way we

originally combined them ∫ ∞

0

vz−1

1 + v
dv

∫ ∞

0

e−u du

The u integral tells us that it goes to 1 (verify on your own), so all we have left is our v integral:

∫ ∞

0

vz−1

1 + v
dv

We can split it up into two integrals:

∫ 1

0

vz−1

1 + v
dv +

∫ ∞

1

vz−1

1 + v
dv

And then if we do b-substitution on the second integral where v = 1
b (so dv = −1

b2 db), we get:

∫ 0

1

b1−z

b+1
b

−1

b2
db =

∫ 0

1

b2−z

b+ 1

−1

b2
db =

∫ 1

0

b−z

b+ 1
db
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Now, we can rename b to v (yes, we can do that), to get:

∫ 1

0

vz−1

1 + v
dv +

∫ 1

0

v−z

v + 1
dv =

∫ 1

0

vz−1 + v−z

1 + v
dv

But 1
1+v can be represented as an infinite geometric series:

∞∑
n=0

(−v)n, and replacing the fraction

with the sum, we get: ∫ 1

0

vz−1 + v−z
∞∑

n=0

(−v)n dv

In the sum’s eyes, vz−1 + v−z is a constant because it doesn’t have any n’s in it, so we can pull it

inside: ∫ 1

0

∞∑
n=0

(vz−1 + v−z)(v)n(−1)n dv

But, the integral of the sum is the sum of the integrals!

∞∑
n=0

∫ 1

0

(vz−1 + v−z)(v)n(−1)n dv

In the integral’s eyes, the (−1)n is a constant because it doesn’t have any v’s:

∞∑
n=0

(−1)n
∫ 1

0

(vz−1 + v−z) vn dv

And distributing the vn . . .
∞∑

n=0

(−1)n
∫ 1

0

(vn+z−1 + v−z+n) dv

then integrating (power rule)

∞∑
n=0

(−1)n
(
vn+z

n+ z
+

v−z+n+1

−z + n+ 1

)∣∣∣∣∣
v=1

v=0
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and evaluating . . .
∞∑

n=0

(−1)n
(

1

n+ z
+

1

n+ 1− z

)

and then writing it out and shrinking it again (verify on your own)

1

z
+

∞∑
n=1

(−1)n
(

1

n+ z
+

1

n− z

)

We now take a step back, and look at another way to approach the problem: integrals of cosines.

2.2 Fourier Series

Fourier Series are all about representing any periodic function as
∞∑

n=0

an cos(nx). Let’s start with

cos(zx), where z ∈ ℜ and z is not necessarily an integer.

2.2.1 Trig Integration

Note: all following integrals without a dx should have a dx.

Trig flashback: recall that

cos2(x) + sin2(x) = 1

and

cos(α+ β) = cos(α)cos(β)− sin(α)sin(β)

Setting α = β = x, we get

cos(2x) = cos2(x)− sin2(x)

Adding the first equation and the one right above this sentence, we get

2cos2(x) = 1 + cos(2x)
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And simplifying, we get

cos2(x) =
cos(2x) + 1

2

Keep this in mind as we keep going.

Now the Fourier series, ∫ π

0

cos(zx)cos(nx) dx

Integration by parts (do this on your own) gives

1
ncos(zx)sin(nx)−

z
n2 cos(nx)sin(zx)

1− z2

n2

∣∣∣∣∣
x=π

x=0

If n and z are integers and n ̸= z, then everything is zero.

If n = z and n and z are integers, we get

∫ π

0

cos2(nx) dx =
1

2

∫ π

0

cos(2nx) + 1 dx

=
1

2

(
1

2
sin(2nx) + x

)∣∣∣∣π
0

=
π

2

If n is an integer and z not necessarily an integer, sin(nπ) will always be 0, and cos(nπ) will go

back and forth between −1 and 1, so we can replace it with (−1)n

−(−1)n
zsin(zπ)

n2 − z2

Splitting 1
n2−z2 into two fractions, we get 1

2z(n−z) −
1

2z(z+n) , and because n− z = −(z − n), we can

simplify

−(−1)nz sin(zπ)

(
− 1

2z(z − n)
− 1

2z(z + n)

)
=

1

2
(−1)nsin(zπ)

(
1

z − n
+

1

z + n

)
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To find the Fourier Series of cos(zx) we need to find an’s such that

cos(zx) := a0 cos(0x) + a1 cos(x) + a2 cos(2x) + . . .+ an cos(nx) + . . .

First, let’s find a0. Take cos(zx) := a0 cos(0x) + a1 cos(x) + a2 cos(2x) + . . .+ an cos(nx) + . . ., and

integrate it from 0 to π.

∫ π

0

cos(zx) =

∫ π

0

a0 cos(0x) +

∫ π

0

a1 cos(x) + . . .+

∫ π

0

an cos(nx) + . . .

but what is
∫ π

0
cos(nx) where n is an integer but not 0? It’s just 0! (Think graphically; all the peaks

cancel out the troughs)

∫ π

0

cos(zx) =

∫ π

0

a0 dx → 1

z
sin(zx)

∣∣∣∣π
0

= πa0

Evaluating, we get

a0 =
1

zπ
sin(zπ)

Next, let’s find an. First multiply everything by cos(nx)

cos(zx)cos(nx) = a0 cos(nx) + a1 cos(x)cos(nx) + . . .+ an cos(nx)cos(nx) + . . .

And then integrate from 0 to π

∫ π

0

cos(zx)cos(nx) =

∫ π

0

a0 cos(nx) +

∫ π

0

a1 cos(x)cos(nx) + . . .+

∫ π

0

an cos(nx)cos(nx) + . . .
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But remember the red stuff above? All the cos(integerx)cos(nx) are all zero!

∫ π

0

cos(zx)cos(nx) = 0 + 0+ . . .+

∫ π

0

an cos(nx)cos(nx) + . . .

But remember all the orange stuff above?

∫ π

0

cos(zx)cos(nx) = an
π

2

But remember all the turqoise stuff above?

1

2
(−1)nsin(zπ)

(
1

z − n
+

1

z + n

)
= an

π

2

And now, we have a formula for an where n > 0!

2

π

1

2
(−1)nsin(zπ)

(
1

z − n
+

1

z + n

)
= an =

1

π
(−1)nsin(zπ)

(
1

z − n
+

1

z + n

)

And now we just put it back in for the original Fourier series

cos(zx) =
1

zπ
sin(zπ) cos(0x)

+
1

π
(−1)1sin(zπ)

(
1

z − 1
+

1

z + 1

)
cos(x)

+
1

π
(−1)2sin(zπ)

(
1

z − 2
+

1

z + 2

)
cos(2x) + . . .

+
1

π
(−1)nsin(zπ)

(
1

z − n
+

1

z + n

)
cos(nx) + . . .

and setting x = 0, we get

1 =
1

zπ
sin(zπ) +

1

π
(−1)1sin(zπ)

(
1

z − 1
+

1

z + 1

)
+

1

π
(−1)2sin(zπ)

(
1

z − 2
+

1

z + 2

)
+ . . .

9



and FINALLY, multiplying by π and dividing by sin(πz), we get

π

sin(πz)
=

1

z
+ (−1)1

(
1

z − 1
+

1

z + 1

)
+ (−1)2

(
1

z − 2
+

1

z + 2

)
+ . . .

and writing in summation notation, we get

π

sin(πz)
=

1

z
+

∞∑
n=0

(−1)n
(

1

z − n
+

1

z + n

)

AND WHAT DOES THE RIGHT PART OF THIS EQUAL? WE SHOWED THAT IT EQUALS

Γ(z)Γ(1− z)!

Γ(z)Γ(1− z) =
π

sin(πz)

and at last, we are done.

10


