Stirling’s Aproximation for the Factorial

Daniel Rui

1 Factorials

Reminders: The factorial is defined as n!l =n-(n—1)---2-1, and the gamma function is defined as
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1.1 The Infinite Product

The factorial function can also be represented as an infinite product. To start, we must accept that

for any integer m,
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This makes sense because both the top and the bottom have a n™ term. It turns out that this also

holds for any complex number z.
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Multiplying both sides by z!
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Simplifying, we get
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Condensing into product notation, we get
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We can express (n + 1)* as [[;2; (nzzl)z

which becomes obvious when we write out the product

2.3.2... ("H) where everything cancels except for lim (n+1)*. Condensing the product further
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We will write this as the equivalent expression
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Using this definition, the Gamma Function can be written as
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1.2 The Digamma Function

The digamma function ¢ is defined as the derivative of the log gamma function; = In(I'(z))

Using log rules, we get
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Now taking the derivative with respect to z
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And simplifying we get
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For our purposes, the derivative of digamma function is more useful; 1’
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Now, if we find an approximation to the sum of reciprocal of squares, we can approximate the gamma

function.
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1.3 Approximating v’

To approximate ', we will use > # just for ease of writing and notation. We can write >

sum of telescopic series, helping us approximate it.
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The next telescopic term is (% — ﬁ) = PEICERIEa Now we can design the series for the

leftover term from above: 3 m We will leave the 1 out for now and add it back on later.
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just leave the constant term. After we bring back the one half, and simplify, we get
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The next telescopic term is > <n4 (n+1)4) = G However, > T
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% will always have an n? in the numerator, so we move on. From now on, 7, will
signify Y (% — ﬁ) to save space and effort.
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The next telescopic term is Ty = 52 +107?5('51017;5+5"+1. Now we can design the series for the
leftover term from above: —% > m We will leave the —% out for now and add it back on
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and n3. After we bring back the —%, and simplify, we get
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Now that we have enough precision in our approximation for ) #, we can clarify the bounds of

the sum and evaluate T,. We redefine T, = > 7 ( L1 ), and using the folding properties
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of telescopic sums, we get that
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Which we can write in terms of ¢’ as
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1.4 Integrating Back to I'

We will use big-O notation from now on, which looks like this: ¢’ = % + ﬁ + # + 0O (z%,) which
means that there are higher order terms starting with some constant times Zis Back to integration.

Integrating with respect to z, we get

Integrating again with respect to z
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Grouping terms together
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On the first page of this document, I wrote the defining characteristic of the gamma function:

I'(z) = 2 or in other words F;Z(er)l) = z. Now taking the logarithm of both sides, we get InI'(z +

1) = InT'(z) = Inz. Using the equation above, we get
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And distributing the negatives and simplifying a bit, we get
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And simplifying more,

1 1 1 1 1
+-In(z+1)—2z2— < )1 + - —+ — | +ta—-1=1
<Z 2) a(z+1) (Z 2) n(z) 12(z+1) 12z © (z?’) “ ne

Subtracting the Inz from the right side (being extremely careful of the minus signs everywhere of

course), and grouping terms together
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Now as we take the limit as z goes to infinity, we get
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Using log properties,
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And as one of the major definitions of e = lim,_, o, (1 + ﬁ)z, the limit evaluates to
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Plugging in ¢;
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We still have the co constant, which we will figure out using Legendre’s Duplication Formula:



2 Legendre’s Duplication Formula

To prove the duplication formula, we first begin with our old friend, the gamma reflection formula.

Secondly, we establish an identity for a product of sines:
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The famous complex exponential formula gives us that e? = cos(#) + isin(#). If we use —6 instead

of 0, we get =¥ = cos(#) — isin(f). If we subtract the second from the first, we get ¢ — e

2isin(f) — & (e — e~) =sin(f) and plugging in = ™ we get

2%

Plugging into the product above

Manipulating, we get
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We know from looking at roots of unity that

where €2 are the roots of unity, just like 2* — 1= (z = 1)(z + 1)(z — 1)(2 +1i) = Hizl(z - eQi%)
where 1, —1,4, —i are the fourth roots of unity. Also, note that [[,_,(z — e = [T (z— e‘gi%r)
due to the symmetry of the unit circle; one goes clockwise from zero, one goes counterclockwise.

Rearranging the formula a bit, we get
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which we can write as
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Taking the limit as z — oo, using L’Hopital’s rule, we get

Plugging in above, we get
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And finally, going back to the beginning, we get
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Now that we have all our identities written out, we will begin. We define a function f(x)

Multiplying by & and manipulating, we get
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Changing the variable z = =, we get



Multiplying n“‘lWl) on both sides
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And if we set G(z) =n*f (%) nf%i)’ we get that

2G(z) = G(x + 1)

Which is the gamma function identity! This hints that G(x) = ['(z). A fully rigorous proof of

G(z) = I'(z) can be acheived through the Bohr-Mollerup Theorem, a theorem I will not prove in

this paper. We can set

And manipulating, we get

To find f (%), we first find f2 (%)
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because of symmetry. Using the reflection formula, (1), we get
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Simplifying and using the product of sines, (2), we get
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Square rooting and multiplying by the n in (5)

and finally variable change x = nx, we get Gauss’s multiplication formula, or the generalized version

of the duplication formula
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Setting n = 2, we get the duplication formula.

3 The Grand Finale

Taking the natural log of the duplication formula
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Taking our approximation of InT'(z) from Section 1
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and pluggin it in the log duplication formula, we get
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Distributing and using log rules, we get
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Simplifying,
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Simplifying more,
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And taking the limit as z — oo
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And putting everything back together, we have
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And exponentiating both sides,
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And simplifying, we get

and we are done.
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