CTY LIN: Matrix Exponentials and the Fibonacci Sequence

Daniel Rui

1 Matrix Exponentials

Reminders: Based on the Taylor Series for e^{x}, and replacing x with a matrix, A, we get a way to calculate e to some matrix:

$$
e^{A}=\sum_{m=0}^{\infty} \frac{A^{m}}{m!}=I_{n}+A+\frac{A^{2}}{2!}+\ldots
$$

1.1 Compute $e^{0_{n}}$

Notice that $\left(0_{n}\right)^{n}=0_{n}$.

$$
e^{0_{n}}=I_{n}+0_{n}+0_{n}+\ldots=I_{n}
$$

1.2 Compute $e^{I_{n}}$

Notice that $\left(I_{n}\right)^{n}=I_{n}$, since $I_{n} A=A$.

$$
e^{0_{n}}=I_{n}+I_{n}+\frac{I_{n}}{2!}+\ldots=I_{n}\left(1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots\right)=e\left(I_{n}\right)
$$

1.3 Show that sometimes $e^{A} e^{B} \neq e^{A+B}$

We are given:

$$
A=\left[\begin{array}{lll}
0 & 1 & 7 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

Also, because $A^{3}=0_{3}$ and likewise for B, A^{n} for $n \geq 3$ will also be zero, because no matter what you multiply with the zero matrix, it will also be the zero matrix (likewise for B).
e^{A} is as follows:

$$
\begin{aligned}
e^{A} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 7 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{lll}
0+0+0 & 0+0+0 & 0+2+0 \\
0+0+0 & 0+0+0 & 0+0+0 \\
0+0+0 & 0+0+0 & 0+0+0
\end{array}\right]+0_{n}+\ldots \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 7 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+0_{n}+\ldots \\
& =\left[\begin{array}{lll}
1 & 1 & 8 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$e^{B}:$

$$
\begin{aligned}
e^{B} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{lll}
0+0+0 & 0+0+0 & 0+3+0 \\
0+0+0 & 0+0+0 & 0+0+0 \\
0+0+0 & 0+0+0 & 0+0+0
\end{array}\right]+0_{n}+\ldots \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 1.5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+0_{n}+\ldots \\
& =\left[\begin{array}{ccc}
1 & 1 & 0.5 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$e^{A} e^{B}:$

$$
\begin{aligned}
e^{A} e^{B} & =\left[\begin{array}{lll}
1 & 1 & 8 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0.5 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+0+0 & 1+1+0 & 0.5+3+8 \\
0+0+0 & 0+1+0 & 0+3+2 \\
0+0+0 & 0+0+0 & 0+0+1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 2 & 11.5 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

OK. For part two, we first need to calculate $A+B$.

$$
\left[\begin{array}{lll}
0 & 1 & 7 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 2 & 6 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right]
$$

Now for the exponential:

$$
\begin{aligned}
e^{A+B} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 2 & 6 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ccc}
0+0+0 & 0+0+0 & 0+10+0 \\
0+0+0 & 0+0+0 & 0+0+0 \\
0+0+0 & 0+0+0 & 0+0+0
\end{array}\right]+\frac{(A+B)^{3}}{3!}+\ldots \\
& =\left[\begin{array}{lll}
1 & 2 & 6 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{1}{3!}\left[\begin{array}{ccc}
0+0+5 \cdot 0 & 0 \cdot 2+0+5 \cdot 0 & 0 \cdot 6+0 \cdot 5+5 \cdot 0 \\
0+0+0 & 0 \cdot 2+0+0 & 0 \cdot 6+0 \cdot 5+0 \\
0+0+0 & 0 \cdot 2+0+0 & 0 \cdot 6+0 \cdot 5+0
\end{array}\right]+\ldots \\
& =\left[\begin{array}{lll}
1 & 2 & 11 \\
0 & 1 & 6 \\
0 & 0 & 1
\end{array}\right]+0_{n}+\ldots \\
& =\left[\begin{array}{lll}
1 & 2 & 11 \\
0 & 1 & 6 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

And because $\left[\begin{array}{ccc}1 & 2 & 11.5 \\ 0 & 1 & 6 \\ 0 & 0 & 1\end{array}\right] \neq\left[\begin{array}{ccc}1 & 2 & 11 \\ 0 & 1 & 6 \\ 0 & 0 & 1\end{array}\right], e^{A} e^{B}$ is not necessarily equal to e^{A+B}.
1.4 Show that $e^{D}=\left[\begin{array}{cccc}e^{d_{1}} & 0 & \ldots & 0 \\ 0 & e^{d_{2}} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & e^{d_{n}}\end{array}\right]$

Matrix multiplication is defined as $(A B)_{i j}=\sum_{k=1}^{m} A_{i k} B_{k j}$. In the case of D, the diagonal matrix, every term except the terms of the form $A_{k k}$ are zero, so the only terms in D^{n} will be the terms of the form $A_{k k}$, and those terms are going to be $\left(D_{k k}\right)^{n}$. So when we raise the diagonal matrix D to any integer power, we are going to get

$$
D^{n}=\left[\begin{array}{cccc}
d_{1}{ }^{n} & 0 & \ldots & 0 \\
0 & d_{2}{ }^{n} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{m}{ }^{n}
\end{array}\right]
$$

Now, we are ready to tackle this problem.

$$
\begin{aligned}
e^{D}= & {\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]+\left[\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cccc}
d_{1}{ }^{2} & 0 & \ldots & 0 \\
0 & d_{2}{ }^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}{ }^{2}
\end{array}\right]+\ldots } \\
& \left(e^{D}\right)_{11}=1+d_{1}+\frac{d_{1}{ }^{2}}{2!}+\frac{d_{1}{ }^{3}}{3!}+\ldots=e^{d_{1}}
\end{aligned}
$$

The same reasoning can be applied to prove that $\left(e^{D}\right)_{22}=e^{d_{2}},\left(e^{D}\right)_{33}=e^{d_{3}}$, and so on, up to $\left(e^{D}\right)_{n n}=e^{d_{n}}$. Thus,

$$
e^{D}=\left[\begin{array}{cccc}
e^{d_{1}} & 0 & \ldots & 0 \\
0 & e^{d_{2}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & e^{d_{n}}
\end{array}\right]
$$

1.5 Show that $e^{A}=P e^{D} P^{-1}$

The key insight here is that $A^{n}=P D^{n} P^{-1}$. When we raise A^{n}, we put lots of $P D P^{-1}$ back to back, causing the $P^{-1} P$ to annihilate, thus leaving the P and P^{-1} on the ends and exactly n matrices D stuck between them.

$$
\begin{aligned}
e^{A} & =I_{n}+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots \\
& =I_{n}+P D P^{-1}+\frac{P D^{2} P^{-1}}{2!}+\frac{P D^{3} P^{-1}}{3!}+\ldots \\
& =P\left(I_{n}+D+\frac{D^{2}}{2!}+\frac{D^{3}}{3!}+\ldots\right) P^{-1} \\
& =P e^{D} P^{-1}
\end{aligned}
$$

2 The Fibonacci Sequence

Reminders: The Fibonacci Sequence recursion $F_{n}=F_{n-1}+F_{n-2}$ can be represented using matrices, where $\vec{x}_{n}=\left[\begin{array}{c}F_{n+1} \\ F_{n}\end{array}\right]$ and $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$:

$$
\vec{x}_{n}=A^{n} \vec{x}_{0}
$$

2.1 Finding the eigenvalues

The eigenvalues of A :

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array}\right]=0 \\
(1-\lambda)(-\lambda)-1=0 \\
\lambda^{2}-\lambda-1=0
\end{gathered}
$$

Via the quadratic formula, we get that $\lambda=\frac{1 \pm \sqrt{5}}{2}$, or $\lambda=\varphi, \lambda=\bar{\varphi}$.

2.2 Finding the eigenvectors

The first eigenvector of A:

$$
\begin{gathered}
{\left[\begin{array}{cc}
1-\varphi & 1 \\
1 & -\varphi
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
x_{1}-x_{2} \varphi=0 \\
x_{1}=x_{2} \varphi \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \varphi \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{l}
\varphi \\
1
\end{array}\right]}
\end{gathered}
$$

is a eigenvector. The second is:

$$
\begin{gathered}
{\left[\begin{array}{cc}
1-\bar{\varphi} & 1 \\
1 & -\bar{\varphi}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
x_{1}-x_{2} \varphi=0 \\
x_{1}=x_{2} \bar{\varphi} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \bar{\varphi} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{l}
\bar{\varphi} \\
1
\end{array}\right]}
\end{gathered}
$$

And $\left[\begin{array}{c}\bar{\varphi} \\ 1\end{array}\right]$ is the other eigenvector.

2.3 Diagonalize A

We know that $A=P D P^{-1}$ is true when P is a matrix of the eigenvectors of A and D is a matrix with the eigenvalues on the diagonal. We can verify that A is in fact $P D P^{-1}$.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
\varphi & \bar{\varphi} \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
\varphi & 0 \\
0 & \bar{\varphi}
\end{array}\right]\left[\begin{array}{ll}
\varphi & \bar{\varphi} \\
1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\varphi & \bar{\varphi} \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
\varphi & 0 \\
0 & \bar{\varphi}
\end{array}\right]\left(\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & -\bar{\varphi} \\
-1 & \varphi
\end{array}\right]\right)
$$

2.4 Fibonacci Formula

Now that we have an efficient way of raising A^{n}, we can easily find a formula for the Fibonacci Sequence.

$$
\begin{aligned}
{\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right] } & =A^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
\varphi & \bar{\varphi} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\varphi & 0 \\
0 & \bar{\varphi}
\end{array}\right]^{n}\left[\begin{array}{cc}
1 & -\bar{\varphi} \\
-1 & \varphi
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

Now, we just multiply, right to left.

$$
\begin{aligned}
{\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right] } & =\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
\varphi & \bar{\varphi} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\varphi^{n} & 0 \\
0 & \bar{\varphi}^{n}
\end{array}\right]\left[\begin{array}{cc}
1 & -\bar{\varphi} \\
-1 & \varphi
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
\varphi & \bar{\varphi} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\varphi^{n} & 0 \\
0 & \bar{\varphi}^{n}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
\varphi & \bar{\varphi} \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
\varphi^{n} \\
-\bar{\varphi}^{n}
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{c}
\varphi^{n+1}-\bar{\varphi}^{n+1} \\
\varphi^{n}-\bar{\varphi}^{n}
\end{array}\right]
\end{aligned}
$$

Comparing terms of each vector, we can conclude that $F_{n}=\frac{1}{\sqrt{5}}\left(\varphi^{n}-\bar{\varphi}^{n}\right)$

$2.5 \quad F_{45}$

Using Wolfram Alpha, we get that

$$
\frac{1}{\sqrt{5}}\left(\varphi^{45}-\bar{\varphi}^{45}\right)=1,134,903,170
$$

