
290K W24 LACE EXPANSION PART 1 NOTES

1. Cast of Characters for SRW and SAW

Main resource: Gordon Slade’s book The Lace Expansion and its Applications (2005)
https://personal.math.ubc.ca/~slade/sf.pdf

Heavy bombardment of notation incoming!:

• Today, we will use Ω := {x ∈ Zd : ∥x∥1 = 1}, the nearest neighbor model. In Z2,
this is just the 4 squares directly left of, right of, above, and below the origin (a
cross shape missing the origin). |Ω| = 2d

The reason such notation is introduced for such a trivial object is because people
also consider the spread out model ΩL := {x ∈ Zd : 0 < ∥x∥∞ ≤ L} for L some
large fixed constant (i.e. a (2L+ 1)× (2L+ 1) axes-parallel square centered at the
origin, with the origin removed).

Or in fact more generally, any finite set Ω ⊆ Zd invariant under the symmetry group
of Zd, namely permutation of coordinates or replacement of any coordinate xi by
its negative −xi.

Like I said for today, Ω is just going to be the nearest neighbor (NN) model, but in
fact I will mention a phenomenon of universality later.

• We will use ω to denote a n-step walk taking steps in Ω, i.e. ω : {0, . . . , n} → Zd

s.t. ω(i)− ω(i− 1) ∈ Ω (for i ∈ {1, . . . , n}).

• Let Wn(x, y) denote the set of (NN) walks from x, y ∈ Zd. If we just put in one
argument, Wn(x) := Wn(0, x).

• We let c
(0)
n (x, y) := |Wn(x, y)| and of course c

(0)
n (x) := c

(0)
n (0, x).

• Similarly let Sn(x, y) denote the set of (NN) SAW from x, y ∈ Zd; and let c
(1)
n (x, y) :=

|Sn(x, y)|.

• So far, these “c” quantities are all combinatorial, i.e. they literally count things.
We will now reinterpret them in the following light: for λ = 0, 1,

c(λ)n (x, y) :=
∑

ω∈Wn(x,y)

∏
0≤s<t≤n

(1

=:Ust︷ ︸︸ ︷
−λ(st)1ω(s)=ω(t))︸ ︷︷ ︸

=:K(λ)[0,n](ω)

.

The (1 + Ust) factor “penalizes” by factor of (1− λ) for every self intersection.
1

https://personal.math.ubc.ca/~slade/sf.pdf
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Every ω ∈ Wn(x, y) is assigned the weight/fre“K”uency/“scaled likelihood”K(λ)[0, n](ω),
which one can interpret as: “assuming ‘λ-level’ of self repulsion (0 is no self repul-
sion, 1 is completely self avoiding), this is ‘frequency’ or ‘scaled likelihood’ of seeing
the path ω.”

In other words, before, every path in Wn(x, y) was equally likely, but now, due to it
being “harder” to self intersect, self-intersections (especially many self-intersections)
are more rarely seen, where K[0, n](ω) ∈ [0, 1] quantifies how rare (the smaller it is,
the more rare the configuration).

Now we have the interpretation that c
(λ)
n (x, y) is the sum of all weights/frequencies

of the (W)SAWs going from x to y in n steps, and

K[0, n](ω)

c
(λ)
n (0, y)

is the genuine likelihood of seeing a specified path ω in Wn(0, y).

• Now we define the number

c(λ)n :=
∑
y∈Zd

c(λ)n (0, y)

, i.e. summing over all endpoints y ∈ Zd all the frequencies of n-step paths 0 → y,
so a total frequency count for every n-step path starting at 0.

For example, for SRW i.e. λ = 0, we have c
(0)
1 = |Ω| = 2d and c

(0)
n = |Ω|d = (2d)d.

We are truly interested in c
(1)
n , which recall is the total number of n-step SAW

starting at 0, i.e. in the previous notation c
(1)
n :=

∣∣⋃
x∈Zd Sn(0, x)

∣∣
• And then the ratio

Pλ
n(y) :=

c
(λ)
n (y)

cλn
is exactly the likelihood of seeing any n-step (W)SAW ending at y.

Taking expectations with respect to this probability measure on Zd is denoted with
Eλ
n.

• We know that for all λ ∈ [0, 1], the sequence c
(λ)
n is log-subadditive:

cn+m ≤ cmcn

because the RHS comes from forgetting the (penalizing!) interactions between the
left and right half the walk, and fewer penalities means a higher value.

A simple exercise in real analysis (it has a name — Fekete’s lemma!) tells us then
that

lim
n→∞

c1/nn

exists; let us call it µ(λ).

For example, µ(0) = 2d.

https://math.stackexchange.com/questions/719969/subadditive-sequences-and-the-limit-sup-n-to-infty-a-n-n
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For the quantity we care about c
(1)
n , the corresponding limit value µ(1) is called the

connective constant. Unknown for d = 2, 3, 4. Obviously ≤ 2d. And by looking at
all walks using only “right” and “up” moves, ≥ d.

• Let me rephrase the above limit:

lim
n→∞

c1/nn = µ ⇐⇒ cn = (1 + on→∞(1))n︸ ︷︷ ︸
?

·µn.

We want to understand better the quantity labelled by “?”, i.e. we want to under-
stand the quantity cn/µ

n.

• Here’s the clever idea: we know from Taylor series that

lim
n→∞

c1/nn =
1

radius of convergence of the susceptibility
∑

n c
(λ)
n zn

.

So for zn very near the boundary of the circle of convergence, i.e. zn → 1/µ,

the nth term of this Taylor series is c
(λ)
n znn ≈ cn/µ

n. In Part 3 of the talk, Ben
will talk about choosing a sequence zn → 1/µ inductively with the aim of better
understanding cn/µ

n.

We will see that
cn
µn

= Aλ

[
1 +O(n−ε)

]
,

much finer scale behavior than just knowing the base of the exponential growth.

• We typically denote the 2-point function

C(λ)
z (x, y) :=

∞∑
n=0

c(λ)n (x, y)zn,

and the susceptability

χ(λ)(z) =
∑
x∈Zd

C(λ)
z (0, x) =

∞∑
n=0

∑
x∈Zd

C(λ)
z (0, x)c(λ)n (x, y)zn =

∑
n

c(λ)n zn

(the sum
∑

x is actually a finite sum). If it makes any more sense to you, think of
these as generating functions.

QUOTED FROM https://personal.math.ubc.ca/~slade/sf.pdf#page=19:

For λ = 0, we have seen in Section 1 that c
(0)
n = |Ω|n, and thus the number

of n-step walks grows purely exponentially in n. There is overwhelming

evidence to support the belief that for λ ∈ (0, 1], the asymptotic form of c
(λ)
n

is given by

c(λ)n ∼ Aλµ
n
λn

γ−1.

https://personal.math.ubc.ca/~slade/sf.pdf#page=19
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Here, Aλ is a constant which, like µλ, depends on λ, d and Ω, but the critical
exponent γ is independent of λ and Ω and is given by

γ =



1 if d = 1
43
32 if d = 2

1.162 . . . if d = 3

1 with logarithmic corrections if d = 4

1 if d ≥ 5

The conjectured logarithmic correction in four dimensions, predicted by the
renormalization group method, is

c(λ)n ∼ Aλµ
n
λ(log n)

1/4 if d = 4.

The independence of γ on λ ∈ (0, 1] and Ω is referred to as universality.
Similarly, the power of the logarithm in (2.11) is believed to be universal.

2. Mean Squared Displacement

Start with another bombardment of formulas:

• By pure combinatorics because c
(0)
n is a cardinality,

c(0)n (x) =
∑
y∈Ω

c
(0)
n−1(x− y) =

∑
y∈Zd

1Ω

c
(0)
1 (y)

c
(0)
n−1(x− y) = [c

(0)
1 (•) ∗ c(0)n−1(•)](x)

• Of course, upon seeing convolution, we look at the Fourier transform. Also, I should
mention that another place where such convolutions pop up is exactly multiplying
the generating functions of these quantities, namely precisely Cz(x) defined earlier!
Anyways, through the eyes of Fourier, the above convolution identity becomes

ĉ
(0)
n (ξ) = (ĉ

(0)
1 (ξ))n

• Defining the probability “D”ensity function

D(x) =
1

|Ω|
1Ω(x) =⇒ D̂(ξ) =

1

|Ω|
∑
x∈Ω

eiξx =
1

2d

d∑
i=1

eiξi·1 + eiξi(−1) =
1

d

d∑
i=1

cos(ξi).

• Let us denote the variance of the p.d.f. D(x) by σ2. In the NN case, it equals 1.
We have the following physical and Fourier space formulas:

σ2 =
∑
x∈Zd

|x|2D(x) = (i∇ξ)
2D̂(ξ)

∣∣∣
ξ=0

= −∆ξ
1

|Ω|
ĉ
(0)
1 (ξ)

∣∣∣
ξ=0

.

• Now recall that

c
(0)
n (x)

cn
:= probability that n-step SRW ends at x = P(ω(n) = x)

where we can think of ω(n) =
∑n

i=1 εi for i.i.d. εi drawn from D(x).
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The CLT tells us that

P
(

1

σ
√
n
ω(n) = x

)
=:

c
(0)
n (x/σ

√
n)

c
(0)
n

converges to the standard (multivariate) Gaussian p.d.f. on Rd. In other words,
if for every n-step path ω we color its endpoint a mostly transparent white, then
looking at Zd rescaled we get something that looks more and more like the height
map of the standard Gaussian pdf.

• On the Fourier side, doing standard changes of variables produces

ĉ
(0)
n (ξ/σ

√
n)

c
(0)
n

→ e−|ξ|2/2d.

Because c
(0)
n happens to equal ĉ

(0)
n (0) (Fourier at 0 is integral of original over whole

space), Slade in (1.15) writes this as

ĉ
(0)
n (ξ/σ

√
n)

ĉ
(0)
n (0)

→ e−|ξ|2/2d.

• Finally the mean squared displacement is defined as

E(λ)
n

[
|ω(n)|2

]
=
∑
x∈Zd

|x|2 c
(0)
n (x)

c
(0)
n

=
∑
x∈Zd

|x|2 c
(0)
n (x)

|Ω|n
=
∑
x∈Zd

|x|2(D)∗n

one can interpret as the “expected distance squared that a ‘λ-level’ self-repulsion
(W)SAW gets”.

The above integral of |x|2(D)∗n over the whole space is simply the Fourier transform
evaluated at 0, so

E(λ)
n

[
|ω(n)|2

]
= −∆ξ(D̂)n

∣∣∣
ξ=0

,

which after some chian rule and product rule for ∇ · ∇ on some cosines, arrives at
= nσ2.

So for the NN-model where σ2 = 1, we get that the “expected distance that the
SRW gets” is

√
n, which basically matches the precise value given by Donsker’s

theorem and the Law of the Iterated Logarithm for Brownian Motion (those tell us
that basically the walk will lie just about inside a circle of radius

√
n log logn). See

below pictures of Slade.

QUOTED FROM https://personal.math.ubc.ca/~slade/sf.pdf#page=20:

The mean-square displacement is E(λ)
n |ω(n)|2 and it is believed that

E(λ)
n |ω(n)|2 ∼ vλn

2ν

https://personal.math.ubc.ca/~slade/sf.pdf#page=13
https://personal.math.ubc.ca/~slade/sf.pdf#page=20
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where vλ is a constant depending on λ, d,Ω, and where ν is universal and
given by

ν =



1 if d = 1
3
4 if d = 2

0.588 . . . if d = 3
1
2 with logarithmic corrections if d = 4
1
2 if d ≥ 5.

The conjectured logarithmic correction to ν in four dimensions, predicted
by the renormalization group, is

E(λ)
n |ω(n)|2 ∼ vλn(log n)

1/4 if d = 4

QUOTED FROM https://personal.math.ubc.ca/~slade/sf.pdf#page=15:

QUOTED FROM https://personal.math.ubc.ca/~slade/sf.pdf#page=21:

https://personal.math.ubc.ca/~slade/sf.pdf#page=15
https://personal.math.ubc.ca/~slade/sf.pdf#page=21


290K W24 LACE EXPANSION PART 1 NOTES 7

3. Inclusion Exclusion

Allow me now to discuss a little of the naive inclusion-exclusion thinking that is later orga-
nized by the lace expansion method. Suppose we are counting purely SAW (λ = 1) starting

at 0 and ending at x, i.e. we are trying to calculate the quantity c
(1)
n (x).

Here’s the first approximation: every SAW 0 → x is of the form a length 1 SAW from 0 → y
for y ∈ Ω, and a length n − 1 SAW from y → x. Things of this form (FORM0: length 1
SAW 0 → y and independent SAW y → x of length n− 1) are counted by

Approx := [c11 ∗ c1n−1](x).

The issue is that 2 SAWs 0 → y and y → x chained together may NOT produce a SAW
from 0 → x: the (only) issue that can happen is that the SAW y → x may touch 0!

So, the exceptions are of the form: a SAW loop starting at ending at 0 (“SAW loop”
meaning the only intersection is at the endpoints) of length m, and a SAW starting at 0 of
length n−m. Things of this form (FORM1: SAW loop length m starting and ending at 0
and independent SAW starting at 0 going to x of length n−m) are counted by

Correction1 :=
n∑

m=1

[π[1]
m (0) · c1n−m(x)]

where π
[1]
m (0) denotes the number of length m SAW loops starting and ending at 0. By

defining π
[1]
m (x) to be the number of walks consisting of exactly 1 loop, where 0 is the start

and end of a loop and x is the start and end of a loop, we get π
[1]
m (x) = π

[1]
m (0) · 1x=0, and

we can rewrite the above

Correction1 =

n∑
m=1

[π[1]
m (x) ∗ c1n−m](x)
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So we have c1n(x) ≈ Approx− Correction1.

But we took away too much! Because we treated the two pieces of FORM1 as independent,

we ignored all the interactions between the SAW loop counted by π
[1]
m (0) and the SAW

counted by c1n−m(x)! We must now ADD BACK things of the form: SAW loops L starting
and ending at 0, and SAW walk W starting at 0, but the loop L and walk W intersect! Draw
picture of laces, with bridge between 0 and m, and also bridges between m− ∈ {0, . . . ,m}
and m+ > m, or even perhaps more bridges between m−− ∈ {0, . . . ,m} and m++ > m.

We end up considering quantities like π
[2]
m (x) := the number of walks consisting of exactly

2 loops, where 0 is the start and end of a loop and x is the start and end of a loop, and
convolutions of these quantities.

Drawing these lace diagrams, we cut up the walk into pieces that are self-avoiding, which
we then count by pretending they are independent. Then to correct for this pretending, we
consider finer and finer self-intersections, thus building up an expression involving lower and
lower terms. Carson will now organize these ideas using the formalism of lace expansions!

QUOTED FROM https://www.mathematik.uni-muenchen.de/~heyden/Heydenreich_

proefschrift.pdf#page=28:

QUOTED FROM https://personal.math.ubc.ca/~slade/sf.pdf#page=35:

https://www.mathematik.uni-muenchen.de/~heyden/Heydenreich_proefschrift.pdf#page=28
https://www.mathematik.uni-muenchen.de/~heyden/Heydenreich_proefschrift.pdf#page=28
https://personal.math.ubc.ca/~slade/sf.pdf#page=35
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In this section we define some of the relevant quantities pertaining to a simple random walk
on Zd; we will analyze the same quantities for the self-avoiding walk (hereafter SAW). We
will use the lace expansion to estimate them.

3.1. Simple Random Walk as Nearest Neighbor Walk. We begin by defining the
nearest-neighbor random walk. Denote

Ω = {x ∈ Zd : ∥x∥1 = 1}.

Then a map γ : {0, . . . , n} is a nearest-neighbor walk if γ(i) − γ(i − 1) ∈ Ω for 1 ≤ i ≤ n
(heuristically, the steps are ’chosen independently’ from all other steps in the model).

Denote by Wn(x, y) the set of walks γ starting at x, taking n steps, and ending at y. We
put W0(x, y) = δx,y. Then write cn(x, y) = |Wn(x, y)|.

We demand the model to be translation-invariant, in the sense thatWn(0, y−x) = Wn(x, y).
Going forward, we will assume all walks start at the origin and denote Wn(y − x) :=
Wn(x, y), so that cn(y − x) := cn(0, y − x) = cn(x, y). The number cn(x) is the number
of nearest-neighbor walks of length n ending at x (which is 0 if n < ∥x∥1). We also define
cn =

∑
x∈Zd cn(x) as the number of nearest-neighbor walks starting at the origin that end

anywhere

By simple counting, we observe that

cn(x) =
∑
y∈Zd

cn−1(x− y) =
∑
y∈Zd

c1(y)cn−1(x− y), i.e. cn(x) = (c1 ∗ cn−1)(x),

where on the right we mean the discrete convolution of the two functions.

This suggests the use of Fourier analysis to obtain bounds on the coefficients cn. We define
the (discrete) Fourier transform of an absolutely summable function f(x) : Zd → C by

f̂(ξ) :=
∑
x∈Zd

f(x)eiξ·x, ξ ∈ [−π, π)d,

with inverse ∫
[−π,π)d

1

(2π)d
f̂(ξ)e−iξ·x dξ.

Another useful identity is, of course, that cn = ĉn(0). By the usual properties of the Fourier
transform, we get

ĉn(ξ) = ĉ1(ξ)ĉn−1(ξ) =⇒ ĉn(ξ) = (ĉ1(ξ))
n.

The characteristic function of the nearest neighbor walk, equivalently the transition prob-
ability, is

D(x) =
1

|Ω|
1{x∈Ω} =

1

|Ω|
c1(x) =⇒ D̂(ξ) =

1

|Ω|
ĉ1(ξ).

This means that, for ξ = (ξ1, . . . , ξd) ∈ [−π, π)d,

ĉn(k) = |Ω|n (D̂(ξ))n = |Ω|n
1

d

d∑
j=1

cos(ξj)

n

.
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The two-point function C(x) is defined as

Cz(x) =
∑
n≥0

∑
γ∈Wn(x)

zn =
∑
n≥0

cn(x)z
n.

Think 0 < z < 1 as the probability with which you independently choose each edge in the
walk; then this is the number of walks that can reach x of any length, as long as neighboring
edges are chosen independently with probability z.

Fourier transforming, we get

Ĉz(ξ) =
∑
x∈Zd

ĉn(ξ)z
n =

1

1− z |Ω| D̂(ξ)
.

The susceptibility χ(z) = Ĉz(0) = (1−z |Ω|)−1, intuitively a measure of the degree to which

the nearest-neighbor walks can ’permeate’ the lattice (since Ĉ(0) =
∑

x∈Zd C(x)). It has a

singularity at zc := |Ω|−1, which is called the critical point).

Finally, another quantity of interest will be the mean-square displacement of a SRW starting
at the origin. We begin by computing the variance of the characteristic function D. By
Plancherel, one has

σ2 =
∑
x∈Zd

|x|2D(x) = −∆ξD̂(ξ)
∣∣
ξ=0

.

By the central limit theorem and that ĉn(ξ) = |Ω|n D̂(ξ)n, we have

lim
n→∞

ĉn(ξ/σ
√
n)

ĉn(0)
= e−|k|2/2d,

and the mean-square displacement∑
x∈Zd |x|2 cn(x)∑

x∈Zd cn(x)
= −∆D̂(ξ)n

∣∣
ξ=0

= nσ2.

We will be able to prove similar results for the (W)SAW using lace expansion. There, the
variance σ2 in this last formula will roughly be replaced by the so-called diffusion coefficient,
which we will also estimate as part of our argument.

3.2. Self-Avoiding Walk. The SAW is a nearest-neighbor walk γ on {0, . . . , n} such that
γ(s) ̸= γ(t) for any 0 ≤ s ̸= t ≤ n.

The SAW is a model that was ’invented’ by Flory, a chemist, as a model for determining
the spatial arrangement of macromolecules such as polymers, which tend to organize in
chains: the bonds between the molecules are roughly the same length, and (obviously) two
molecules cannot occupy the same physical site in space. The molecules are the vertices
on Zd, and the edges of a nearest-neighbor walk are the chemical bonds connecting them.
Include pictures during presentation!

Though we will without apology use the same notation and terminology for SAWs, we
should emphasize that the SAW is non-Markovian, in the sense that we can’t choose the
steps at a given lattice site independently of all other steps. (Part of the point of the lace
expansion is to perform computational techniques to regain some of this independence at
the cost of accruing some error terms that we hope to be able to control).
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The generalization of this model counts walks which are not only self-avoiding but only
weakly self-avoiding, in the following sense: write st for an edge {s, t} in γ (that is, there is
and i for which γ(i) = s and γ(i+ 1) = t or vice versa) for 0 < λ < 1, we define

c(λ)n (x) =
∑

γ∈Wn(x)

∏
st∈γ

(
1− λ1{γ(s)=γ(t)}

)
.

Thus, walks which intersect themselves are penalized by a weight λ. When λ = 1, the walk
is strictly self-avoiding; when λ = 0, we count all nearest-neighbor walks.

It’s also possible (and does not make the argument more involved) to let λ depend on the
specific edge:

c(λ)n (x) =
∑

γ∈Wn(x)

∏
st∈γ

(
1− λst1{γ(s)=γ(t)}

)
.

In the sequel, we will write Ust = −λst1γ(s)=γ(t).

We define c
(λ)
n and the two-point function C

(λ)
z analogously to the SRW. The radius of

convergence of C
(λ)
z is limn(c

(λ)
n )1/n. This limit exists because c

(λ)
n is a subadditive sequence:

c
(λ)
n+m ≤ c

(λ)
n c

(λ)
m . When λ = 1 (i.e. when the walk is strictly self-avoiding), the limit is called

the connective constant µ.

Empirical evidence suggests that

c(λ)n ∼ Aλµ
n
λn

γ−1,

where Aλ and µλ depend on d and λ, but γ is not (the asymptotic behavior motivates some
of the inductive hypotheses we’ll see later – this part can go in section 3).
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4. The Lace Expansion

We define

cn(x) :=
∑

ω∈Wn(x)

K[0, n](ω)(1)

K[a, b](ω) :=
∑

a≤s<t≤b

(1 + Ust(ω))(2)

In short, K is the weight attached to a path ω, and cn(x) is cumulative weight of all n
step paths from 0 to x. The Ust should be understood as negative weights that penalize
self-intersection; typically, Ust = −λst1ω(s)=ω(t) for some λst ∈ [0, 1]. Taking λ ≡ 0 reduces
to a simple random walk, while taking λ ≡ 1 reduces to a strictly self-avoiding walk.

Our goal in this section will be to decompose cn(x) and K[a, b](ω) in a such a way as to
enable estimates inductive in the time variable n.

4.1. Pairings. Let I = [a, b] ∩ Z be an interval of integers. We define a pairing over I,
written {s1t1, . . . , sN tN}, to be a set of pairs with a ≤ sl < tl ≤ b. A pairing covers I if for
every i ∈ (a, b) ∩ I, there is a pair sltl with sl < i < tl. Write P[a, b], C[a, b], for the set of
pairings and covering pairings over I respectively.

We remark that this terminology is nonstandard; in the literature pairings are called
“graphs” and covering pairings are called “connected graphs”. We adopt different ter-
minology to avoid confusion over the interpretation of connectedness in our context.

We will use these notions to decompose the path weight function K[a, b](ω). First, by
expanding the product we have

(3) K[a, b](ω) :=
∏

a≤s<t≤b

(1 + Ust(ω)) =
∑

Γ∈P[a,b]

∏
st∈Γ

Ust(ω)

We can partition pairings over [a, b] as follows: if the pairing has an edge with left endpoint
a, then it necessarily covers some maximal interval [a, j], and by maximality it has no edges
with left endpoint less than j and right endpoint greater than j. In other words, if we write
C · P for the set of pairings formed by concatening a pairing from the left with a pairing
from the right, we have obtained that

(4) P[a, b] = P[a+ 1, b] ⊔
⊔

a<j≤b

C[a, j] · P[j, b]

Applying this to (3) and factoring, we get directly that

K[a, b](ω) = K[a+ 1, b](ω) +

b∑
j=a+1

J [a, j](ω)K[j, b](ω) where(5)

J [a, b](ω) :=
∑

Γ∈C[a,b]

∏
st∈Γ

Ust(ω)(6)
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Returning to cn(x), we get

cn(x) =
∑

ω∈Wn(x)

K[0, n](ω)

=
∑

ω∈Wn(x)

(
K[1, n](ω) +

n∑
m=1

J [0,m](ω)K[m,n](ω)

)

The K[1, n] terms can be interpreted as giving a cn−1(·) for each possible first step in the
walk:

(7)
∑

ω∈Wn(x)

K[1, n] =
∑
ω1∈Ω

∑
ω′∈Wn−1(x−ω1)

K[0, n− 1](ω′) =
∑
ω1∈Ω

cn−1(x− ω1)

Since a path of length 1 has no self-interaction, c1(y) is just the indicator that y is reachable
from 0, so we conclude that

(8)
∑

ω∈Wn(x)

K[1, n](ω) = (c1 ∗ cn)(x)

By similarly splitting along ωm, we have

(9)
∑

ω∈Wn(x)

J [0,m](ω)K[m,n](ω) =
∑
y∈Zd

∑
ω′∈Wm(y)

J [0,m](ω′)cn−m(x− y)

Substituting, we obtain the recursive expansion:

cn(x) = (∗cn−1)(x) +

n∑
m=1

(πm ∗ cn−m)(x)(10)

πm(y) :=
∑

ω′∈Wm(y)

J [0,m](ω′)(11)

The conceptual theme of the past few steps has been to reduce the computation of cn(x)
to that of cn−1 with a simple random walk step prepended (forming the first term) plus
corrections (forming the second term) which only need to account for paths ω which have
a loop at 0.

(10) is often referred to as the lace expansion in the literature, yet we have not seen any
laces! In fact, the role of laces is to further decompose π into sum whose terms count specific
types of self-intersections.

4.2. Laces. We define a lace L ∈ C[a, b] to be a covering pairing which is minimal under
set inclusion; that is, if any pair sltl is removed from L, it is no longer covering. We write
L[a, b] for the set of laces, and L(N)[a, b] for the set of laces consisting of N pairs.

Given an arbitrary Γ ∈ C[a, b], we associate the lace LΓ obtained by the greedy algorithm,
taking s1 = a, t1 = max{t : at ∈ Γ}, and subsequently ti+1 = max{t : ∃s < ti, st ∈
Γ}, si+1 = min{s : sti+1 ∈ Γ}, terminating with ti+1 = b.
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Now that we have a map from covering pairings to laces, we can rewrite the sum over
covering pairings in the definition of J as a sum over laces. We get:

J [a, b](ω) : =
∑

Γ∈C[a,b]

∏
st∈Γ

Ust(ω)

=
∑

L∈L[a,b]

∑
Γ∈C[a,b],LΓ=L

∏
st∈L

∏
s′t′∈Γ\L

Ust(ω)Us′t′(ω)

=
∑

L∈L[a,b]

∏
st∈L

Ust(ω)
∑

Γ∈C[a,b],LΓ=L

∏
s′t′∈Γ\L

Us′t′(ω)

We say an pair st /∈ L is compatible with L if LL∪{st} = L, and write C(L) for the set of
pairs compatible with L. In light of the greedy algorithm, compatibility can be understood
as an ordering property for s and t relative to the s1t1, . . . , smlm that make up L. An
equivalent formulation is: if t ∈ (tj , tj+1), then s ≥ tj , otherwise if t = tj , then s > sj .
With this, it is clear that adding any collection of compatible pairs to L leaves the result
of the greedy algorithm unchanged, and conversely, LΓ = L precisely when Γ \L consists of
pairs compatible with L.

Using the notion of compatibility, we can further transform the portion of the sum corre-
sponding to Γ \ L:

(12)
∑

Γ∈C[a,b],LΓ=L

∏
s′t′∈Γ\L

Us′t′(ω) =
∑

Γ′⊆C(L)

∏
s′t′∈Γ′

Us′t′(ω) =
∏

s′t′∈C(L)

(1 + Us′t′(ω))

Additionally splitting the sum over laces by number of pairs, we conclude that

J [a, b](ω) =

∞∑
N=1

J (N)[a, b](ω) where(13)

J (N)[a, b](ω) :=
∑

L∈L(N)[a,b]

∏
st∈L

Ust(ω)
∏

s′t′∈C(L)

(1 + Us′t′(ω))(14)

and analogously,

πm(y) =

∞∑
N=1

π(N)
m (y) where(15)

π(N)
m (y) :=

∑
ω∈Wm(y)

J (N)[0,m](16)

This is the form of the lace expansion used for estimating πm. Since the Ust are nonpositive,

sign JN [a, b] = signπ
(N)
m = (−1)N . Some sources opt to pull out the sign so that the π

(N)
m

themselves are nonnegative. We also remark that the series defining J and πm are in fact
finite sums, since the size of a lace is bounded in terms of the size of the interval it covers.

4.3. Motivation for the Lace Expansion. Recall that the total weight of a path ω is
the product ∏

0≤s<t≤n

(1 + Ust(ω))
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Recalling that Ust = 0 if ω(s) ̸= ω(t), and Ust ≈ −1 if ω(s) = ω(t), we see that the term
corresponding to a lace L, ∏

st∈L
Ust(ω)

∏
s′t′∈C(L)

(1 + Us′t′(ω))

counts contributions of factors corresponding to self-intersections at the time-pairs of the
lace, and non-self-interactions at the time-pairs compatible with the lace.



16 290K W24 LACE EXPANSION PART 1 NOTES

5. Main Results

As an application of lace expansion techniques, der Hofstad, den Hollander, and Slade (1998)
obtained Gaussian asymptotics for weakly self-avoiding random walks with an exponential
penalty. Specifically, for parameters p, β, we define the weight function

(17) cn(x) =
∑

ω∈Wn(x)

exp

−β
∑

0≤s<t≤n

1ω(s)=ω(t)|t− s|−p


Then their result can be stated as:

Theorem 1. Fix ε = p + (d − 4)/2. If d > 4, we require only that p ≥ 0. If d ≤ 4, we
require that p > (4− d)/2;. Then there are constants A,D, µ depending on d, p, β so that

cn = Aµn(1 +O(n−ε))(18)

1

cn

∑
x∈Zd

|x|2 cn(x) =

{
Dn(1 +O(n−1∧ε) ε ̸= 1

Dn(1 +O(n−1 log n) ε = 1
(19)

ĉn(ξ/
√
Dn)

ĉn(0)
= exp(− |ξ|2 /2d(1 +O(n−δ′)),(20)

where 0 < δ′ < min(1, ε/2) is arbitrary and the estimate in (20) is uniform in ξ provided

|ξ|2 / log n is sufficiently small.

Theorem 2. Assume either that d ≥ 4 and p > 0 (note the change!) or d ≤ 4 and
p > (4− d)/2,β0 = β0(d, p) > 0 such that for β < β0,

(21)
cn(x)

cn
= 2

(
d

2πD

)d/2

n−d/2e−d|x|2/2Dn(1 + on→∞(1)),

provided that n has the same parity as ∥x∥1, and the estimate is uniform in x provided

|x|2 /(n log n) is sufficiently small.

If d ≥ 4 but p = 0, we only have the weaker estimate

sup
x∈Zd

cn(x)

cn
= O(n−d/2).

5.1. The (Six!) Inductive Hypotheses. Now we spell out the setup of the inductive
argument, leaving most of the details out. It should be noted that the induction argument,
though technical, is largely mechanical. Once one knows what hypotheses are appropriate,
their verification requires no technology beyond simple estimates. This gives the inductive
approach some advantage over other techniques which make use of the lace expansion by
relating it to other specialized tools such as cluster expansion to estimate the coefficients
πm, cn.

Another advantage of the inductive argument is that it gives good asymptotics which in-
dicate how the mean-squared displacement etc. approach the Gaussian behavior at finite
scales n, giving quantitative information about the convergence.
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Recall the Fourier transform of the two point-function C
(λ)
z (x) is given by

Ĉ(λ)
z (ξ) =

∑
n≥0

ĉ(λ)n (ξ)zn.

We want bounds on c
(λ)
n =

∑
x∈Zd c

(λ)
n (x) = ĉ

(λ)
n (0). To this end, denote

An(ξ) = znĉ(λ)n (ξ);

we will be interested, of course, in the case ξ = 0. Later, we will suppress the λ-s from the
notation to make the presentation easier to read.

Observe that cn(x) is nonzero if and only if n and ∥x∥1 have the same parity, and by the
properties of the Fourier transform, An(ξ + πe⃗1) = (−1)nAn(ξ). Thus it will suffice to
consider ξ ∈ [−π/2, π/2]× [−π, π)d−1.

The susceptibility χ(λ)(z) =
∑

n≥0 c
(λ)
n zn has radius of convergence 1/µλ. In the inductive

scheme, we will estimate the terms in the sum with the values of z being constrained to
smaller and smaller intervals converging to this critical value. This is the only place where
we can get information about cn: converging to any smaller value of z will land us within
the radius of convergence, so the limiting value of the terms in the series will be zero, while
converging to larger values will cause the terms to diverge.

5.2. Consequences of the induction. We will not advance the induction, rather, we will
take the conclusions of the argument for granted. Here, we will explain how the induction
leads to the proof of the theorem.

Lemma 3. Assume (H1-H4) and (H6). Then

(1) sup1≤j≤n |Aj(0)| ≤ exp(Cβ) where C is independent of β and n;

(2) ∥Aj∥1 ≲ j−d/2 for 1 ≤ j ≤ n;

(3) |∆Aj(0)| ≲ j for 1 ≤ j ≤ n.

We remark that (1) follows immediately from (H3) with setting ξ = 0, while (3) is an
immediate consequence of (H2), (H3), and (H6). The proof of (2) takes a bit more work
and uses some of the technical overhead we have decided to suppress in our exposition, so
we skip it.

Note that I1 is bounded away from 0 if β is sufficiently small, so 1/z ≤ C holds uniformly
for z ∈

⋂
1≤j≤n Ij .

By Fourier inversion, we see that ∥cj∥∞ = 1
(2π)d

∥Aj∥1. As promised, gaining control of the

∥Aj∥1 gives us control over the lace expansion coefficients π̂m:

Lemma 4. There is a constant C1 depending on d, p but not on β such that for all n, for
2 ≤ m ≤ n+ 1, z ∈ In, and ξ ∈ [−π, π)d, we have

(1) |π̂m(ξ)| zm ≤ C1βm
−2−ε,

(2) |∆π̂m(ξ)| zm ≤ C1β
2m−1−ε, and
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(3)
∣∣∣π̂m(ξ)− π̂m(0)− [1− D̂(ξ)]∆π̂m(0)

∣∣∣ zm ≤ C1β
2 |ξ|2+2η m−1−ε−2η,

where 0 < η < 1, and the value of C1 can be deduced from Lemma 3.

5.3. Identifying the Constants. Our calculations also tell us what the constants in the
preceding theorems are:

Theorem 5.

1 = 2dµ−1 +
∞∑

m=2

π̂m(0)µ−m(22)

A =

[
2dµ−1 +

∞∑
m=2

mπ̂m(0)µ−m

]−1

(23)

D = A

[
2dµ−1

∞∑
m=2

∆π̂m(0)µ−m

]
(24)
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