
A Dive into the Tracy-Widom Law via
Longest Increasing Subsequences

Daniel K. Rui - June 8, 2020

Abstract
Let Sn be the set of permutations of the numbers {1, . . . , n}. Define L(σ) to be the length of the

longest increasing subsequence in σ. Denote σn to be a random variable such that P (σn = σ) = 1
n!

for all σ ∈ Sn, and let `n := E[L(σn)]. The aim of this paper is to give a overview of the methods

used to arrive at the asymptotics of `n and L(σn) (→ and →p 2
√
n resp.), as well as numerical

data on the rate of convergence of appropriately scaled L(σn) to the limiting distribution F2, the

Tracy-Widom distribution, ending with a brief discussion on the universality of F2.

1 Setup

Let Sn be the set of permutations of the numbers [n] := {1, . . . , n} (and so |Sn| = n!). Let σ ∈ Sn be

one of the n! permutations, and define L(σ) = max{k ∈ [n] : σ has a length k increasing subsequence}
to be the length of the longest increasing subsequence in σ. For example, L((1, 2, 3)) = 3, L((3, 2, 1)) =

1, and L((1, 3, 2)) = 2. Similarly, define D(σ) to be the length of the longest decreasing subsequence.

If we consider σn to be a random variable such that P (σn = σ) = 1
n! for all σ ∈ Sn, then we can

define `n := E[L(σn)] = 1
n!

∑
σ∈Sn L(σ).

Lemma 1.1: Erdös - Szekeres

If we have n > rs for r, s ∈ N, then for any σ ∈ Sn, at least one of the following must be true:

L(σ) > r or D(σ) > s.

Proof idea: let Li(σ) and Di(σ) be the length of the longest increasing subsequence of σ ending

at the ith number. Then for all i ∈ {1, . . . , n − 1}, we know that Li(σ) < Li+1(σ), or Di(σ) <

Di+1(σ) (because the (i + 1)th number either greater or less than the ith number). Thus, the pairs

{(Li(σ), Di(σ))}ni=1 are all distinct (because going from one pair to the next, one of the two numbers

increases). Thus by the pigeonhole principle, it is impossible that L(σ) ≤ r and D(σ) ≤ s.

Lemma 1.2: First lower bound

For n ≥ 1, `n ≥
√
n

Proof idea: by Erdös - Szekeres (1.1), we have (for all σ ∈ Sn) that n ≤ L(σ)D(σ) (because otherwise

either L(σ) > L(σ), or D(σ) > D(σ), which is impossible). Then, because L and D are symmetrical

and by AM-GM, (recall that σn is a random variable),

`n =
E[L(σn)] + E[D(σn)]

2
= E

[
L(σn) +D(σn)

2

]
≥ E

[√
L(σn)D(σn)

]
≥ E

[√
n
]

=
√
n

1

Lemma 1.3: First upper bound

lim sup
n→∞

`n√
n
≤ e

Proof idea: refer to page 9 of Romik [9]

1.1 Hammersley’s convergence theorem
We now proceed to our first major theorem:

Theorem 1.1: Hammersley’s convergence theorem

The limit lim
n→∞

`n√
n

exists (denote it Λ), and L(σn)√
n
→p Λ as n→∞.

Proof idea: refer to pages 10-15 of Romik [9] (perhaps even Exercises 3,4 on page 71).

2 Tableaus

We will now discuss how to to compute L(σ); this in turn will lead delightfully into another form

of the problem from a more geoemtric perspective, which will in turn be analyzed using some deep

results from analysis. The algorithm we’ll start with is the patience sorting algorithm (name coined

by C.L. Mallows, algorithm due to A.S.C. Ross in the early 1960s [9]), where we take in a permutation

and put the numbers in stacks (where the TOPS of the stacks are aligned, and the bottoms allowed

to be jagged, looking like L, where the horizontal line is the top of the stacks, and the arrows are

pointing to the bottoms of each stack), according to the following rule:

� Given the ith number, say x, from the permutation and the stacks generated by that first i− 1

numbers from the permutation, place x in a new stack on the right if it is greater than all numbers

at the top of all previous stacks, and otherwise, on the top of the leftmost stack for which x is

less than the number at the top of the stack (pushing everything in the stack down).

The runnable code for this algorithm is given in the Appendix in Python (just copy-paste into any

Python editor/IDE, running Python 3.X); simply change the value of n to whatever you desire:

Lemma 2.1: Length of first row is L(σ)

The length of the first row of the resulting tableau is L(σ) (in the notation of the code above,

len(arr[0]) = L(σ))

Proof idea: given a longest increasing subsequence, each number must be in different column (they

can’t be in the same column because the only way for two numbers to be in the same column is if

the second one is smaller than the first, which is not the case when we are considering an increasing

subsequence). This proves ≥. To prove ≤, choose xs to be the top of the rightmost stack (stack

number s), and choose xs−1 to be the number at the top of stack number (s − 1) at the time we

inserted xs. Continue like this until we get to x1. Then {x1, . . . , xs} forms an increasing subsequence.

2

2.1 The Robinson-Schensted Algorithm
Unfornately, the patience sorting algorithm as it stands is not useful enough to allow us a way forward

in studying the problem. However, the Robinson-Schensted algorithm, which is a recursive variant

of the original patience sorting algorithm further arranges the numbers in a form (called the Young

tableau) that is more susceptible to attack. Let us first define formally what a Young tableau is:

� A Young diagram is a diagram with n boxes, with r rows (row 1 above row 2 and so on), where

the ith row has λi boxes, where λ1 ≥ . . . ≥ λr > 0 and λ1 + . . . + λr = n, and c columns (col

1 left of col 2 and so on), where the jth col has λ′j boxes, and where λ′1 ≥ . . . ≥ λc > 0 and

λ′1+. . .+λ′c = n. The shape of a Young diagram is encapsulated by any partition λ = (λ1, . . . , λr)

of n. In other words, λ =∈P(n), where P(n) is the set of (positive) integer partitions of n.

� A Young tableau is where one fills in the boxes of a Young diagram with the numbers {1, . . . , n}
such that the numbers in each row and column are increasing.

The Robinson-Schensted algorithm produces a Young tableau from any σ ∈ Sn as follows:

� Given the ith number, say x, from the permutation and the stacks generated by that first i− 1

numbers from the permutation, place x in a new stack on the right if it is greater than all numbers

at the top of all previous stacks, and otherwise, on the top of the leftmost stack for which x is

less than the number at the top of the stack, NOT by pushing everything down, but instead by

evicting the number that used to be in the top of that stack.

� With the evicted number a, we perform the above step except instead of looking at row 1, we

look at row 2; i.e., if a is greater than all the numbers on row 2, then we place a in the leftmost

empty spot on row 2. Otherwise, we find the leftmost number in row 2 that a is less than, and

evict that number and put a in its place.

� We continue evicting numbers and moving down rows (creating a new row if need be). Once

everything is settled, we move on to the (i+1)th number in the permutation and again insert/evict

row by row, until we’ve put all the numbers from the permutation into the structure.

The Python code for this is given in the Appendix. We will not prove that the outputs of the algorithm

are Young tableau here, though rest assured it is true.

To allow for this algorithm to have an inverse, we must have some sort of structure to keep track of

what changes; that structure being another Young tableau (of the same shape). We call these two

tableaux the insertion tableau P (above) and the recording tableau Q.

� To make the recording tableau, simply place the number i in the exact same spot in the recording

tableau that the Robinson-Schensted algorithm places the number xi (the ith number of the

permutation) in the insertion tableau.

� Given P and Q generated by some σ ∈ Sn, we can find xn (the last number in the permutation)

by noting where n is in Q, finding that spot in P , and backtracking row by row (because once

we have a number on say row j that we know was evicted, then we can find the number on row

j − 1 that evicted it), until we get down to row 1. More precise details are in the code.

3

The Python code for this is given in the Appendix. We will not prove that given any two Young

tableaux of size n, this algorithm does in fact give σ that generates such tableaux (though an approach

could be by induction). Notice that the first row generated by the R-S algorithm and patience sorting

are the same, and so Lemma 2.1 says that L(σ) = λ1.

2.2 Tableau Shapes and Partitions
Define dλ (referred to as the “dimension” of λ) as the number of Young tableaus with shape λ. To

rephrase the algorithms from the previous section as a theorem, we have

Theorem 2.1: Robinson-Schensted correspondence

As we saw, the Robison-Schensted algorithm maps a σ ∈ Sn to a pair of Young tableaux

(P,Q) of the same shape, and the inverse R-S algorithm maps pairs (P,Q) to σ ∈ Sn. More

importantly, the R-S algorithm and its inverse form a bijection between Sn and the set of pairs

of size-n Young tableaux.

Proof idea: from any σ ∈ Sn, we can generate exactly one pair of tableaux P,Q (via the Robinson-

Schensted algorithm), and for any pair of Young tableaux P,Q, we can generate exactly one permu-

tation σ (by the inverse algorithm), where we furthermore know that σ generates exactly P,Q.

An easy consequence of Theorem 2.1 is that
∑
λ∈P(n) d

2
λ = n!. Define the random variable λ(n)(ω) to

be the shape of the Young tableau generated by σn(ω) for all ω ∈ Ω, the original probability space of

σn. The above summation formula tells us that P (λ(n) = λ) =
d2λ
n! for all λ ∈P(n); this probability

measure on the set P(n) is referred to as Plancherel measure (originally discovered by M. Plancherel

in the early 1900s arising in the context of representation theory [9])

2.3 The Hook-Length Formula
From before, we’ve given λ ∈P(n) the meaning of “a tuple of positive integers representing a partition

of n” and “the shape of a Young tableau”. We will now give it another meaning: “the set of all (i, j)

such that the j ∈ {1, . . . , λi}” (i.e the set of coordinates for all the boxes in the tableaux). Define the

hook Hλ(i, j) to be “ ¬”-shaped region of cells in the Young tableau with shape λ, where the corner

of the “ ¬” is the cell (i, j) (the jth box on the ith row), and where the arms extend as far as they

can go (so the horizontal arm goes from column j to column c, and the vertical arm goes from row i

to row r), and define hλ(i, j) = |Hλ(i, j)| to be the the number of cells in Hλ(i, j).

Lemma 2.2: The hook-length formula

For any λ ∈P(n),

dλ =
n!∏

(i,j)∈λ hλ(i, j)

Proof idea: refer to pages 26-30 of Romik [9].

4

3 Limiting Shapes and Λ = 2

In the past section, we’ve transformed the problem from asking about the length of the longest

increasing subsequence in a random permutation, to the length of the first row of a random Young

diagram (chosen according to Plancherel measure). In fact, we will prove a much stronger result than

just about the first row; we will determine the limiting shape of the entire Young diagram. However,

we only give the barest of outlines for these next sections; the material introduced prior (such as the

Robinson-Schensted correspondence) will come up later in the paper in further inquiries beyond the

longest increasing subsequence problem (albeit in a tangential way), while the material in the next

sections are specific to this problem, and hence not as important to cover in detail. We first define a

space on which to study these functions:

Definition 3.1: the space of continual Young diagrams

Let F be the space of function f : [0,∞)→ [0,∞) satisfying:

� f is weakly decreasing (non-increasing)

�

∫∞
0
f(x) dx = 1 (scaling shapes to look about the same for all n instead of growing bigger)

� f has compact support: sup{x ≥ 0 : f(x) > 0} <∞

For a random λ ∈P(n) (again distributed according to Plancherel measure), define φλ ∈ F by

φλ(x) =
1√
n
λ′bx
√
nc+1

where we scale the horizontal and vertical axes by 1/
√
n to get an area of 1 (recall the usage of λ′ from

the definition of Young tableau; this style of representing Young tableaux is called the French style,

which is the vertical flip of the English style we’ve been using). Now for any f ∈ F, as an analogue

to the hook-length hλ(i, j) above, define

hf (x, y) = f(x)− y + f−1(y)− x = f(x)− y + (inf{x ≥ 0 : f(x) ≤ y})− x

Then, we have that

Lemma 3.1: Asymptotic hook-length formula

Uniformly over all λ ∈P(n) and as n→∞,

P (λ(n) = λ) =
d2
λ

n!
= exp

[
−n
(

1 + 2Ihook(φλ) + O

(
log n√
n

))]
where

Ihook(f) =

∫ ∞
0

∫ f(x)

0

log hf (x, y) dy dx

Proof idea: refer to pages 36-39 of Romik [9].

5

The correct thing to do at this point turns out to be to find f such that Ihook(f) is minimized

(intuitively, this finds f such that the exponential expression above that relates to P (λ(n) = λ)

is maximized, something we would want to have because of the heuristic that the behavior of the

random model with asymptotically high probability is close to the behavior that is most likely, where

the exponential expression above can be thought of as a likelihood “measure” over F — further

discussion of this can be found on pages 39-40 of Romik [9]). We will change the coordinates once

more (the inverse of f in the definition of hf is quite troublesome) by rotating counter-clockwise by

45 degrees (this coordinate system is referred to as the Russian style); i.e. we take

u =
x− y√

2
, v =

x+ y√
2

and f(x) = y ⇐⇒ v = g(u) ⇐⇒ v − u√
2

= f

(
v + u√

2

)
where g is the transformed version of f . The transformed version G of the space F is defined on page

43 of Romik [9]. Our hook integral formula can then be expressed as

Ihook(f) =
1

2

∫∫
−∞<t<s<∞

log(
√

2(s− t))(1 + g′(t))(1− g′(s)) dtds

Furthermore, defining h(u) = g(u) − |u| (and the corresponding transformed version H of the space

G), we can write

2Ihook(f) = log 2 +Q(h) + L(h) =: J(h)

for

Q(h) = −1

2

∫ ∞
−∞

∫ ∞
−∞

log |s− t|h′(t)h′(s) dtds and L(h) = −2

∫ ∞
−∞

h′(u)(u log |u| − u) du

Minimizing Ihook(f) on F is now equivalent to minimizing J(h) on H.

Theorem 3.1: Minimizer of J

The function h0 ∈H:

h0(u) =


2
π

(
u arcsin(u√

2
) +
√

2− u2
)
− |u| for |u| ≤

√
2

0 otherwise

minimizes J on H. Furthermore, for any h ∈H,

J(h) ≥ J(h0) +Q(h− h0)

where Q ≥ 0 on H, with equality iff h = 0 (so h0 is the unique minimizer). Lastly, J(h0) = −1.

Proof idea: refer to pages 47-55 of Romik [9]

For the random partition λ(n) (chosen according to Plancherel measure), we already have φλ(n) ∈ F,

so define ψλ(n) ∈ G to be the rotated version of φλ(n) . Define the norm ||h||Q =
√
Q(h). Then, we

6

have the following very beautiful theorem:

Theorem 3.2: The limiting shape

Define

Ω(u) =


2
π

(
u arcsin(u√

2
) +
√

2− u2
)

for |u| ≤
√

2

|u| otherwise

Then we have P (||ψλ(n) −Ω||Q > ε)→ 0 as n→∞. Moreoever, the convergence is not only in

the norm dQ, it is also in the sup-norm || • ||∞, i.e. for any ε > 0, as n→∞,

P

(
sup
u∈R
|ψn(u)− Ω(u)| > ε

)
→ 0

Proof idea: for any λ ∈ P(n), we have φλ ∈ F, so let gλ ∈ G to be the transformed φλ, and let

hλ = gλ − |u|. Let Mn be the set of λ ∈ P(n) satisfying ||gλ − Ω||Q =
√
Q(hλ − h0) > ε. From

Theorem 3.1, J(hλ) ≥ −1 +Q(hλ − h0) > −1 + ε2. Then from Lemma 3.1,

P (λ(n) = λ) ≤ exp[−ε2n+ O(
√
n log n)]

By a loose bound on the partition function, |Mn| ≤ |P(n)| ≤ CeC
√
n for some constant C > 0, so

P (λ(n) ∈Mn) =
∑
λ∈Mn

P (λ(n) = λ) ≤ C exp[−ε2n+ C
√
n+ O(

√
n log n)]

which tends to 0 as n→∞. The extension to the sup norm relies on the fact that ||f ||∞ ≤ C(Q(f))1/4

for a certain class of f ; refer to pages 57-60 of Romik [9].

With the limit-shape theorem, we get the following bound for Λ (from all the way back in Theorem

1.1):

Lemma 3.2: Λ ≥ 2

Λ ≥ 2

Proof idea: follows shortly from Theorem 3.2; refer to page 62 of Romik [9] for details.

3.1 Λ ≤ 2

The inequality in the other direction requires a bit more work, involving a new concept called the

Plancherel growth process. This is the main result, from which Λ ≤ 2 follows immediately:

Theorem 3.3: `n growth bound

`n − `n−1 = E
[
λ

(n)
1 − λ(n−1)

1

]
≤ 1√

n

7

Proof idea: refer to pages 65-68 of Romik [9].

Lemma 3.3: Λ ≤ 2

Λ ≤ 2

Proof idea: Theorem 3.3 and induction.

Thus concludes the theorem of A. Vershik, S. Kerov, and independently B.F. Logan, L.A. Shepp of

1977. For the history surrounding this problem, take a look at pg. 6 of Romik [9] for the events

preceding this theorem, and pg. 80 (with the note on pg. 336) for the events since.

4 Tracy-Widom, an Introduction

The Tracy-Widom distribution was first studied by Tracy and Widom in the context of random matrix

theory; they considered the Gaussian Unitary Ensemble (GUE) model of random Hermitian matrices

M , where the values on the diagonal Mi,i are i.i.d. Normal(0,1) random variables, and the values

above the diagonal are Mj,i + iM ′j,i where the Mj,i,M
′
j,i are all independent (and independent of all

the Mi,i), and distributed Normal(0, 1
2). For an n× n GUE matrix, the largest eigenvalue grows like√

2n, and has standard deviation O(n−1/6) [6], and so it seems sensible to define:

Definition 4.1: the Tracy-Widom distribution

The distribution function F2 known as the Tracy-Widom distribution can be defined (pg. 7 of

[6]) as

F2(x) = lim
n→∞

P
(√

2n1/6
(
λmax −

√
2n
)
≤ x

)
To see more about where the constants come from (for example, the factor of

√
2 that remains un-

explained), it may be instructive to look at a textbook cited in Tracy and Widom’s 1994 paper [10],

Mehta’s “Random Matrices”, 2nd edition, published in 1990 [8], which already had hints of the Airy

kernel (defined on the next page) as relating to the max eigenvalue problem; see in particular the

scaling/shifting transformation done to the joint p.d.f. of the eigenvalues of the GUE matrix on page

64 (explained in more detail on page 59) for some ideas regarding the motivation behind scaling λmax

the way we did in the definition of F2; and chapter 18 (pages 372 to 376) for the hints about the Airy

kernel (for ease of reference, one should know that the notation σN is defined on page 72).

For more explicit development of the hints Mehta provided in his 2nd edition, one can take a look at

chapter 24 of his 3rd edtion [7], published 2004, where he includes the results of Tracy and Widom

from later that decade, a natural extension of where he left off in chapter 18 of the 2nd edition. In

fact, this translation of the question about max eigenvalues to Fredholm determinants of the Airy

kernel is “natural” enough (i.e. it seems that the Airy approach has fewer “arbitrary” constants) to

consider defining the Tracy-Widom distribution using the Airy kernel. Romik does exactly this in his

book [9]:

8

Definition 4.2: the Tracy-Widom distribution, Airy version

Let Ai(x) denote the Airy function

Ai(x) =
1

π

∫ ∞
0

cos
(

1
3 t

3 + xt
)

dt,

otherwise known as the unique (up to scalar multiple) solution of the differential equation

y′′ = xy satisfying y → 0 as x→∞. Define the Airy kernel A : R× R→ R to be

A(x, y) =


Ai(x) Ai′(y)−Ai′(x) Ai(y)

x−y if x 6= y

Ai′(x)2 − xAi(x)2 if x = y

The Tracy-Widom distribution function F2 can be defined (pg. 81 of Romik [9]) as

F2(t) = 1 +

∞∑
n=1

(−1)n

n!

∫ ∞
t

. . .

∫ ∞
t

n

det
i,j=1

(
A(xi, xj)

)
dx1 . . . dxn =: det(I−A)

The det(I−A) refers to the Fredholm determinant, which Romik motivates in section 2.4 [9] (titled

“Discrete Determinantal Point Processes”) by considering determinants involving kernels K : Ω×Ω→
R, key pages being end-of-page 92 to 93 (for the case where Ω is finite), end-of-page 96 to 97, end-of-

page 98 to 99 (for the case where Ω is countable), and page 144 (for the case where Ω is uncountable,

like in the case of the Airy kernel A).

The other major definition of the Tracy-Widom distribution (also discovered by Tracy and Widom

in their 1994 paper [10]) is that F2(t) = exp(−
∫∞
t

(x − t)q2(x) dx) where q : R → R is the unique

solution to q′′(t) = tq(t) + 2q3(t) (a special case of the Painléve II differential equation) also satisfying

q(t) ∼ Ai(t) as t→∞ [9].

Other discoveries about the Tracy-Widom distribution include that its p.d.f. is log-concave for x ≥ 0

(proof, credited to P. Deift, appearing in a paper by M. Bóna, M. Lackner, and B. E. Sagan published

in 2017 [3]), and that it is not infinitely divisible (proof by J. A. Domı́nguez-Molina also in 2017 [5]).

5 Baik-Deift-Johansson

In 1998, two decades after Logan-Shepp and Vershik-Kerov proved that E[L(σn)] ∼ 2
√
n, and about

five years after Tracy-Widom published their results on the properties of F2, J. Baik, P. Deift, and K.

Johansson found the precise limiting distribution of the fluctuations of L(σn) around its mean:

Theorem 5.1: the Baik-Deift-Johansson theorem

As n→∞,

P

(
L(σn)− 2

√
n

n1/6
≤ x

)
→ F2(x),

9

Within a year, this result was strengthened (with three different proofs [9], by Okounkov, Borodin-

Olshanski-Okounkov, and Johansson) to not only deal with L(σn) (the length of the first row of the

Young tableau), but also the lengths of all the other rows. To state it, we first have to define several

things:

� A random point process on R is any random locally finite subset X of R (i.e. a locally finite

collection of points in R). Romik admits that this is not very formal, but he suggests thinking

of X as some kind of random variable with values as sets of points in R, for which one can

begin asking questions like “what’s the probability that exactly k ∈ Z≥0 points of X fall in some

interval I”.

� For such an X, define for every n ∈ N its n-point correlation function ρ
(n)
X : Rn → [0,∞) as

ρ
(n)
X (x1, . . . , xn) = lim

ε↘0

P
([

#{X ∩ [x1 − ε, x1 + ε]} = 1
]
∩ . . . ∩

[
#{X ∩ [xn − ε, xn + ε]} = 1

])
(2ε)n

� Such a process X is determinantal if there is some correlation kernel K : R × R → R such that

for all n ∈ N,

ρ
(n)
X (x1, . . . , xn) =

n

det
i,j=1

(
K(xi, xj)

)
The Airy ensemble XAiry is the determinantal process with correlation kernel A(x, y) (the Airy kernel);

that is to say,

ρ
(n)
XAiry

(x1, . . . , xn) =
n

det
i,j=1

(
A(xi, xj)

)
We can label the random elements of X in decreasing order, so have that

XAiry = {ζ1, ζ2, . . . : ζ1 > ζ2 > . . .}

(the inequalities are almost always strict). Then, we have the following theorem:

Theorem 5.2: the Borodin-Okounkov-Olshanski-Johnasson theorem

For all n ∈ N, let λ(n) denote a random partition of n, chosen according to Plancherel measure

of order n, and let λ
(n)
j denote the jth number in the partition (when in decreasing order),

or equivalently the length of its jth row (when thinking in Young tableux). Denote λ̄
(n)
j =

n−1/6(λ
(n)
j − 2

√
n). Then for all k ∈ N, we have that as n→∞,

(λ̄
(n)
1 , . . . , λ̄

(n)
k)→d (ζ1, . . . , ζk)

Proof idea: refer to Chapter 2 of Romik [9]

6 Rate of Convergence to Tracy-Widom

We now know that lengths of the longest increasing subsequence in a random permutation (appropri-

ately scaled) converge to the Tracy-Widom distribution. But how fast does it converge? Unfortunately,

10

I could not find any work regarding this question online, either numerical or analytic, so I wrote a

little program (see the Appendix) to get some numerical data, generated as follows: for a selected

n, we have 1000 random permutations σn,1, . . . , σn,1000, and we calculate the empirical distribution

function with m samples as:

F̂
(n,m)
2 (t) =

1

m

m∑
i=1

1(−∞,t]

(
L(σn,i)− 2

√
n

n1/6

)

where 2 is chosen as the subscript because of the relation with the Tracy-Widom distribution F2. The

plots for selected n and m ∈ {200, 400, 600, 800, 900, 1000} are shown below:

4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

true F
empirical F with 200 samples
empirical F with 400 samples
empirical F with 600 samples
empirical F with 800 samples
empirical F with 900 samples
empirical F with 1000 samples

n=100

4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

true F
empirical F with 200 samples
empirical F with 400 samples
empirical F with 600 samples
empirical F with 800 samples
empirical F with 900 samples
empirical F with 1000 samples

n=1000

4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

true F
empirical F with 200 samples
empirical F with 400 samples
empirical F with 600 samples
empirical F with 800 samples
empirical F with 900 samples
empirical F with 1000 samples

n=10000

4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

true F
empirical F with 200 samples
empirical F with 400 samples
empirical F with 600 samples
empirical F with 800 samples
empirical F with 900 samples
empirical F with 1000 samples

n=50000

4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

true F
empirical F with 200 samples
empirical F with 400 samples
empirical F with 600 samples
empirical F with 800 samples
empirical F with 900 samples
empirical F with 1000 samples

n=100000

4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

true F
empirical F with 200 samples
empirical F with 400 samples
empirical F with 600 samples
empirical F with 800 samples
empirical F with 900 samples
empirical F with 1000 samples

n=1000000

11

For any one of the selected n and m = 1000, we calculate the maximum deviation, ||F̂ (n,1000)
2 −F2||∞

and store it in a table. The tables below show the data from 10 trials for selected n:

n values trial 1 trial 2 trial 3 trial 4 trial 5

100 0.232492 0.224492 0.257492 0.240492 0.247492

500 0.164099 0.1708562685 0.1738562685 0.169099 0.173099

1000 0.152097 0.140792 0.142097 0.155097 0.145792

2000 0.127573 0.168315 0.097573 0.146315 0.161315

5000 0.1424330859 0.1334330859 0.1164330859 0.116665 0.1274330859

10000 0.1293925005 0.132847 0.107847 0.094296 0.123296

20000 0.079363 0.103115 0.103363 0.099115 0.116363

50000 0.08991884911 0.09564399275 0.08268884694 0.064172 0.09391884911

100000 0.0585 0.089862 0.06791884911 0.05296129954 0.075097

1000000 0.054363 0.045388 0.044157 0.061256 0.056363

n values trial 6 trial 7 trial 8 trial 9 trial 10

100 0.241492 0.250492 0.237492 0.271492 0.234492

500 0.1818562685 0.1638562685 0.1608562685 0.1758562685 0.192099

1000 0.152792 0.186097 0.165097 0.158097 0.135097

2000 0.133315 0.138315 0.135573 0.146315 0.1399541541

5000 0.1224330859 0.110665 0.1324330859 0.117665 0.1124330859

10000 0.087847 0.102847 0.09839250052 0.095847 0.09339250052

20000 0.0730574721 0.0800574721 0.089115 0.088363 0.123296

50000 0.10595 0.071172 0.07995104406 0.080513 0.08368884694

100000 0.0705 0.074862 0.07991884911 0.077862 0.06082937754

1000000 0.052157 0.065211 0.049157 0.036256 0.050157

The table below shows the mean maximum deviation over the 10 trials for each n. The graph on

the next page plots the data from all 10 trials (in varying colors), along with the mean data (in bold

black) in a log-log plot, along with the trendline for the mean data (in bold gray).

n values mean of 10 trials

100 0.243792

500 0.1725533611

1000 0.1533055

2000 0.1394563154

5000 0.1232026601

10000 0.1066004502

20000 0.09552079442

50000 0.08476174289

100000 0.07083113753

1000000 0.0514465

12

n
va

lu
es

0.
04

0.
06

0.
080.

1

0.
2

10
0

10
00

10
00

0
10

00
00

10
00

00
0

m
ea

n
of

 1
0

tri
al

s

0.
49

9x
^-

0.
16

6
R

² =
 0

.9
96

tri
al

 1

tri
al

 2

tri
al

 3

tri
al

 4

tri
al

 5

tri
al

 6

tri
al

 7

tri
al

 8

tri
al

 9

tri
al

 1
0

su
p

no
rm

 o
f e

m
pi

ric
al

 F
 w

ith
 1

00
0

sa
m

pl
es

 -
tr

ue
 F

13

Although the data for each trial varies widely (especially as n increases), the data averaged together

shows a strong linear (in the log-log scaling) correlation between the n values and the maximum de-

viation (the correlation coefficient between the mean data and its trendline is quite high). The line

of best fit (in the log-log scaling) is very close to 1
2n

1/6.

A reasonable conjecture would be to say that the true distribution function for a given n, F
(n)
2 (i.e.

calculated using all n! permutations instead of just m samples of random permutations ∈ Sn) satisfies

||F (n)
2 − F2||∞ ∼ 1

2n
1/6, or at the very least ||F (n)

2 − F2||∞ ≈ 1
2n

1/6 or ||F (n)
2 − F2||∞ = O(n1/6).

However, one should keep in mind that these are simply guesses based upon the data up to n = 106,

which is not a very big number at all.

7 Universality of Tracy-Widom

Although the longest increasing subsequence problem is interesting and its relation to F2 deep, the

most important thing about the Tracy-Widom distribution is its yet-fully-understood ubiquitous na-

ture. Deift [4] gives seven problems (the first of which is a physics problem, so I won’t be talking

about it), whose solutions end up involving the Tracy-Widom distribution in some form:

� Assuming the Riemann hypothesis, H. Montgomery in the early 1970’s discovered that given the

imaginary parts γ1 ≤ γ2 ≤ . . . of the zeroes { 1
2 + iγk} of the Riemann zeta function above the

real axis, one can rescale them:

γk 7→
γk log γk

2π
=: γ̃k

so that the mean spacing approaches 1:

lim
T→∞

#{k ≥ 1 : γ̃k ≤ T}
T

= 1

and get that

lim
N→∞

∑
1≤i 6=j≤N

f(γ̃i − γ̃j) =

∫
R
f(r)

(
1−

(sin(πr)

πr

)2
)

dr

for any rapidly decaying function f whose Fourier transform f̂(ξ) is supported in the interval

|ξ| < 2. Moreover, if one could prove this for all smooth rapidly decaying functions f , and define

the two-point correlation function

R(a, b) = lim
N→∞

1

N
#{(k1, k2) : k1 6= k2, 1 ≤ k1, k2 ≤ N, γ̃k1 − γ̃k2 ∈ (a, b)}

(where (k1, k2) is an ordered pair while (a, b) is an interval), then one would have

R(a, b) =

∫ b

a

1−
(sin(πr)

πr

)2

dr

which is the exactly formula of the two-point correlation function of the eigenvalues of a random

GUE matrix.

14

� The longest increasing subsequence problem we’ve been talking about, plus variants of it. For

example, consider S
(inv)
n , the set of involutions in Sn, which has a corresponding set of Young

tableaux (via the Robinson-Schensted correspondence), and therefore a new corresponding mea-

sure on Young diagrams (not Plancherel measure, which was for Young diagrams correspond-

ing to all of Sn and not just the involutions), denoted P (inv). Taking Ω to be the set of all

λ = (λ1, λ2, . . .) ∈P(n) (where again λ1 ≥ λ2 ≥ . . .), and using the measure P (inv), J. Baik and

E. M. Rains proved in 2001 that

lim
n→∞

P (inv)

(
λ1 − 2

√
n

n1/6
≤ x

)
→ F1(x) and lim

n→∞
P (inv)

(
λ2 − 2

√
n

n1/6
≤ x

)
→ F4(x)

where F1 and F4 are Tracy-Widom distributions for GOE and GSE matrices (different ensembles

of random matrices; GOE is like GUE but everything is real and the matrix is symmetric, and

GSE is like GUE but with quaternions).

� If one models n buses as n independent rate 1 Poisson processes going from the bus depot at

time t = 0 to the terminal at time t = T , conditioned not to intersect for any t ∈ [0, T], then

at any observation point x along the route of length N > n, the probability distribution for

the rescaled arrival times of the buses is exactly the same as the eigenvalue distribution for the

Jacobi Unitary Ensemble, and thereby the GUE in the appropriate scaling limit.

– On a slightly related note from [6], taking n independent 1-dimensional Brownian motions

with time in [0, 1] conditioned so that all paths start and end at the same point and do not

intersect in (0, 1), at any time t0 ∈ (0, 1), the positions of the paths (scaled appropriately)

have the same distribution as the eigenvalues of an n× n GUE matrix.

� Imagine at t = 0 that we have walkers located at 0, 1, 2, and so on on the real line. At each

tick of the clock, exactly one walker moves left one unit. However, no two walkers can be in the

same spot. For any N , define dN to be the distance traveled by the walker starting at 0 within

t = 0 to t = N . Clearly, for any N , there are only finitely many possible walks of duration time

N ; suppose we now that we have probability measure P that makes all such walks equally likely

(for any fixed N). Then,

lim
N→∞

P

(
dN − 2

√
N

N1/6
≤ t

)
= F1(t)

To get F2 as the limiting distribution, consider the same situation, but at t = N , we start

choosing walkers to move right 1 unit, so that at t = 2N , everyone is back where they started.

Again, for each fixed N , there are only finitely many walks, so make a new probability measure

P ′ to make each one of these walks equally likely, and denote d′N to be the farthest negative

number at which the walker at 0 gets to. Then,

lim
N→∞

P ′

(
d′N − 2

√
N

N1/6
≤ t

)
= F2(t)

These discoveries were made by J. Baik, E. M. Rains, and P.J. Forrester around 1999.

15

� Consider the rotated square {(x, y) : |x| + |y| ≤ n + 1} and consider tilings of the interior by

horizontal and vertical 1 × 2 dominoes. Clearly for any fixed n, the number of tilings is finite,

so let Pn be a probability measure such that each tiling is equally probable to occur. To make

things simpler, scale everything so that the square is now S = {(u, v) : |u| + |v| ≤ 1} and the

dominoes are 2
n+1 ×

1
n+1 . Define the inscribed circle C to be {(u, v) : u2 + v2 = 1

2}. Then, it

turns out that most of the tilings are “frozen” in S \C but unpredictable inside C (discovered by

W. Jockusch, J. Propp, P. Shor in 1995), as shown in the left image below. K. Johansson in 2000

showed that fluctuations of the boundary of the “unpredictable” zone along the line u + v = α

about the points of intersection between u+ v = α and C were related to F2.

Images taken from http://faculty.uml.edu/jpropp/tiling/www/.

– On a slightly related note from [6], similar results hold for tilings of rhombi on hexagons (see

right image above). Again, Tracy-Widom is involved in the transition between the “frozen”

regions in the corners and the unpredictable center.

� One can make a simple model of plane boarding, where the seats are numbered 1 through N , and

there is a permutation σn representing the order in which people are lined up outside the plane.

For example, consider σn = (3, 4, 1, 5, 6, 2). Person 3 goes to seat 3 and start loading bags, but

4 is blocked. Person 1 can go though and start loading bags. At t = 1, Person 3 and Person 1

sit, and now Person 4 and 2 can start loading bags. Person 5 and 6 are still blocked (by Person

4). At t = 2, Person 5 can start loading, and at t = 3, Person 6 can finally start loading. Thus

everyone is seated by t = 4. Let b(σn) be the boarding time given a permutation σn ∈ Sn. In

2005, E. Bachmat, D. Berend, L. Sapir, S. Skiena, and N. Stolyarov proved that

lim
n→∞

P

(
b(σn)− 2

√
n

n1/6
≤ t
)

= F2(t)

using the Robinson-Schensted correspondence on a different type of diagram, called Viennot

diagrams.

After his series of examples, Deift ends his paper with a challenge — a challenge to prove a theo-

rem like the central limit theorem, but with the Tracy-Widom distribution as the end result/limiting

distribution instead of the Gaussian. He suggests two papers which begin to make progress into this

question:

J. Baik and T. M. Suidan in 2004 [1] proved the following result:

16

http://faculty.uml.edu/jpropp/tiling/www/

Theorem 7.1: Baik-Suidan

Consider a family {Xi,j}∞i,j=1 of i.i.d. mean-0 and variance-1 random variables with finite

fourth moment E
[
|Xi,j |4

]
<∞. Define

L(N, k) = sup
0=i0≤i1≤...≤ik=N

k∑
j=1

ij∑
i=ij−1+1

Xi,j

and

R(N, k) = inf
0=i0≤i1≤...≤ik=N

k∑
j=1

ij∑
i=ij−1+1

Xi,j

If k,N →∞ and k = o(Nα) for α < 3
14 , then

P

(
k1/6

(
L(N, k)√

N
− 2
√
k

)
≤ t
)
→ F2(t)

and

P

(
k1/6

(
−R(N, k)√

N
− 2
√
k

)
≤ t
)
→ F2(t)

If we further specify that the Xi,j are all i.i.d. Gaussian random variables, then the above

convergence to F2 holds if k = o(Nα) for α < 3
7 .

and similarly also in 2004, T. Bodineau and J. B. Martin [2] proved the following result:

Theorem 7.2: Bodineau-Martin

Let ωi,r, i ≥ 0, r ≥ 1 be a family of i.i.d. random variables. Define Π(n, k) to be the set of

directed paths from (0, 1) to (n, k) where each step we increase one of the coordinates by 1.

For n ≥ 0 and k ≥ 1, the last passage time to the point (n, k) is defined as

T (n, k) = max
π∈Π(n,k)

∑
(i,r)∈π

ωi,r

Supposing that E[|ωi,r|p] < ∞ for some p > 2, with µ = E[ωi,r] and σ2 = Var[ωi,r], then for

all a < 6
7 (1

2 −
1
p),

P

(
T (n, bnac)− nµ− 2σn

1+a
2

σn
1
2−

a
6

≤ t

)
→ F2(t)

If furthermore all the ωi,r has finite moments of all orders, then the above convergence to F2

holds for all a < 3
7 .

It is clear from this brief overview that the Tracy-Widom distribution is intertwined with many

different fields of mathematics, from random matrix theory to combinatorics to analytic number

theory, and that there are still many very interesting and exciting open questions to pursue.

17

8 Appendix for Code

Patience sorting

1 import numpy as np

2

3 def insert_pushDown(val , arr , col):

4 # if no more room , make new row

5 if (arr[arr.shape [0] -1][col] != 0):

6 newRow = np.zeros((1,arr.shape [1]))

7 arr = np.vstack ((arr , newRow))

8 # push everything down

9 for i in range(arr.shape [0]-1,0,-1):

10 arr[i][col] = arr[i-1][col]

11 # insert value into opened space

12 arr [0][col] = val

13 return arr

14

15 def patienceSorting(permutation):

16 # initialize with first value of permutation

17 arr = np.full ((1,1), permutation [0])

18 for i in range(1,len(permutation)):

19 inserted = 0

20 for j in range(0,arr.shape [1]):

21 # if less than number in col , insert and push down

22 if (permutation[i] < arr [0][j]):

23 arr = insert_pushDown(permutation[i], arr , j)

24 inserted = 1

25 break

26 # greater than all previous top level numbers

27 # need to create new column

28 if (inserted == 0):

29 newCol = np.zeros((arr.shape [0],1))

30 newCol [0][0] = permutation[i]

31 arr = np.hstack ((arr , newCol))

32 return arr

33

34 n = 70

35 tableau = patienceSorting(np.random.permutation(n)+1)

36 print(tableau)

Robinson-Schensted Algorithm

1 import numpy as np

2

3 def RSalgo_helper(val , arr , row):

4 # if the row doesn’t exist yet , add new row with val in left most spot

5 if (row >= arr.shape [0]):

6 newRow = np.zeros((1,arr.shape [1]))

7 newRow [0][0] = val

8 arr = np.vstack ((arr , newRow))

9 return arr

10

11 inserted = 0

12 for j in range(0,arr.shape [1]):

13 # if arr[row][j] is 0 (empty), then we can insert

14 if (arr[row][j] == 0):

15 arr[row][j] = val

16 inserted = 1

18

17 break

18 # if less than number in col , insert and bump

19 if (val < arr[row][j]):

20 oldVal = arr[row][j]

21 arr[row][j] = val

22 arr = RSalgo_helper(oldVal , arr , row+1)

23 inserted = 1

24 break

25 # greater than all previous top level numbers => need to create new column

26 # row == 0 only , because for row > 0, we will always have room

27 if (row == 0 and inserted == 0):

28 newCol = np.zeros((arr.shape [0],1))

29 newCol [0][0] = val

30 arr = np.hstack ((arr , newCol))

31

32 return arr

33

34 def RSalgo(permutation):

35 # initialize with first value of permutation

36 arr = np.full ((1,1), permutation [0])

37 for i in range(1,len(permutation)):

38 arr = RSalgo_helper(permutation[i], arr , 0)

39 return arr

40

41 n = 100

42 tableau = RSalgo(np.random.permutation(n-1) +1)

43 print(tableau)

RS Algorithm with Inverse

1 import numpy as np

2

3 def RSalgo_helper(valnum , val , arr , record , row):

4 # if the row doesn’t exist yet , add new row with val in left most spot

5 if (row >= arr.shape [0]):

6 newRow = np.zeros((1,arr.shape [1]))

7 newRow [0][0] = val

8 arr = np.vstack ((arr , newRow))

9 # ADDITIONS FOR RECORDING TABLEAU

10 newRowRec = np.zeros((1,arr.shape [1]))

11 newRowRec [0][0] = valnum

12 record = np.vstack ((record , newRowRec))

13 return arr , record

14

15 inserted = 0

16 for j in range(0,arr.shape [1]):

17 # if arr[row][j] is 0 (empty), then we can insert

18 if (arr[row][j] == 0):

19 arr[row][j] = val

20 record[row][j] = valnum # ADDITION FOR RECORDING TABLEAU

21 inserted = 1

22 break

23 # if less than number in col , insert and bump

24 if (val < arr[row][j]):

25 oldVal = arr[row][j]

26 arr[row][j] = val

27 arr , record = RSalgo_helper(valnum , oldVal , arr , record , row+1)

28 inserted = 1

29 break

30 # greater than all previous top level numbers => need to create new column

31 # row == 0 only , because for row > 0, we will always have roomm

19

32 if (row == 0 and inserted == 0):

33 newCol = np.zeros((arr.shape [0],1))

34 newCol [0][0] = val

35 arr = np.hstack ((arr , newCol))

36 # ADDITIONS FOR RECORDING TABLEAU

37 newColRec = np.zeros((arr.shape [0],1))

38 newColRec [0][0] = valnum

39 record = np.hstack ((record , newColRec))

40

41 return arr , record

42

43 def RSalgo(permutation):

44 # initialize with first value of permutation

45 arr = np.full ((1,1), permutation [0])

46 record = np.full ((1,1), 1)

47 for i in range(1,len(permutation)):

48 arr , record = RSalgo_helper(i+1, permutation[i], arr , record , 0)

49 return arr , record

50

51 def cleanPrint(tableau):

52 # replace all zeroes with space and print version that can be copy/pasted into spreadsheet

53 tableau = tableau.astype(’str’)

54 tableau[tableau == ’0.0’] = ’\t’

55 for i in range(0,tableau.shape [0]):

56 print(* tableau[i], sep =’ ’)

57

58 n = 100

59 # permut = np.random.permutation(n-1)+1

60 permut = [4,1,2,7,6,5,8,9,3]

61 print(permut)

62 insTableau , recTableau = RSalgo(permut)

63 print(insTableau)

64 print(recTableau)

65 # cleanPrint(insTableau)

66

67 def inverse_helper(ins , rec):

68 row ,col = np.unravel_index(np.argmax(rec), rec.shape)

69 val = ins[row][col]

70 ins[row][col] = 0

71 rec[row][col] = 0

72 row -= 1

73

74 while row >= 0:

75 # find index of max newval in array (ins[row] < val and != 0)

76 noise= np.array(range(len(ins[row]))) * 1e-15

77 # add increasing noise to array so argmax will find the rightmost occurence of ’True’

78 col = np.argmax(np.logical_and(ins[row] < val , ins[row] != 0) + noise)

79 newVal = ins[row][col]

80 ins[row][col] = val

81 val = newVal

82 row -= 1

83

84 return ins , rec , val

85

86 def inverse(ins , rec):

87 permut = []

88 n = np.max(rec)

89 for i in range(0,int(n)):

90 ins , rec , val = inverse_helper(ins ,rec)

91 permut.insert(0, val)

92 return permut

93

20

94 permut = inverse(insTableau.copy(), recTableau.copy())

95 print(permut)

96

97 # for fun:

98 permut = inverse(recTableau , insTableau)

99 print(permut)

Rate of Convergence to TW
Remark: one must have a file tracy_widom.py with contents copied from https://gist.github.

com/yymao/7282002 for a source to look up values of the Tracy-Widom distribution in order for this

code to execute.

1 import numpy as np

2 import math

3 import tracy_widom

4 import matplotlib

5 import matplotlib.pyplot as plt

6

7 # further optmization patience sorting algorithm

8 def lengthOfLIS_PS_opt(permutation):

9 # initialize with first value of permutation

10 n = len(permutation)

11 arr = np.zeros(int(3 * np.sqrt(n)))

12 arr [0] = permutation [0]

13 filledLength = 1

14 for i in range(1,n):

15 inserted = 0

16 # maybe this will speed things up a little bit?

17 tempVar = permutation[i]

18 j = np.argmax(arr > tempVar)

19 if (j > 0 or tempVar < arr [0]):

20 arr[j] = tempVar

21 else:

22 arr[filledLength] = tempVar

23 filledLength += 1

24

25 # need to create new column

26 if (filledLength >= len(arr) - 5):

27 extraRoom = np.empty(np.sqrt(n))

28 np.concatenate ((arr , extraRoom), axis =1)

29

30 return filledLength

31

32 tw = tracy_widom.TracyWidom ()

33

34 nList = [100, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000 , 1000000]

35 numSamples = 1000

36 sampleMilestones = [199, 399, 599, 799, 899, 999]

37 xGrid = np.arange (-4.5, 1.5, 0.005)

38

39 def empiricalF(xGrid , valArr):

40 total = len(valArr)

41 empiricalFArr = [1.0 * np.count_nonzero(valArr <= x)/total for x in xGrid]

42 return empiricalFArr

43

44 maxDeviation = []

45 FArr = np.asarray ([tw.cdf(x) for x in xGrid])

46 outF = open("./ figures/maxDeviation.txt", "w")

47

48 for n in nList:

21

https://gist.github.com/yymao/7282002
https://gist.github.com/yymao/7282002

49 plt.figure ()

50 plt.suptitle("n=" + str(n), fontsize =12)

51 plt.plot(xGrid , FArr , label="true F")

52

53 valArr = []

54 for i in range(numSamples):

55 perm = np.random.permutation(n) + 1

56 permLIS = lengthOfLIS_PS_opt(perm)

57 print(i, "lis is", permLIS)

58 # calculate (LIS - 2sqrt(pi))/n^1/6

59 val = (permLIS - 2 * math.sqrt(n)) / (n ** (1/6))

60 valArr.append(val)

61

62 if i in sampleMilestones:

63 string = "empirical F with " + str(i+1) + " samples"

64 plt.plot(xGrid , empiricalF(xGrid , valArr), label=string)

65

66 plt.legend ()

67 string = "./ figures/n=" + str(n) + ".pdf"

68 plt.savefig(string)

69

70 M = np.max(np.absolute(np.asarray(empiricalF(xGrid , valArr)) - FArr))

71 print(str(n) + "\t" + str(M))

72 print(str(n) + "\t" + str(M), file=outF)

73 maxDeviation.append(M)

74

75 outF.close()

76 print(nList)

77 print(maxDeviation)

References

[1] Jinho Baik and Toufic M. Suidan. “A GUE central limit theorem and universality of directed

first andlast passage site percolation”. In: International Mathematics Research Notices 2005.6

(Jan. 2005), pp. 325–337. issn: 1073-7928. doi: 10.1155/IMRN.2005.325. eprint: arXiv:

math/0410042. url: https://doi.org/10.1155/IMRN.2005.325.

[2] Thierry Bodineau and James Martin. “A Universality Property for Last-Passage Percolation

Paths Close to the Axis”. In: Electron. Commun. Probab. 10 (2005), pp. 105–112. doi: 10.

1214/ECP.v10-1139. url: https://doi.org/10.1214/ECP.v10-1139.

[3] Miklós Bóna, Marie-Louise Lackner, and Bruce E. Sagan. “Longest Increasing Subsequences and

Log Concavity”. In: Annals of Combinatorics 21.4 (Dec. 2017), pp. 535–549. issn: 0219-3094.

doi: 10.1007/s00026-017-0365-x. eprint: https://arxiv.org/pdf/1511.08653.pdf. url:

https://doi.org/10.1007/s00026-017-0365-x.

[4] Percy Deift. Universality for Mathematical and Physical Systems. 2006. doi: 10.4171/022.

eprint: arXiv:math-ph/0603038. url: https://www.semanticscholar.org/paper/Universality-

for-mathematical-and-physical-systems-Deift/95b5709395919f426762ddb5c4da333b8209c568.

[5] J. Armando Domı́nguez-Molina. “The Tracy–Widom distribution is not infinitely divisible”. In:

Statistics & Probability Letters 123 (2017), pp. 56–60. issn: 0167-7152. doi: https://doi.org/

10.1016/j.spl.2016.11.029. eprint: https://arxiv.org/pdf/1601.02898.pdf. url:

http://www.sciencedirect.com/science/article/pii/S0167715216302826.

22

https://doi.org/10.1155/IMRN.2005.325
arXiv:math/0410042
arXiv:math/0410042
https://doi.org/10.1155/IMRN.2005.325
https://doi.org/10.1214/ECP.v10-1139
https://doi.org/10.1214/ECP.v10-1139
https://doi.org/10.1214/ECP.v10-1139
https://doi.org/10.1007/s00026-017-0365-x
https://arxiv.org/pdf/1511.08653.pdf
https://doi.org/10.1007/s00026-017-0365-x
https://doi.org/10.4171/022
arXiv:math-ph/0603038
https://www.semanticscholar.org/paper/Universality-for-mathematical-and-physical-systems-Deift/95b5709395919f426762ddb5c4da333b8209c568
https://www.semanticscholar.org/paper/Universality-for-mathematical-and-physical-systems-Deift/95b5709395919f426762ddb5c4da333b8209c568
https://doi.org/https://doi.org/10.1016/j.spl.2016.11.029
https://doi.org/https://doi.org/10.1016/j.spl.2016.11.029
https://arxiv.org/pdf/1601.02898.pdf
http://www.sciencedirect.com/science/article/pii/S0167715216302826

[6] Arno Kuijlaars. “Universality of distribution functions in random matrix theory”. Workshop on

Stochastic Eigen-Analysis and its Applications. Jul. 2006. url: http://web.mit.edu/sea06/

agenda/talks/Kuijlaars.pdf.

[7] Madan Lal Mehta. Pure and Applied Mathematics. 3rd edition. Institute of Mathematical Statis-

tics Textbooks. Academic Press, 2004, p. 706. isbn: 9780120884094; 9780080474113.

[8] Madan Lal Mehta. Random Matrices. 2nd edition. Pure and Applied Mathematics. Academic

Press, 1990, p. 562. isbn: 9781483295954.

[9] Dan Romik. The surprising mathematics of longest increasing subsequences. Vol. 4. Institute of

Mathematical Statistics Textbooks. Cambridge University Press, New York, 2015, pp. xi+353.

isbn: 978-1-107-42882-9; 978-1-107-07583-2.

[10] Craig A. Tracy and Harold Widom. “Level-spacing distributions and the Airy kernel”. In: Comm.

Math. Phys. 159.1 (1994), pp. 151–174. url: https://projecteuclid.org:443/euclid.cmp/

1104254495.

23

http://web.mit.edu/sea06/agenda/talks/Kuijlaars.pdf
http://web.mit.edu/sea06/agenda/talks/Kuijlaars.pdf
https://projecteuclid.org:443/euclid.cmp/1104254495
https://projecteuclid.org:443/euclid.cmp/1104254495

	Setup
	Hammersley's convergence theorem

	Tableaus
	The Robinson-Schensted Algorithm
	Tableau Shapes and Partitions
	The Hook-Length Formula

	Limiting Shapes and = 2
	2

	Tracy-Widom, an Introduction
	Baik-Deift-Johansson
	Rate of Convergence to Tracy-Widom
	Universality of Tracy-Widom
	Appendix for Code

