CTY LIN: Matrix Exponentials and the Fibonacci Sequence

Daniel Rui

1 Matrix Exponentials

Reminders: Based on the Taylor Series for e”, and replacing x with a matrix, A, we get a way to
calculate e to some matrix:
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1.1 Compute e

Notice that (0,,)™ = 0,,.

e =1, 4+0,+0,+...=1,

1.2 Compute e!*

Notice that (I,)™ = I, since I, A = A.
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e =1, +1,+ )
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1.3 Show that sometimes e4e? # eA+E

We are given:



Also, because A3 = 03 and likewise for B, A™ for n > 3 will also be zero, because no matter what

you multiply with the zero matrix, it will also be the zero matrix (likewise for B).

e is as follows:
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OK. For part two, we first need to calculate A + B.
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Now for the exponential:
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And because [0 1 6 | # |0 1 6 |, e“eP is not necessarily equal to eAT5.
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1.4 Show that e’ =
0 0 ... ek
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Matrix multiplication is defined as (AB);; = ZAikBkj. In the case of D, the diagonal matrix,
k=1

every term except the terms of the form Ay are zero, so the only terms in D™ will be the terms of

the form Ay, and those terms are going to be (Dgx)™. So when we raise the diagonal matrix D to

any integer power, we are going to get



0 dy" 0
Dni . .
0 0 dp"
Now, we are ready to tackle this problem.
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The same reasoning can be applied to prove that (eP)s = e®, (eP)33 = e, and so on, up to

(€P)pn = €. Thus,
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1.5 Show that ¢4 = PeP P!

The key insight here is that A® = PD"P~!. When we raise A", we put lots of PDP~! back to back,
causing the P~!P to annihilate, thus leaving the P and P~! on the ends and exactly n matrices D

stuck between them.
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2 The Fibonacci Sequence

Reminders: The Fibonacci Sequence recursion F,, = F,,_1+ F},,_5 can be represented using matrices,
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where 7, = :
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F,
HH] and A =
F,

2.1 Finding the eigenvalues

The eigenvalues of A:

i

Via the quadratic formula, we get that A = 112\/57 or A=, A=

2.2 Finding the eigenvectors
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The first eigenvector of A:
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h] is a eigenvector. The second is:
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And

Yl} is the other eigenvector.

2.3 Diagonalize A

We know that A = PDP~! is true when P is a matrix of the eigenvectors of A and D is a matrix

with the eigenvalues on the diagonal. We can verify that A is in fact PDP~!.
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2.4 Fibonacci Formula

Now that we have an efficient way of raising A™, we can easily find a formula for the Fibonacci

Sequence.
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Now, we just multiply, right to left.
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Comparing terms of each vector, we can conclude that F, = %((p" —¢™) 0O
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Using Wolfram Alpha, we get that

(p* — ¢*) = 1,134,903, 170
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