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1 Factorials

Reminders: The factorial is defined as n! = n · (n− 1) · · · 2 · 1, and the gamma function is defined as∫ ∞

0

tx−1e−t d =
x!

x

1.1 The Infinite Product

The factorial function can also be represented as an infinite product. To start, we must accept that

for any integer m,

lim
n→∞

n!(n+ 1)m

(n+m)!
= 1

This makes sense because both the top and the bottom have a nm term. It turns out that this also

holds for any complex number z.

1 = lim
n→∞

n!(n+ 1)z

(n+ z)!

Multiplying both sides by z!

z! = lim
n→∞

n!
z!

(n+ z)!
(n+ 1)z

Simplifying, we get

z! = lim
n→∞

1 · · · n
(1 + z) · · · (n+ z)

(n+ 1)z
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Condensing into product notation, we get

z! = lim
n→∞

(
n∏

i=1

i

i+ z

)
(n+ 1)z

We can express (n + 1)z as
∏∞

i=1
(n+1)z

nz which becomes obvious when we write out the product

2
1 ·

3
2 ·

4
3 . . . ·

(n+1)z

nz where everything cancels except for lim
n→∞

(n+1)z. Condensing the product further

we get

z! =
∞∏

n=1

n

n+ z

(n+ 1)z

nz

We will write this as the equivalent expression

z! =

∞∏
n=1

1

1 + z
n

(
1 +

1

n

)z

=

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

Using this definition, the Gamma Function can be written as

Γ(z) =
1

z

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

1.2 The Digamma Function

The digamma function ψ is defined as the derivative of the log gamma function; d
dx ln(Γ(x)).

ln(Γ(z)) = ln

(
1

z

∞∏
n=1

(1 + 1
n )

z

1 + z
n

)

Using log rules, we get

− ln(z) +
∞∑

n=1

z ln

(
1 +

1

n

)
− ln

(
1 +

z

n

)
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Now taking the derivative with respect to z

−1

z
+

∞∑
n=1

ln

(
1 +

1

n

)
−

1
n

1 + z
n

And simplifying we get

ψ = −1

z
+

∞∑
n=1

ln

(
1 +

1

n

)
− 1

n+ z

For our purposes, the derivative of digamma function is more useful; ψ′

ψ′ =
1

z2
+

∞∑
n=1

1

(n+ z)2
=

∞∑
n=0

1

(n+ z)2

Now, if we find an approximation to the sum of reciprocal of squares, we can approximate the gamma

function.

1.3 Approximating ψ′

To approximate ψ′, we will use
∑

1
n2 just for ease of writing and notation. We can write

∑
1
n2 as a

sum of telescopic series, helping us approximate it.

∑ 1

n2
=
∑ 1

n(n+ 1)
+
∑ 1

n2(n+ 1)

=
∑(

1

n
− 1

n+ 1

)
+
∑ 1

n2(n+ 1)

The next telescopic term is
∑(

1
n2 − 1

(n+1)2

)
=
∑

2n+1
n2(n+1)2 . Now we can design the series for the

leftover term from above:
∑

1
n2(n+1) .

∑
1

n2(n+1) −
∑

2n+1
n2(n+1)2 =

∑
n

n2(n+1)2 doesn’t work because

there is an n left in the numerator, so we do
∑

1
n2(n+1) −

1
2

∑
2n+1

n2(n+1)2 = 1
2

∑
1

n2(n+1)2

∑ 1

n2(n+ 1)
=

1

2

∑ 2n+ 1

n2(n+ 1)2
+

1

2

∑ 1

n2(n+ 1)2∑ 1

n2
=
∑(

1

n
− 1

n+ 1

)
+

1

2

∑(
1

n2
− 1

(n+ 1)2

)
+

1

2

∑ 1

n2(n+ 1)2

3



The next telescopic term is
∑(

1
n3 − 1

(n+1)3

)
=
∑

3n2+3n+1
n3(n+1)3 . Now we can design the series for the

leftover term from above: 1
2

∑
1

n2(n+1)2 . We will leave the 1
2 out for now and add it back on later.∑

1
n2(n+1)2 − 1

3

∑
3n2+3n+1
n3(n+1)3 = − 1

3

∑
1

n3(n+1)3 . The
1
3 was put there to cancel out the n2 and n and

just leave the constant term. After we bring back the one half, and simplify, we get

∑ 1

n2
=
∑(

1

n
− 1

n+ 1

)
+

1

2

∑(
1

n2
− 1

(n+ 1)2

)
+

1

6

∑(
1

n3
− 1

(n+ 1)3

)
− 1

6

∑ 1

n3(n+ 1)3

The next telescopic term is
∑(

1
n4 − 1

(n+1)4

)
=
∑

4n3+6n2+4n+1
n4(n+1)4 . However,

∑
1

n3(n+1)3 −∑
4n3+6n2+4n+1

n4(n+1)4 will always have an n3 in the numerator, so we move on. From now on, Ta will

signify
∑(

1
na − 1

(n+1)a

)
to save space and effort.

The next telescopic term is T5 = 5n4+10n3+10n2+5n+1
n5(n+1)5 . Now we can design the series for the

leftover term from above: − 1
6

∑
1

n3(n+1)3 . We will leave the −1
6 out for now and add it back on

later.
∑

1
n3(n+1)3 − 1

5
5n4+10n3+10n2+5n+1

n5(n+1)5 = −1
5

∑
5n2+5n+1
n5(n+1)5 . We added the 1

5 to cancel out the n4

and n3. After we bring back the −1
6 , and simplify, we get

∑ 1

n2
= T1 +

1

2
T2 +

1

6
T3 −

1

30
T5 +

1

30

∑ 5n2 + 5n+ 1

n5(n+ 1)5

Now that we have enough precision in our approximation for
∑

1
n2 , we can clarify the bounds of

the sum and evaluate Ta. We redefine Ta =
∑∞

n=z

(
1
na − 1

(n+1)a

)
, and using the folding properties

of telescopic sums, we get that

∞∑
n=z

1

n2

(
aka

∞∑
n=0

1

(n+ z)2

)
=

1

z
+

1

2z2
+

1

6z3
− 1

30z5
+ . . .

Which we can write in terms of ψ′ as

ψ′ =
1

z
+

1

2z2
+

1

6z3
− 1

30z5
+ . . .

4



1.4 Integrating Back to Γ

We will use big-O notation from now on, which looks like this: ψ′ = 1
z + 1

2z2 + 1
6z3 +O

(
1
z5

)
which

means that there are higher order terms starting with some constant times 1
z5 . Back to integration.

Integrating with respect to z, we get

ψ

(
aka

d

dz
ln(Γ(z))

)
= ln(z)− 1

2z
− 1

12z2
+O

(
1

z4

)
+ c1

Integrating again with respect to z

ln(Γ(z)) = z ln(z)− z − 1

2
ln(z) +

1

12z
+O

(
1

z3

)
+ c1z + c2

Grouping terms together

ln(Γ(z)) =

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c1z + c2

On the first page of this document, I wrote the defining characteristic of the gamma function:

Γ(z) = z!
z or in other words Γ(z+1)

Γ(z) = z. Now taking the logarithm of both sides, we get ln Γ(z +

1)− ln Γ(z) = ln z. Using the equation above, we get

(
(z + 1)− 1

2

)
ln(z + 1)− (z + 1) +

1

12(z + 1)
+O

(
1

z3

)
+ c1(z + 1) + c2

−
((

z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c1z + c2

)
= ln z

And distributing the negatives and simplifying a bit, we get

(
z +

1

2

)
ln(z + 1)− z − 1 +

1

12(z + 1)
+O

(
1

z3

)
+ c1z + c1 + c2

−
(
z − 1

2

)
ln(z) + z − 1

12z
+O

(
1

z3

)
− c1z − c2 = ln z
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And simplifying more,

(
z +

1

2

)
ln(z + 1)−

(
z − 1

2

)
ln(z) +

1

12(z + 1)
− 1

12z
+O

(
1

z3

)
+ c1 − 1 = ln z

Subtracting the ln z from the right side (being extremely careful of the minus signs everywhere of

course), and grouping terms together

(
z +

1

2

)
(ln(z + 1)− ln(z)) +

1

12(z + 1)
− 1

12z
+O

(
1

z3

)
+ c1 − 1 = 0

Now as we take the limit as z goes to infinity, we get

lim
z→∞

(
z +

1

2

)
(ln(z + 1)− ln(z)) + c1 − 1 = 0

Using log properties,

lim
z→∞

ln

(
1 +

1

z

)z+ 1
2

+ c1 − 1 = 0

And as one of the major definitions of e = limz→∞
(
1 + 1

z

)z
, the limit evaluates to

ln e+ c1 − 1 = 1 + c1 − 1 = c1 = 0

Plugging in c1

ln(Γ(z)) =

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c2

We still have the c2 constant, which we will figure out using Legendre’s Duplication Formula:

Γ(x)Γ

(
x+

1

2

)
=

√
π21−2xΓ(2x)
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2 Legendre’s Duplication Formula

To prove the duplication formula, we first begin with our old friend, the gamma reflection formula.

Γ(z)Γ(1− z) =
π

sin(πz)
(1)

Secondly, we establish an identity for a product of sines:

n−1∏
k=1

sin

(
kπ

n

)
=

n

2n−1
(2)

The famous complex exponential formula gives us that eiθ = cos(θ) + i sin(θ). If we use −θ instead

of θ, we get e−iθ = cos(θ) − i sin(θ). If we subtract the second from the first, we get eiθ − e−iθ =

2i sin(θ) → 1
2i (e

iθ − e−iθ) = sin(θ) and plugging in θ = kπ
n , we get

1

2i
(ei

kπ
n − e−i kπ

n ) = sin(
kπ

n
)

Plugging into the product above
n−1∏
k=1

1

2i
(ei

kπ
n − e−i kπ

n )

Manipulating, we get

1

2n−1

n−1∏
k=1

ei
kπ
n

i
(1− e−2i kπ

n )
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We know from looking at roots of unity that

zn − 1 =

n∏
k=1

(z − e2i
kπ
n )

where e2i
kπ
n are the roots of unity, just like z4 − 1 = (z − 1)(z + 1)(z − 1)(z + i) =

∏4
k=1(z − e2i

kπ
4 )

where 1,−1, i,−i are the fourth roots of unity. Also, note that
∏n

k=1(z−e2i
kπ
n ) =

∏n
k=1(z−e−2i kπ

n )

due to the symmetry of the unit circle; one goes clockwise from zero, one goes counterclockwise.

Rearranging the formula a bit, we get

zn − 1 =
n−1∏
k=1

(z − e−2i kπ
n ) · (z − e−2iπ) → zn − 1 =

n−1∏
k=1

(z − e−2i kπ
n ) · (z − 1)

which we can write as

zn − 1

z − 1
=

n−1∏
k=1

(z − e−2i kπ
n )

Taking the limit as z → ∞, using L’Hopital’s rule, we get

n =

n−1∏
k=1

(1− e−2i kπ
n )

Plugging in above, we get

n

2n−1

n−1∏
k=1

ei
kπ
n

i

n−1∏
k=1

ei
kπ
n

i
evaluates to

exp(
∑n−1

k=1
iπ
n (1 + 2 + 3 + . . .+ (n− 1)))

in−1

which is just

exp( iπn
n(n−1)

2 )

in−1
=

exp(iπ)(n−1
2 )

in−1
=

(−1)
n−1
2

in−1
=
in−1

in−1
= 1
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And finally, going back to the beginning, we get

n−1∏
k=1

sin

(
kπ

n

)
=

n

2n−1

Now that we have all our identities written out, we will begin. We define a function f(x)

f(x) =
n−1∏
k=0

Γ

(
x+

k

n

)
(3)

Multiplying by x and manipulating, we get

x f(x) = x

n−1∏
k=0

Γ

(
x+

k

n

)

= xΓ(x)

n−1∏
k=1

Γ

(
x+

k

n

)

= Γ(x+ 1)
n−2∏
k=0

Γ

(
x+

k + 1

n

)

= Γ

(
x+

(n− 1) + 1

n

) n−2∏
k=0

Γ

(
x+

k + 1

n

)

=
n−1∏
k=0

Γ

(
x+

k + 1

n

)

=
n−1∏
k=0

Γ

((
x+

1

n

)
+
k

n

)

= f

(
x+

1

n

)

Changing the variable x = x
n , we get

x

n
f
(x
n

)
= f

(
x+ 1

n

)
(4)
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Multiplying nx+1 1

nf( 1
n )

on both sides

xnxf
(x
n

) 1

nf
(
1
n

) = nx+1f

(
x+ 1

n

)
1

nf
(
1
n

)
And if we set G(x) = nxf

(
x
n

)
1

nf( 1
n )

, we get that

xG(x) = G(x+ 1)

Which is the gamma function identity! This hints that G(x) = Γ(x). A fully rigorous proof of

G(x) = Γ(x) can be acheived through the Bohr-Mollerup Theorem, a theorem I will not prove in

this paper. We can set

Γ(x) = nxf
(x
n

) 1

nf
(
1
n

)
And manipulating, we get

f
(x
n

)
= nf

(
1

n

)
Γ(x)

nx
(5)

To find f
(
1
n

)
, we first find f2

(
1
n

)
.

f2
(
1

n

)
=

n−1∏
k=1

Γ

(
k

n

)
Γ

(
1− k

n

)

where

n−1∏
k=1

Γ

(
k

n

)
=

n−1∏
k=0

Γ

(
1

n
+
k

n

)
because Γ(

(
n
n

)
= Γ(

(
1− 0

n

)
= 1 and

n−1∏
k=1

Γ

(
k

n

)
=

n−1∏
k=1

Γ

(
1− k

n

)
because of symmetry. Using the reflection formula, (1), we get

f2
(
1

n

)
=

n−1∏
k=1

π

sin(kπ/n)
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Simplifying and using the product of sines, (2), we get

f2
(
1

n

)
=

1

n
2n−1πn−1

Square rooting and multiplying by the n in (5)

f
(x
n

)
=

√
n2n−1πn−1

Γ(x)

nx

and finally variable change x = nx, we get Gauss’s multiplication formula, or the generalized version

of the duplication formula

f(x) =
n−1∏
k=0

Γ

(
x+

k

n

)
=

√
n2n−1πn−1

Γ(nx)

nnx
(6)

Setting n = 2, we get the duplication formula.

Γ(x)Γ

(
x+

1

2

)
=

√
π21−2xΓ(2x)

3 The Grand Finale

Taking the natural log of the duplication formula

ln (Γ(x)) + ln

(
Γ

(
x+

1

2

))
= ln

√
π + ln(21−2x) + ln(Γ(2x))
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Taking our approximation of ln Γ(x) from Section 1

ln(Γ(z)) =

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c2

and pluggin it in the log duplication formula, we get

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c2

+ z ln(z +
1

2
)− z − 1

2
+

1

12z + 6
+O

(
1

z3

)
+ c2

= ln
√
π + ln(21−2x) +

(
2z − 1

2

)
ln(2z)− z +

1

24z
+O

(
1

z3

)
+ c2

Distributing and using log rules, we get

z ln(z)− 1

2
ln(z)− z +

1

12z
+O

(
1

z3

)
+ c2

+ z ln(z +
1

2
)− z − 1

2
+

1

12z + 6
+O

(
1

z3

)
+ c2

= ln
√
π + (1− 2z) ln(2) +

(
2z − 1

2

)
ln(2) + 2z ln(z)− 1

2
ln(z)− 2z +

1

24z
+O

(
1

z3

)
+ c2

Simplifying,

z ln(z +
1

2
)− z ln(z)− 1

2
+O

(
1

z

)
+ c2 = ln

√
π +

1

2
ln(2)

Simplifying more,

ln

(
z + 1

2

z

)z

− 1

2
+O

(
1

z

)
+ c2 = ln

√
2π

And taking the limit as z → ∞

ln
(
e

1
2

)
− 1

2
+ 0 + c2 = ln

√
2π → c2 = ln

√
2π
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And putting everything back together, we have

ln(Γ(z)) =

(
z − 1

2

)
ln(z)− z +

1

12z
+O

(
1

z3

)
+ ln

√
2π

And exponentiating both sides,

Γ(z) = zz−
1
2 · e−z · exp

(
1

12z
+O

(
1

z3

))
· eln

√
2π

And simplifying, we get

Γ(z) =

√
2π

z

(z
e

)z
exp

(
1

12z
+O

(
1

z3

))

AND BECAUSE z! = zΓ(z), WE GET

z! =
√
2πz

(z
e

)z
exp

(
1

12z
+O

(
1

z3

))

and we are done.
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