OUTLINE: PRIMES IN APS AND SIEVE THEORY

HUNTER Liu AND DANIEL RUI 6/6/24

This document is a list of the questions we hope you can answer, and topics/themes we hope
you will understand by the end of our talk! The material for the talk is drawn mostly from

Matoméki& Merikoski& Teraviinen (MMT) “Primes in arithmetic progressions and short intervals
without L-functions”, and Terry Tao’s 254A Notes.

Overarching Questions:

1. Fix an integer (the modulus) q¢ > 2. For a residue class a € (Z/qZ)*, how many primes p in the
arithmetic progression (AP) a (¢)? (Dirichlet: infinitely many.) How soon can I be guaranteed
to see a prime p = a (¢)? (Linnik: first such prime < ¢ for some L > 0.)

2. How does the “conspiracy” of quadratic characters y : (Z/qZ)* — {£1} with certain “extreme”
functions, like the Liouville function A (i.e. “the presence of a Siegel zero”) impact the study of
the above questions?

3. What are the ideas behind sieve theory? What are the main results/“out-of-the-box tools”? How
can I apply them to some concrete examples? What are the fundamental limitations? How can
we push past those limitations?

Part I: Dirichlet

1. How Euler used the Euler product factorization ((s) = >, X = [, - 1%)_1 to prove

infinitude of primes, more precisely (by taking log of Euler product and manipulating) » % = 0.
(X< % = logx + O(1), so can write log ((1) = log o, and so Zp% = loglog (1) = loglogco.
This is obviously nonsense, but actually one can show rigorously that Zp <a 11; = loglogx + O(1);

called Mertens2.)

2. What goes wrong with Zp %7 Why is complete multiplicativity important?

3. Fourier analysis on abelian group G = (Z/qZ)* to bring back multiplicativity.
. 1 N A 1
100 = & dif@x(@) o~ f@ =) foox@) = lema= el > x(@)x(a)
zeG xe@G xe@

4. What is the principle character xo?
5. Why is L(1, x) # 0 important?
THEME: DUELLING CONSPIRACIES

What are quadratic characters x : (Z/qZ)* — {£1} and why are they especially important?

® N @

What “extreme behaviors” might quadratic characters x “conspire” with, and how would that
impact L(1,x)?

9. THEME: SIEGEL ZEROES/CONSPIRACIES IN QUADRATIC CHARACTERS

10.



https://arxiv.org/abs/2401.17570
https://arxiv.org/abs/2401.17570
https://terrytao.wordpress.com/2014/11/23/254a-notes-1-elementary-multiplicative-number-theory/#1xa

Part II: Sieve Theory

1.

10.

11.

12.

13.

Basic setup of sieves, via most basic example of Zﬁ<p<x 1; ie. sieving a, =1-1 5, , up to
sifting level z = /.

. Notation: P(z) =[], p, Xq=Xg(d)+rq, V(z)=11,-.(1—g(p))

THEME: PHILOSOPHY OF SIEVE THEORY: what can I know about the sifted sum of a,,, ONLY
knowing the X, information? How best to utilize this information?

. THEME: TRUNCATION/MAIN-TERM VS. ERROR-TERM TRADEOFF.

log D
log 2z

Level of distribution D, and parameter s =
Sieve Theory)

(and its role in the Fundamental Lemma of

How to use Buchstab identity (and iterations of it) to truncate sums while maintaining inequalities
(upper/lower bound).

Where does the first error term So = >3, ., . _ 4, (51 p2) Lpipalnlp. (n)=p, Of the Buchstab

iteration come from? What does it have to do with products of 3 primes?

Multiplying the Buchstab iteration formulas by a, and summing >, arrive at

n<x’

S(A,z) = > [ud)l5(n)]- Xa+ Sa(A,D,z) + Ss...

d|P(2) R
d<D =:Ad

where

So(A, D, z) = Z Z an

pPe<p1<z n<x
—As(p1,p2) P1pP2|n
P« (n)=p2

Statement of | Sieve Black Box‘ (SBB) for k =1 (key restriction: s = 2).

THEME: PARITY PROBLEM: (1 + A(n)) have the same X, information, so sieve theory can
not tell them apart. Why does that lead to the lower bound in the \ Sieve Black Box\ (SBB) of

F(2) = 07

Back to primes in AP (MMT Prop. 11.4), using SBB on a,, = 1,=, (4)- Must do “Split Sum
Trick” to lower sifting level z so that s = lﬁ)gg f passes SBB threshold s > 2.

Key assumption of )] %@ being small, i.e. ¥(p) =1 often!

Part III: Linnik

1.

Consider A = (1n5a (q))nst = (an)



10.

11.

Want to apply SBB to the A4 term in the formula for S(A®), \/z) in I1(8) above. Sadly Error-term
can only take up to level of distribution D = 2'~, so must do “Split Sum Trick” and then apply
SBB (that is where integral term and error term come from), and get

> ap=SAD V) = | [ |+ 84D, g1 V) + [error]
=:D

Vr<p<z

Turns out right sum to look at is “logarithmic sum” Z\/Es;)@c %” instead of Z\/Esp«c ap. Relate
the two sums via partial summation/FTC (FTC will lead to negative integral term becoming
double integral).

The S5(A,...) term survives the summation by parts mostly intact (minor variations, with the
one major change being the transition from a,, to %*), transforming to

SAVD = Y an o~ S = D] %”

n<x <o
ppo‘n \/I:I\ |n
[)*<(’I’L)<—p\/72:/c (’I’L)—
pP2<p1 P« =p2

—As p2<pi<y/n
Y (P17P2;~~») 2 <P1 f

—AL(p1,p2;.-.)

Can restrict RHS sum further (thus producing lower bound of 5'2) to only consider n = pipaps,
i.e. product of exactly 3 primes. So in total we have

1, 1 =
Z p=a (9) > [ [...|+ [error] + Z pip2ps=a (9)
Vesp<a P VE<p1papz<z P1p2ps
P (n)=p2
P2<p1</P1P2P3
Further manipulations lead to
[RHS 3-prime sum| > ! Z Loipapsza @) + [error]
3 p1p2ps3

z1/6<py,pa,ps<al/3

The above is a triple convolution of a function g(b)! Normalize to mean 1: Eycqg(b) =14 o(1)
(using Mertens2 from I(1) above!). Along with this L!-control, also have (“Brun-Titchmarsh”)
L*-control g(b) < 2+.

THEME: TRIPLE CONVOLUTION GOOD.

State MMTProp9.1: § = ﬁ, g: G —[0,1] with mean > §. (Here abelian group G = (Z/qZ)*.)
Assume mass (= %77) in ALL index 2 cosets containing a. Then, get lower bound on triple
convolution at a, i.e. (g*g=*g)(a) > ...

Fourier inversion (see I(3) above!) leads to \G%|2 (9xg9x9)(a) =2 ca x(a)g(x)3.
)

First, the principle character (see I(4) above!) o contributes > §3. Try naive triangle inequality
on the other x, i.e. what’s the worst case of |§(x)|? (Trivial bound is < §.)



12.

13.

14.

15.

16.

17.

Calculate §(x), write as weighted sum of exponentials >3 () €( by .y, where g(e) € [0,1] =

m

wp € [0, L] (L®-control). Also, 3wy, = & (L'-control). Remember § = o
By “m-spoke wheel with §-chipped spokes, originally each of length %” illustration, and § = ﬁ,
we see that for m > 3 we get non-trivial bound, which ends up being
N 1 3
max  [300)] < 11+ (@3 — 172,
XEG:X?#Xo 4
At around § = ﬁ, this better upper bound is < 0.36!
Again, THEME: SIEGEL ZEROES/CONSPIRACIES IN QUADRATIC CHARACTERS
Finally know how to split the triple convolution sum III(10):
1 TN A3
GEUr 9@ = > x(@)g(x)
xEG‘
3 YL - 3 N 3
>0 = 2 P+ Y K@ty + Y (@)
Xo  x€G:x2#Xo0 x€G:x*#x0 x€G:x*#x0
x(a)g(x)<0 x(a)§(x)=0
=0
> 6" —max{ max |g(x)], max (—x(@)g()) - D, a0
XEG:X*#Xo XEG:X"#X0 A2
X()3(x)<0 XEG:XTFx0

So we just need lower bound on x(a)g(x). And finally, MMTLemma9.2: we use assumption that
there is mass (> 37) in ALL index 2 cosets containing a to conclude lower bound x(a)g(x) =

n—0 <= (—x(a)g(x)) <d—n.

Final lower bound of

! g g*g)(a)253—max{i\/l+(45—1)2, 5—n}- =67+ > g0l

ek
XEC

Use Plancherel to bound last sum by < é and WIN!



