Stirling's Aproximation for the Factorial

Daniel Rui

1 Factorials

Reminders: The factorial is defined as $n!=n \cdot(n-1) \cdots 2 \cdot 1$, and the gamma function is defined as $\int_{0}^{\infty} t^{x-1} e^{-t} d=\frac{x!}{x}$

1.1 The Infinite Product

The factorial function can also be represented as an infinite product. To start, we must accept that for any integer m,

$$
\lim _{n \rightarrow \infty} \frac{n!(n+1)^{m}}{(n+m)!}=1
$$

This makes sense because both the top and the bottom have a n^{m} term. It turns out that this also holds for any complex number z.

$$
1=\lim _{n \rightarrow \infty} \frac{n!(n+1)^{z}}{(n+z)!}
$$

Multiplying both sides by z !

$$
z!=\lim _{n \rightarrow \infty} n!\frac{z!}{(n+z)!}(n+1)^{z}
$$

Simplifying, we get

$$
z!=\lim _{n \rightarrow \infty} \frac{1 \cdots n}{(1+z) \cdots(n+z)}(n+1)^{z}
$$

Condensing into product notation, we get

$$
z!=\lim _{n \rightarrow \infty}\left(\prod_{i=1}^{n} \frac{i}{i+z}\right)(n+1)^{z}
$$

We can express $(n+1)^{z}$ as $\prod_{i=1}^{\infty} \frac{(n+1)^{z}}{n^{z}}$ which becomes obvious when we write out the product $\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \ldots \cdot \frac{(n+1)^{z}}{n^{z}}$ where everything cancels except for $\lim _{n \rightarrow \infty}(n+1)^{z}$. Condensing the product further we get

$$
z!=\prod_{n=1}^{\infty} \frac{n}{n+z} \frac{(n+1)^{z}}{n^{z}}
$$

We will write this as the equivalent expression

$$
z!=\prod_{n=1}^{\infty} \frac{1}{1+\frac{z}{n}}\left(1+\frac{1}{n}\right)^{z}=\prod_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{z}}{1+\frac{z}{n}}
$$

Using this definition, the Gamma Function can be written as

$$
\Gamma(z)=\frac{1}{z} \prod_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{z}}{1+\frac{z}{n}}
$$

1.2 The Digamma Function

The digamma function ψ is defined as the derivative of the \log gamma function; $\frac{d}{d x} \ln (\Gamma(x))$.

$$
\ln (\Gamma(z))=\ln \left(\frac{1}{z} \prod_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{z}}{1+\frac{z}{n}}\right)
$$

Using log rules, we get

$$
-\ln (z)+\sum_{n=1}^{\infty} z \ln \left(1+\frac{1}{n}\right)-\ln \left(1+\frac{z}{n}\right)
$$

Now taking the derivative with respect to z

$$
-\frac{1}{z}+\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)-\frac{\frac{1}{n}}{1+\frac{z}{n}}
$$

And simplifying we get

$$
\psi=-\frac{1}{z}+\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)-\frac{1}{n+z}
$$

For our purposes, the derivative of digamma function is more useful; ψ^{\prime}

$$
\psi^{\prime}=\frac{1}{z^{2}}+\sum_{n=1}^{\infty} \frac{1}{(n+z)^{2}}=\sum_{n=0}^{\infty} \frac{1}{(n+z)^{2}}
$$

Now, if we find an approximation to the sum of reciprocal of squares, we can approximate the gamma function.

1.3 Approximating ψ^{\prime}

To approximate ψ^{\prime}, we will use $\sum \frac{1}{n^{2}}$ just for ease of writing and notation. We can write $\sum \frac{1}{n^{2}}$ as a sum of telescopic series, helping us approximate it.

$$
\begin{aligned}
\sum \frac{1}{n^{2}} & =\sum \frac{1}{n(n+1)}+\sum \frac{1}{n^{2}(n+1)} \\
& =\sum\left(\frac{1}{n}-\frac{1}{n+1}\right)+\sum \frac{1}{n^{2}(n+1)}
\end{aligned}
$$

The next telescopic term is $\sum\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right)=\sum \frac{2 n+1}{n^{2}(n+1)^{2}}$. Now we can design the series for the leftover term from above: $\sum \frac{1}{n^{2}(n+1)} \cdot \sum \frac{1}{n^{2}(n+1)}-\sum \frac{2 n+1}{n^{2}(n+1)^{2}}=\sum \frac{n}{n^{2}(n+1)^{2}}$ doesn't work because there is an n left in the numerator, so we do $\sum \frac{1}{n^{2}(n+1)}-\frac{1}{2} \sum \frac{2 n+1}{n^{2}(n+1)^{2}}=\frac{1}{2} \sum \frac{1}{n^{2}(n+1)^{2}}$

$$
\begin{gathered}
\sum \frac{1}{n^{2}(n+1)}=\frac{1}{2} \sum \frac{2 n+1}{n^{2}(n+1)^{2}}+\frac{1}{2} \sum \frac{1}{n^{2}(n+1)^{2}} \\
\sum \frac{1}{n^{2}}=\sum\left(\frac{1}{n}-\frac{1}{n+1}\right)+\frac{1}{2} \sum\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right)+\frac{1}{2} \sum \frac{1}{n^{2}(n+1)^{2}}
\end{gathered}
$$

The next telescopic term is $\sum\left(\frac{1}{n^{3}}-\frac{1}{(n+1)^{3}}\right)=\sum \frac{3 n^{2}+3 n+1}{n^{3}(n+1)^{3}}$. Now we can design the series for the leftover term from above: $\frac{1}{2} \sum \frac{1}{n^{2}(n+1)^{2}}$. We will leave the $\frac{1}{2}$ out for now and add it back on later. $\sum \frac{1}{n^{2}(n+1)^{2}}-\frac{1}{3} \sum \frac{3 n^{2}+3 n+1}{n^{3}(n+1)^{3}}=-\frac{1}{3} \sum \frac{1}{n^{3}(n+1)^{3}}$. The $\frac{1}{3}$ was put there to cancel out the n^{2} and n and just leave the constant term. After we bring back the one half, and simplify, we get
$\sum \frac{1}{n^{2}}=\sum\left(\frac{1}{n}-\frac{1}{n+1}\right)+\frac{1}{2} \sum\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right)+\frac{1}{6} \sum\left(\frac{1}{n^{3}}-\frac{1}{(n+1)^{3}}\right)-\frac{1}{6} \sum \frac{1}{n^{3}(n+1)^{3}}$

The next telescopic term is $\sum\left(\frac{1}{n^{4}}-\frac{1}{(n+1)^{4}}\right)=\sum \frac{4 n^{3}+6 n^{2}+4 n+1}{n^{4}(n+1)^{4}}$. However, $\sum \frac{1}{n^{3}(n+1)^{3}}-$ $\sum \frac{4 n^{3}+6 n^{2}+4 n+1}{n^{4}(n+1)^{4}}$ will always have an n^{3} in the numerator, so we move on. From now on, T_{a} will signify $\sum\left(\frac{1}{n^{a}}-\frac{1}{(n+1)^{\alpha}}\right)$ to save space and effort.

The next telescopic term is $T_{5}=\frac{5 n^{4}+10 n^{3}+10 n^{2}+5 n+1}{n^{5}(n+1)^{5}}$. Now we can design the series for the leftover term from above: $-\frac{1}{6} \sum \frac{1}{n^{3}(n+1)^{3}}$. We will leave the $-\frac{1}{6}$ out for now and add it back on later. $\sum \frac{1}{n^{3}(n+1)^{3}}-\frac{1}{5} \frac{5 n^{4}+10 n^{3}+10 n^{2}+5 n+1}{n^{5}(n+1)^{5}}=-\frac{1}{5} \sum \frac{5 n^{2}+5 n+1}{n^{5}(n+1)^{5}}$. We added the $\frac{1}{5}$ to cancel out the n^{4} and n^{3}. After we bring back the $-\frac{1}{6}$, and simplify, we get

$$
\sum \frac{1}{n^{2}}=T_{1}+\frac{1}{2} T_{2}+\frac{1}{6} T_{3}-\frac{1}{30} T_{5}+\frac{1}{30} \sum \frac{5 n^{2}+5 n+1}{n^{5}(n+1)^{5}}
$$

Now that we have enough precision in our approximation for $\sum \frac{1}{n^{2}}$, we can clarify the bounds of the sum and evaluate T_{a}. We redefine $T_{a}=\sum_{n=z}^{\infty}\left(\frac{1}{n^{a}}-\frac{1}{(n+1)^{a}}\right)$, and using the folding properties of telescopic sums, we get that

$$
\sum_{n=z}^{\infty} \frac{1}{n^{2}}\left(\text { aka } \sum_{n=0}^{\infty} \frac{1}{(n+z)^{2}}\right)=\frac{1}{z}+\frac{1}{2 z^{2}}+\frac{1}{6 z^{3}}-\frac{1}{30 z^{5}}+\ldots
$$

Which we can write in terms of ψ^{\prime} as

$$
\psi^{\prime}=\frac{1}{z}+\frac{1}{2 z^{2}}+\frac{1}{6 z^{3}}-\frac{1}{30 z^{5}}+\ldots
$$

1.4 Integrating Back to Γ

We will use big-O notation from now on, which looks like this: $\psi^{\prime}=\frac{1}{z}+\frac{1}{2 z^{2}}+\frac{1}{6 z^{3}}+\mathcal{O}\left(\frac{1}{z^{5}}\right)$ which means that there are higher order terms starting with some constant times $\frac{1}{z^{5}}$. Back to integration. Integrating with respect to z, we get

$$
\psi\left(\text { aka } \frac{d}{d z} \ln (\Gamma(z))\right)=\ln (z)-\frac{1}{2 z}-\frac{1}{12 z^{2}}+\mathcal{O}\left(\frac{1}{z^{4}}\right)+c_{1}
$$

Integrating again with respect to z

$$
\ln (\Gamma(z))=z \ln (z)-z-\frac{1}{2} \ln (z)+\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{1} z+c_{2}
$$

Grouping terms together

$$
\ln (\Gamma(z))=\left(z-\frac{1}{2}\right) \ln (z)-z+\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{1} z+c_{2}
$$

On the first page of this document, I wrote the defining characteristic of the gamma function: $\Gamma(z)=\frac{z!}{z}$ or in other words $\frac{\Gamma(z+1)}{\Gamma(z)}=z$. Now taking the logarithm of both sides, we get $\ln \Gamma(z+$ 1) $-\ln \Gamma(z)=\ln z$. Using the equation above, we get

$$
\begin{aligned}
\left((z+1)-\frac{1}{2}\right) \ln (z+1)-(z+1) & +\frac{1}{12(z+1)}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{1}(z+1)+c_{2} \\
& -\left(\left(z-\frac{1}{2}\right) \ln (z)-z+\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{1} z+c_{2}\right)=\ln z
\end{aligned}
$$

And distributing the negatives and simplifying a bit, we get

$$
\begin{aligned}
\left(z+\frac{1}{2}\right) \ln (z+1)-z-1+\frac{1}{12(z+1)} & +\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{1} z+c_{1}+c_{2} \\
& -\left(z-\frac{1}{2}\right) \ln (z)+z-\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)-c_{1} z-c_{2}=\ln z
\end{aligned}
$$

And simplifying more,

$$
\left(z+\frac{1}{2}\right) \ln (z+1)-\left(z-\frac{1}{2}\right) \ln (z)+\frac{1}{12(z+1)}-\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{1}-1=\ln z
$$

Subtracting the $\ln z$ from the right side (being extremely careful of the minus signs everywhere of course), and grouping terms together

$$
\left(z+\frac{1}{2}\right)(\ln (z+1)-\ln (z))+\frac{1}{12(z+1)}-\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{1}-1=0
$$

Now as we take the limit as z goes to infinity, we get

$$
\lim _{z \rightarrow \infty}\left(z+\frac{1}{2}\right)(\ln (z+1)-\ln (z))+c_{1}-1=0
$$

Using log properties,

$$
\lim _{z \rightarrow \infty} \ln \left(1+\frac{1}{z}\right)^{z+\frac{1}{2}}+c_{1}-1=0
$$

And as one of the major definitions of $e=\lim _{z \rightarrow \infty}\left(1+\frac{1}{z}\right)^{z}$, the limit evaluates to

$$
\ln e+c_{1}-1=1+c_{1}-1=c_{1}=0
$$

Plugging in c_{1}

$$
\ln (\Gamma(z))=\left(z-\frac{1}{2}\right) \ln (z)-z+\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{2}
$$

We still have the c_{2} constant, which we will figure out using Legendre's Duplication Formula:

$$
\Gamma(x) \Gamma\left(x+\frac{1}{2}\right)=\sqrt{\pi} 2^{1-2 x} \Gamma(2 x)
$$

2 Legendre's Duplication Formula

To prove the duplication formula, we first begin with our old friend, the gamma reflection formula.

$$
\begin{equation*}
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin (\pi z)} \tag{1}
\end{equation*}
$$

Secondly, we establish an identity for a product of sines:

$$
\begin{equation*}
\prod_{k=1}^{n-1} \sin \left(\frac{k \pi}{n}\right)=\frac{n}{2^{n-1}} \tag{2}
\end{equation*}
$$

The famous complex exponential formula gives us that $e^{i \theta}=\cos (\theta)+i \sin (\theta)$. If we use $-\theta$ instead of θ, we get $e^{-i \theta}=\cos (\theta)-i \sin (\theta)$. If we subtract the second from the first, we get $e^{i \theta}-e^{-i \theta}=$ $2 i \sin (\theta) \rightarrow \frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)=\sin (\theta)$ and plugging in $\theta=\frac{k \pi}{n}$, we get

$$
\frac{1}{2 i}\left(e^{i \frac{k \pi}{n}}-e^{-i \frac{k \pi}{n}}\right)=\sin \left(\frac{k \pi}{n}\right)
$$

Plugging into the product above

$$
\prod_{k=1}^{n-1} \frac{1}{2 i}\left(e^{i \frac{k \pi}{n}}-e^{-i \frac{k \pi}{n}}\right)
$$

Manipulating, we get

$$
\frac{1}{2^{n-1}} \prod_{k=1}^{n-1} \frac{e^{i \frac{k \pi}{n}}}{i}\left(1-e^{-2 i \frac{k \pi}{n}}\right)
$$

We know from looking at roots of unity that

$$
z^{n}-1=\prod_{k=1}^{n}\left(z-e^{2 i \frac{k \pi}{n}}\right)
$$

where $e^{2 i \frac{k \pi}{n}}$ are the roots of unity, just like $z^{4}-1=(z-1)(z+1)(z-1)(z+i)=\prod_{k=1}^{4}\left(z-e^{2 i \frac{k \pi}{4}}\right)$ where $1,-1, i,-i$ are the fourth roots of unity. Also, note that $\prod_{k=1}^{n}\left(z-e^{2 i \frac{k \pi}{n}}\right)=\prod_{k=1}^{n}\left(z-e^{-2 i \frac{k \pi}{n}}\right)$ due to the symmetry of the unit circle; one goes clockwise from zero, one goes counterclockwise. Rearranging the formula a bit, we get

$$
z^{n}-1=\prod_{k=1}^{n-1}\left(z-e^{-2 i \frac{k \pi}{n}}\right) \cdot\left(z-e^{-2 i \pi}\right) \rightarrow z^{n}-1=\prod_{k=1}^{n-1}\left(z-e^{-2 i \frac{k \pi}{n}}\right) \cdot(z-1)
$$

which we can write as

$$
\frac{z^{n}-1}{z-1}=\prod_{k=1}^{n-1}\left(z-e^{-2 i \frac{k \pi}{n}}\right)
$$

Taking the limit as $z \rightarrow \infty$, using L'Hopital's rule, we get

$$
n=\prod_{k=1}^{n-1}\left(1-e^{-2 i \frac{k \pi}{n}}\right)
$$

Plugging in above, we get

$$
\frac{n}{2^{n-1}} \prod_{k=1}^{n-1} \frac{e^{i \frac{k \pi}{n}}}{i}
$$

$\prod_{k=1}^{n-1} \frac{e^{i \frac{k \pi}{n}}}{i}$ evaluates to

$$
\frac{\exp \left(\sum_{k=1}^{n-1} \frac{i \pi}{n}(1+2+3+\ldots+(n-1))\right)}{i^{n-1}}
$$

which is just

$$
\frac{\exp \left(\frac{i \pi}{n} \frac{n(n-1)}{2}\right)}{i^{n-1}}=\frac{\exp (i \pi)\left(\frac{n-1}{2}\right)}{i^{n-1}}=\frac{(-1)^{\frac{n-1}{2}}}{i^{n-1}}=\frac{i^{n-1}}{i^{n-1}}=1
$$

And finally, going back to the beginning, we get

$$
\prod_{k=1}^{n-1} \sin \left(\frac{k \pi}{n}\right)=\frac{n}{2^{n-1}}
$$

Now that we have all our identities written out, we will begin. We define a function $f(x)$

$$
\begin{equation*}
f(x)=\prod_{k=0}^{n-1} \Gamma\left(x+\frac{k}{n}\right) \tag{3}
\end{equation*}
$$

Multiplying by x and manipulating, we get

$$
\begin{aligned}
x f(x) & =x \prod_{k=0}^{n-1} \Gamma\left(x+\frac{k}{n}\right) \\
& =x \Gamma(x) \prod_{k=1}^{n-1} \Gamma\left(x+\frac{k}{n}\right) \\
& =\Gamma(x+1) \prod_{k=0}^{n-2} \Gamma\left(x+\frac{k+1}{n}\right) \\
& =\Gamma\left(x+\frac{(n-1)+1}{n}\right) \prod_{k=0}^{n-2} \Gamma\left(x+\frac{k+1}{n}\right) \\
& =\prod_{k=0}^{n-1} \Gamma\left(x+\frac{k+1}{n}\right) \\
& =\prod_{k=0}^{n-1} \Gamma\left(\left(x+\frac{1}{n}\right)+\frac{k}{n}\right) \\
& =f\left(x+\frac{1}{n}\right)
\end{aligned}
$$

Changing the variable $x=\frac{x}{n}$, we get

$$
\frac{x}{n} f\left(\frac{x}{n}\right)=f\left(\frac{x+1}{n}\right)
$$

Multiplying $n^{x+1} \frac{1}{n f\left(\frac{1}{n}\right)}$ on both sides

$$
x n^{x} f\left(\frac{x}{n}\right) \frac{1}{n f\left(\frac{1}{n}\right)}=n^{x+1} f\left(\frac{x+1}{n}\right) \frac{1}{n f\left(\frac{1}{n}\right)}
$$

And if we set $G(x)=n^{x} f\left(\frac{x}{n}\right) \frac{1}{n f\left(\frac{1}{n}\right)}$, we get that

$$
x G(x)=G(x+1)
$$

Which is the gamma function identity! This hints that $G(x)=\Gamma(x)$. A fully rigorous proof of $G(x)=\Gamma(x)$ can be acheived through the Bohr-Mollerup Theorem, a theorem I will not prove in this paper. We can set

$$
\Gamma(x)=n^{x} f\left(\frac{x}{n}\right) \frac{1}{n f\left(\frac{1}{n}\right)}
$$

And manipulating, we get

$$
\begin{equation*}
f\left(\frac{x}{n}\right)=n f\left(\frac{1}{n}\right) \frac{\Gamma(x)}{n^{x}} \tag{5}
\end{equation*}
$$

To find $f\left(\frac{1}{n}\right)$, we first find $f^{2}\left(\frac{1}{n}\right)$.

$$
f^{2}\left(\frac{1}{n}\right)=\prod_{k=1}^{n-1} \Gamma\left(\frac{k}{n}\right) \Gamma\left(1-\frac{k}{n}\right)
$$

where $\prod_{k=1}^{n-1} \Gamma\left(\frac{k}{n}\right)=\prod_{k=0}^{n-1} \Gamma\left(\frac{1}{n}+\frac{k}{n}\right)$ because $\Gamma\left(\frac{n}{n}\right)=\Gamma\left(\left(1-\frac{0}{n}\right)=1\right.$ and $\prod_{k=1}^{n-1} \Gamma\left(\frac{k}{n}\right)=\prod_{k=1}^{n-1} \Gamma\left(1-\frac{k}{n}\right)$
because of symmetry. Using the reflection formula, (1), we get

$$
f^{2}\left(\frac{1}{n}\right)=\prod_{k=1}^{n-1} \frac{\pi}{\sin (k \pi / n)}
$$

Simplifying and using the product of sines, (2), we get

$$
f^{2}\left(\frac{1}{n}\right)=\frac{1}{n} 2^{n-1} \pi^{n-1}
$$

Square rooting and multiplying by the n in (5)

$$
f\left(\frac{x}{n}\right)=\sqrt{n 2^{n-1} \pi^{n-1}} \frac{\Gamma(x)}{n^{x}}
$$

and finally variable change $x=n x$, we get Gauss's multiplication formula, or the generalized version of the duplication formula

$$
\begin{equation*}
f(x)=\prod_{k=0}^{n-1} \Gamma\left(x+\frac{k}{n}\right)=\sqrt{n 2^{n-1} \pi^{n-1}} \frac{\Gamma(n x)}{n^{n x}} \tag{6}
\end{equation*}
$$

Setting $n=2$, we get the duplication formula.

$$
\Gamma(x) \Gamma\left(x+\frac{1}{2}\right)=\sqrt{\pi} 2^{1-2 x} \Gamma(2 x)
$$

3 The Grand Finale

Taking the natural log of the duplication formula

$$
\ln (\Gamma(x))+\ln \left(\Gamma\left(x+\frac{1}{2}\right)\right)=\ln \sqrt{\pi}+\ln \left(2^{1-2 x}\right)+\ln (\Gamma(2 x))
$$

Taking our approximation of $\ln \Gamma(x)$ from Section 1

$$
\ln (\Gamma(z))=\left(z-\frac{1}{2}\right) \ln (z)-z+\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{2}
$$

and pluggin it in the \log duplication formula, we get

$$
\begin{aligned}
\left(z-\frac{1}{2}\right) \ln (z)-z+\frac{1}{12 z} & +\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{2} \\
+z & \ln \left(z+\frac{1}{2}\right)-z-\frac{1}{2}+\frac{1}{12 z+6}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{2} \\
& =\ln \sqrt{\pi}+\ln \left(2^{1-2 x}\right)+\left(2 z-\frac{1}{2}\right) \ln (2 z)-z+\frac{1}{24 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{2}
\end{aligned}
$$

Distributing and using log rules, we get

$$
\begin{aligned}
& z \ln (z)-\frac{1}{2} \ln (z)-z+\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{2} \\
& \quad+z \ln \left(z+\frac{1}{2}\right)-z-\frac{1}{2}+\frac{1}{12 z+6}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{2} \\
& =\ln \sqrt{\pi}+(1-2 z) \ln (2)+\left(2 z-\frac{1}{2}\right) \ln (2)+2 z \ln (z)-\frac{1}{2} \ln (z)-2 z+\frac{1}{24 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+c_{2}
\end{aligned}
$$

Simplifying,

$$
z \ln \left(z+\frac{1}{2}\right)-z \ln (z)-\frac{1}{2}+\mathcal{O}\left(\frac{1}{z}\right)+c_{2}=\ln \sqrt{\pi}+\frac{1}{2} \ln (2)
$$

Simplifying more,

$$
\ln \left(\frac{z+\frac{1}{2}}{z}\right)^{z}-\frac{1}{2}+\mathcal{O}\left(\frac{1}{z}\right)+c_{2}=\ln \sqrt{2 \pi}
$$

And taking the limit as $z \rightarrow \infty$

$$
\ln \left(e^{\frac{1}{2}}\right)-\frac{1}{2}+0+c_{2}=\ln \sqrt{2 \pi} \rightarrow c_{2}=\ln \sqrt{2 \pi}
$$

And putting everything back together, we have

$$
\ln (\Gamma(z))=\left(z-\frac{1}{2}\right) \ln (z)-z+\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)+\ln \sqrt{2 \pi}
$$

And exponentiating both sides,

$$
\Gamma(z)=z^{z-\frac{1}{2}} \cdot e^{-z} \cdot \exp \left(\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)\right) \cdot e^{\ln \sqrt{2 \pi}}
$$

And simplifying, we get

$$
\Gamma(z)=\sqrt{\frac{2 \pi}{z}}\left(\frac{z}{e}\right)^{z} \exp \left(\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)\right)
$$

AND BECAUSE $z!=z \Gamma(z)$, WE GET

$$
z!=\sqrt{2 \pi z}\left(\frac{z}{e}\right)^{z} \exp \left(\frac{1}{12 z}+\mathcal{O}\left(\frac{1}{z^{3}}\right)\right)
$$

and we are done.

