The Reciprocal of the Primes

Daniel Rui

Before we go to primes, we first must visit several other sums, the first of which, is

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

1 Reciprocal of Natural Numbers

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots
$$

We can see that the 9 numbers (1 to $1 / 9$) are each greater than $1 / 10$. Thus, adding up the numbers (1 to $1 / 9$) are definitely greater than $9 \cdot \frac{1}{10}=\frac{9}{10}$. We can repeat this logic for numbers ($1 / 10$ to $1 / 99$), reasoning that all ninety of these numbers are greater than $1 / 100$, thus the sum of these 90 numbers is greater than $90 / 100=9 / 10$. We can use this logic with the numbers $(1 / 100$ to $1 / 999)$ and so on, so that we can write

$$
\sum_{n=1}^{\infty} \frac{1}{n}>\underbrace{\frac{9}{10}}_{1 \ldots \frac{1}{9}}+\underbrace{\frac{9}{10}}_{\frac{1}{10} \cdots \frac{1}{99}}+\ldots=\infty
$$

We can see that we are approaching infinity at the speed of a logarithm (from our number ranges of $1 / 10$ to $1 / 100$ and so on with powers of ten), so we can write our sum as

2 Reciprocals of Squares

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

A good way to evaluate this famous sum (see Basel Problem) is to bring back our old friend, the digamma function, ψ.

$$
\psi^{\prime}(z)=\frac{d^{2}}{d z^{2}} \ln (\Gamma(z))=\sum_{n=0}^{\infty} \frac{1}{(n+z)^{2}}
$$

We can let $z=1-z$ and $n=-n-1$ to change our sum to be

$$
\psi^{\prime}(1-z)=\frac{d^{2}}{d z^{2}} \ln (\Gamma(1-z))=\sum_{n=-1}^{-\infty} \frac{1}{(-n-1+1-z)^{2}}=\sum_{n=-1}^{-\infty} \frac{1}{(n+z)^{2}}
$$

Adding the sums together, we get

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(n+z)^{2}}=\frac{d^{2}}{d z^{2}} \ln (\Gamma(1-z))+\frac{d^{2}}{d z^{2}} \ln (\Gamma(z))
$$

The sum of the derivatives is the derivative of the sum, so

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} \frac{1}{(n+z)^{2}}=\frac{d^{2}}{d z^{2}} \ln (\Gamma(1-z))+\ln (\Gamma(z)) \\
= & \frac{d^{2}}{d z^{2}} \ln (\Gamma(1-z) \Gamma(z))=\frac{d^{2}}{d z^{2}} \ln \left(\frac{\pi}{\sin (\pi z)}\right)=\frac{\pi^{2}}{\sin ^{2} \pi z}
\end{aligned}
$$

Subtracting $1 / z^{2}$ from both sides and taking the limit as $z \rightarrow 0$

$$
2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\lim _{z \rightarrow 0}\left(\frac{\pi^{2}}{\sin ^{2} \pi z}-\frac{1}{z^{2}}\right)=\frac{\pi^{2}}{3}
$$

meaning that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

3 Reciprocals of Primes

Before we talk about primes, we will talk about another way of writing $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$. We can sieve out all thr primes by doing the following: we factor out all the multiples of two

$$
\left(1-\frac{1}{2^{s}}\right) \sum_{n=1}^{\infty} \frac{1}{n^{s}}=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\ldots
$$

Then we take out all the multiples of three

$$
\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{2^{s}}\right) \sum_{n=1}^{\infty} \frac{1}{n^{s}}=1+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\ldots
$$

If we do this for all the primes, sieving away all the numbers prime by prime, we get that

$$
\left(\prod_{p} 1-\frac{1}{p^{s}}\right) \sum_{n=1}^{\infty} \frac{1}{n^{s}}=1
$$

meaning that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
$$

setting $s=1$, we get

$$
\sum_{n=1}^{\infty} \frac{1}{n}=\prod_{p} \frac{1}{1-\frac{1}{p}}
$$

Taking the log of both sides,

$$
\ln \left(\sum_{n=1}^{\infty} \frac{1}{n}\right)=\sum_{p} \ln \left(\frac{1}{1-\frac{1}{p}}\right)
$$

and simplifying

$$
\ln \ln \infty=-\sum_{p} \ln \left(1-\frac{1}{p}\right)
$$

The Taylor series of $\ln (1-x)$ is

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\ldots-\frac{x^{n}}{n}-\ldots
$$

meaning that

$$
-\sum_{p} \ln \left(1-\frac{1}{p}\right)=\sum_{p}\left(\frac{1}{p}+\frac{1}{2 p^{2}}+\frac{1}{3 p^{3}}+\ldots\right)=\sum_{p} \frac{1}{p}+\frac{1}{2} \sum_{p} \frac{1}{p^{2}}+\frac{1}{3} \sum_{p} \frac{1}{p^{3}}+\ldots
$$

We denote

$$
S=\frac{1}{2} \sum_{p} \frac{1}{p^{2}}+\frac{1}{3} \sum_{p} \frac{1}{p^{3}}+\ldots
$$

We know that

$$
\frac{1}{2} \sum_{p} \frac{1}{p^{2}}>\sum_{p} \frac{1}{p^{3}}
$$

because 2 is the smallest prime, so $2 p^{2} \leq p^{3}$, so $\frac{1}{2 p^{2}} \geq \frac{1}{p^{3}}$. Multiplying both sides by $1 / 3$, we get $\frac{1}{6 p^{2}} \geq \frac{1}{3 p^{3}}$, and because $1 / 4>1 / 6$, it is obvious that

$$
\frac{1}{4} \sum_{p} \frac{1}{p^{2}} \geq \frac{1}{3} \sum_{p} \frac{1}{p^{3}}
$$

In general,

$$
\frac{1}{2^{n-1}} \sum_{p} \frac{1}{p^{2}}>\frac{1}{n} \sum_{p} \frac{1}{p^{n}}
$$

Because

$$
\frac{1}{2^{n-2}} \sum_{p} \frac{1}{p^{2}} \geq \sum_{p} \frac{1}{p^{n}}
$$

and

$$
\frac{1}{2}>\frac{1}{n}
$$

Doing a term by term comparison, we see that

$$
S<\frac{1}{2} \sum_{p} \frac{1}{p^{2}}+\frac{1}{4} \sum_{p} \frac{1}{p^{2}}+\frac{1}{8} \sum_{p} \frac{1}{p^{2}}+\frac{1}{16} \sum_{p} \frac{1}{p^{2}}+\ldots
$$

This is just a geometric series! Simplifying the sum, we get

$$
S<\sum_{p} \frac{1}{p^{2}}
$$

which is obviously less than $\sum_{n=1}^{\infty} \frac{1}{n^{2}}-1$, where the one is from $1 / 1$, because 2 is the smallest prime number, so

$$
S<\frac{\pi^{2}}{6}-1
$$

Going back to the original expression, we get

$$
\ln \ln \infty=\sum_{p} \frac{1}{p}+\text { tiny number }
$$

WHICH MEANS THAT $\sum_{p} \frac{1}{p}$ APPROACHES ∞ AT THE SPEED OF $\ln \ln x!!!$

