The Reciprocal of the Primes
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Before we go to primes, we first must visit several other sums, the first of which, is
>
n=1 n

1 Reciprocal of Natural Numbers

We can see that the 9 numbers (1 to 1/9) are each greater than 1/10. Thus, adding up the numbers

(1 to 1/9) are definitely greater than 9 - % = 1%. We can repeat this logic for numbers (1/10 to

1/99), reasoning that all ninety of these numbers are greater than 1/100, thus the sum of these 90

numbers is greater than 90/100 = 9/10. We can use this logic with the numbers (1/100 to 1/999)

and so on, so that we can write
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We can see that we are approaching infinity at the speed of a logarithm (from our number ranges

of 1/10 to 1/100 and so on with powers of ten), so we can write our sum as



2 Reciprocals of Squares
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A good way to evaluate this famous sum (see Basel Problem) is to bring back our old friend, the

digamma function, .
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We can let z =1 — z and n = —n — 1 to change our sum to be
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Adding the sums together, we get
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The sum of the derivatives is the derivative of the sum, so
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Subtracting 1/z? from both sides and taking the limit as z — 0

o0
1 2 1 2
2 — =1 - )=
nz::l n2 250 (sin2 Tz Z2> 3

meaning that

2
—n 6



3 Reciprocals of Primes

Before we talk about primes, we will talk about another way of writing E — . We can sieve out
n
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all thr primes by doing the following: we factor out all the multiples of two
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setting s = 1, we get
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Taking the log of both sides,
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and simplifying
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The Taylor series of In(1 — z) is

meaning that
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We denote

We know that
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because 2 is the smallest prime, so 2p? < p?, so 27 > —. Multiplying both sides by 1/3, we get
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Doing a term by term comparison, we see that
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This is just a geometric series! Simplifying the sum, we get
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which is obviously less than E — — 1, where the one is from 1 /1, because 2 is the smallest prime
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number, so

Going back to the original expression, we get
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WHICH MEANS THAT Zl APPROACHES oo AT THE SPEED OF Inln z!!!
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