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Before we go to primes, we first must visit several other sums, the first of which, is

∞∑
n=1

1

n

1 Reciprocal of Natural Numbers

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ . . .

We can see that the 9 numbers (1 to 1/9) are each greater than 1/10. Thus, adding up the numbers

(1 to 1/9) are definitely greater than 9 · 1
10 = 9

10 . We can repeat this logic for numbers (1/10 to

1/99), reasoning that all ninety of these numbers are greater than 1/100, thus the sum of these 90

numbers is greater than 90/100 = 9/10. We can use this logic with the numbers (1/100 to 1/999)

and so on, so that we can write

∞∑
n=1

1

n
>

9

10︸︷︷︸
1... 19

+
9

10︸︷︷︸
1
10 ...

1
99

+ . . . = ∞

We can see that we are approaching infinity at the speed of a logarithm (from our number ranges

of 1/10 to 1/100 and so on with powers of ten), so we can write our sum as
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2 Reciprocals of Squares

∞∑
n=1

1

n2

A good way to evaluate this famous sum (see Basel Problem) is to bring back our old friend, the

digamma function, ψ.

ψ′(z) =
d2

dz2
ln(Γ(z)) =

∞∑
n=0

1

(n+ z)2

We can let z = 1− z and n = −n− 1 to change our sum to be

ψ′(1− z) =
d2

dz2
ln(Γ(1− z)) =

−∞∑
n=−1

1

(−n− 1 + 1− z)2
=

−∞∑
n=−1

1

(n+ z)2

Adding the sums together, we get

∞∑
n=−∞

1

(n+ z)2
=

d2

dz2
ln(Γ(1− z)) +

d2

dz2
ln(Γ(z))

The sum of the derivatives is the derivative of the sum, so

∞∑
n=−∞

1

(n+ z)2
=

d2

dz2
ln(Γ(1− z)) + ln(Γ(z))

=
d2

dz2
ln(Γ(1− z)Γ(z)) =

d2

dz2
ln

(
π

sin(πz)

)
=

π2

sin2 πz

Subtracting 1/z2 from both sides and taking the limit as z → 0

2
∞∑

n=1

1

n2
= lim

z→0

(
π2

sin2 πz
− 1

z2

)
=
π2

3

meaning that
∞∑

n=1

1

n2
=
π2

6
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3 Reciprocals of Primes

Before we talk about primes, we will talk about another way of writing
∞∑

n=1

1

ns
. We can sieve out

all thr primes by doing the following: we factor out all the multiples of two

(
1− 1

2s

) ∞∑
n=1

1

ns
= 1 +

1

3s
+

1

5s
+ . . .

Then we take out all the multiples of three

(
1− 1

3s

)(
1− 1

2s

) ∞∑
n=1

1

ns
= 1 +

1

5s
+

1

7s
+ . . .

If we do this for all the primes, sieving away all the numbers prime by prime, we get that

(∏
p

1− 1

ps

) ∞∑
n=1

1

ns
= 1

meaning that
∞∑

n=1

1

ns
=
∏
p

1

1− 1
ps

setting s = 1, we get
∞∑

n=1

1

n
=
∏
p

1

1− 1
p

Taking the log of both sides,

ln

( ∞∑
n=1

1

n

)
=
∑
p

ln

(
1

1− 1
p

)

and simplifying

ln ln∞ = −
∑
p

ln

(
1− 1

p

)
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The Taylor series of ln(1− x) is

ln(1− x) = −x− x2

2
− . . .− xn

n
− . . .

meaning that

−
∑
p

ln

(
1− 1

p

)
=
∑
p

(
1

p
+

1

2p2
+

1

3p3
+ . . .

)
=
∑
p

1

p
+

1

2

∑
p

1

p2
+

1

3

∑
p

1

p3
+ . . .

We denote

S =
1

2

∑
p

1

p2
+

1

3

∑
p

1

p3
+ . . .

We know that

1

2

∑
p

1

p2
>
∑
p

1

p3

because 2 is the smallest prime, so 2p2 ≤ p3, so
1

2p2
≥ 1

p3
. Multiplying both sides by 1/3, we get

1

6p2
≥ 1

3p3
, and because 1/4 > 1/6, it is obvious that

1

4

∑
p

1

p2
≥ 1

3

∑
p

1

p3

In general,

1

2n−1

∑
p

1

p2
>

1

n

∑
p

1

pn

Because

1

2n−2

∑
p

1

p2
≥
∑
p

1

pn

and

1

2
>

1

n
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Doing a term by term comparison, we see that

S <
1

2

∑
p

1

p2
+

1

4

∑
p

1

p2
+

1

8

∑
p

1

p2
+

1

16

∑
p

1

p2
+ . . .

This is just a geometric series! Simplifying the sum, we get

S <
∑
p

1

p2

which is obviously less than
∞∑

n=1

1

n2
− 1, where the one is from 1/1, because 2 is the smallest prime

number, so

S <
π2

6
− 1

Going back to the original expression, we get

ln ln∞ =
∑
p

1

p
+ tiny number

WHICH MEANS THAT
∑
p

1

p
APPROACHES ∞ AT THE SPEED OF ln lnx!!!
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