
CTY LIN: Matrix Exponentials and the Fibonacci Sequence

Daniel Rui

1 Matrix Exponentials

Reminders: Based on the Taylor Series for ex, and replacing x with a matrix, A, we get a way to

calculate e to some matrix:

eA =
∞∑

m=0

Am

m!
= In +A+

A2

2!
+ . . .

1.1 Compute e0n

Notice that (0n)
n = 0n.

e0n = In + 0n + 0n + . . . = In

1.2 Compute eIn

Notice that (In)
n = In, since InA = A.

e0n = In + In +
In
2!

+ . . . = In

(
1 + 1 +

1

2!
+

1

3!
+ . . .

)
= e(In)

1.3 Show that sometimes eAeB ̸= eA+B

We are given:

A =

0 1 7

0 0 2

0 0 0

 B =

0 1 −1

0 0 3

0 0 0


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Also, because A3 = 03 and likewise for B, An for n ≥ 3 will also be zero, because no matter what

you multiply with the zero matrix, it will also be the zero matrix (likewise for B).

eA is as follows:

eA =

1 0 0

0 1 0

0 0 1

+

0 1 7

0 0 2

0 0 0

+
1

2

0 + 0 + 0 0 + 0 + 0 0 + 2 + 0

0 + 0 + 0 0 + 0 + 0 0 + 0 + 0

0 + 0 + 0 0 + 0 + 0 0 + 0 + 0

+ 0n + . . .

=

1 0 0

0 1 0

0 0 1

+

0 1 7

0 0 2

0 0 0

+

0 0 1

0 0 0

0 0 0

+ 0n + . . .

=

1 1 8

0 1 2

0 0 1



eB :

eB =

1 0 0

0 1 0

0 0 1

+

0 1 −1

0 0 3

0 0 0

+
1

2

0 + 0 + 0 0 + 0 + 0 0 + 3 + 0

0 + 0 + 0 0 + 0 + 0 0 + 0 + 0

0 + 0 + 0 0 + 0 + 0 0 + 0 + 0

+ 0n + . . .

=

1 0 0

0 1 0

0 0 1

+

0 1 −1

0 0 3

0 0 0

+

0 0 1.5

0 0 0

0 0 0

+ 0n + . . .

=

1 1 0.5

0 1 3

0 0 1



eAeB:

eAeB =

1 1 8

0 1 2

0 0 1


1 1 0.5

0 1 3

0 0 1


=

1 + 0 + 0 1 + 1 + 0 0.5 + 3 + 8

0 + 0 + 0 0 + 1 + 0 0 + 3 + 2

0 + 0 + 0 0 + 0 + 0 0 + 0 + 1


=

1 2 11.5

0 1 5

0 0 1


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OK. For part two, we first need to calculate A+B.0 1 7

0 0 2

0 0 0

+

0 1 −1

0 0 3

0 0 0

 =

0 2 6

0 0 5

0 0 0



Now for the exponential:

eA+B =

1 0 0

0 1 0

0 0 1

+

0 2 6

0 0 5

0 0 0

+
1

2

0 + 0 + 0 0 + 0 + 0 0 + 10 + 0

0 + 0 + 0 0 + 0 + 0 0 + 0 + 0

0 + 0 + 0 0 + 0 + 0 0 + 0 + 0

+
(A+B)3

3!
+ . . .

=

1 2 6

0 1 5

0 0 1

+

0 0 5

0 0 0

0 0 0

+
1

3!

0 + 0 + 5 · 0 0 · 2 + 0 + 5 · 0 0 · 6 + 0 · 5 + 5 · 0
0 + 0 + 0 0 · 2 + 0 + 0 0 · 6 + 0 · 5 + 0

0 + 0 + 0 0 · 2 + 0 + 0 0 · 6 + 0 · 5 + 0

+ . . .

=

1 2 11

0 1 6

0 0 1

+ 0n + . . .

=

1 2 11

0 1 6

0 0 1



And because

1 2 11.5

0 1 6

0 0 1

 ̸=

1 2 11

0 1 6

0 0 1

, eAeB is not necessarily equal to eA+B.

1.4 Show that eD =


ed1 0 . . . 0

0 ed2 . . . 0
...

...
. . .

...

0 0 . . . edn


Matrix multiplication is defined as (AB)ij =

m∑
k=1

AikBkj . In the case of D, the diagonal matrix,

every term except the terms of the form Akk are zero, so the only terms in Dn will be the terms of

the form Akk, and those terms are going to be (Dkk)
n. So when we raise the diagonal matrix D to

any integer power, we are going to get
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Dn =


d1

n 0 . . . 0

0 d2
n . . . 0

...
...

. . .
...

0 0 . . . dm
n



Now, we are ready to tackle this problem.

eD =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

+


d1 0 . . . 0

0 d2 . . . 0
...

...
. . .

...

0 0 . . . dn

+
1

2


d1

2 0 . . . 0

0 d2
2 . . . 0

...
...

. . .
...

0 0 . . . dn
2

+ . . .

(eD)11 = 1 + d1 +
d1

2

2!
+

d1
3

3!
+ . . . = ed1

The same reasoning can be applied to prove that (eD)22 = ed2 , (eD)33 = ed3 , and so on, up to

(eD)nn = edn . Thus,

eD =


ed1 0 . . . 0

0 ed2 . . . 0
...

...
. . .

...

0 0 . . . edn



1.5 Show that eA = PeDP−1

The key insight here is that An = PDnP−1. When we raise An, we put lots of PDP−1 back to back,

causing the P−1P to annihilate, thus leaving the P and P−1 on the ends and exactly n matrices D

stuck between them.

eA = In +A+
A2

2!
+

A3

3!
+ . . .

= In + PDP−1 +
PD2P−1

2!
+

PD3P−1

3!
+ . . .

= P

(
In +D +

D2

2!
+

D3

3!
+ . . .

)
P−1

= PeDP−1
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2 The Fibonacci Sequence

Reminders: The Fibonacci Sequence recursion Fn = Fn−1+Fn−2 can be represented using matrices,

where x⃗n =

[
Fn+1

Fn

]
and A =

[
1 1

1 0

]
:

x⃗n = Anx⃗0

2.1 Finding the eigenvalues

The eigenvalues of A:

det

[
1− λ 1

1 −λ

]
= 0

(1− λ)(−λ)− 1 = 0

λ2 − λ− 1 = 0

Via the quadratic formula, we get that λ = 1±
√
5

2 , or λ = φ, λ = φ̄.

2.2 Finding the eigenvectors

The first eigenvector of A: [
1− φ 1

1 −φ

][
x1

x2

]
=

[
0

0

]

x1 − x2φ = 0

x1 = x2φ[
x1

x2

]
=

[
x2φ

x2

]
= x2

[
φ

1

]
[
φ

1

]
is a eigenvector. The second is:
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[
1− φ̄ 1

1 −φ̄

][
x1

x2

]
=

[
0

0

]

x1 − x2φ = 0

x1 = x2φ̄[
x1

x2

]
=

[
x2φ̄

x2

]
= x2

[
φ̄

1

]

And

[
φ̄

1

]
is the other eigenvector.

2.3 Diagonalize A

We know that A = PDP−1 is true when P is a matrix of the eigenvectors of A and D is a matrix

with the eigenvalues on the diagonal. We can verify that A is in fact PDP−1.[
1 1

1 0

]
=

[
φ φ̄

1 1

][
φ 0

0 φ̄

][
φ φ̄

1 1

]−1

=

[
φ φ̄

1 1

][
φ 0

0 φ̄

](
1√
5

[
1 −φ̄

−1 φ

])

2.4 Fibonacci Formula

Now that we have an efficient way of raising An, we can easily find a formula for the Fibonacci

Sequence. [
Fn+1

Fn

]
= An

[
1

0

]

=
1√
5

[
φ φ̄

1 1

][
φ 0

0 φ̄

]n [
1 −φ̄

−1 φ

][
1

0

]

Now, we just multiply, right to left.
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[
Fn+1

Fn

]
=

1√
5

[
φ φ̄

1 1

][
φn 0

0 φ̄n

][
1 −φ̄

−1 φ

][
1

0

]

=
1√
5

[
φ φ̄

1 1

][
φn 0

0 φ̄n

][
1

−1

]

=
1√
5

[
φ φ̄

1 1

][
φn

−φ̄n

]

=
1√
5

[
φn+1 − φ̄n+1

φn − φ̄n

]

Comparing terms of each vector, we can conclude that Fn = 1√
5
(φn − φ̄n) .

2.5 F45

Using Wolfram Alpha, we get that

1√
5
(φ45 − φ̄45) = 1, 134, 903, 170
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