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This document is a list of the questions we hope you can answer, and topics/themes we hope
you will understand by the end of our talk! The material for the talk is drawn mostly from
Matomäki&Merikoski&Teräväinen (MMT) “Primes in arithmetic progressions and short intervals
without L-functions”, and Terry Tao’s 254A Notes.

Overarching Questions:
1. Fix an integer (the modulus) q ě 2. For a residue class a ∈ (Z/qZ)×, how many primes p in the

arithmetic progression (AP) a (q)? (Dirichlet: infinitely many.) How soon can I be guaranteed
to see a prime p ≡ a (q)? (Linnik: first such prime � qL for some L ą 0.)

2. How does the “conspiracy” of quadratic characters χ : (Z/qZ)× → {±1} with certain “extreme”
functions, like the Liouville function λ (i.e. “the presence of a Siegel zero”) impact the study of
the above questions?

3. What are the ideas behind sieve theory? What are the main results/“out-of-the-box tools”? How
can I apply them to some concrete examples? What are the fundamental limitations? How can
we push past those limitations?

Part I: Dirichlet
1. How Euler used the Euler product factorization ζ(s) :=

ř

n
1
ns =

ś

p(1 −
1
ps )
−1 to prove

infinitude of primes, more precisely (by taking log of Euler product and manipulating)
ř

p
1
p = 8.

(
ř

nďx
1
n = log x + O(1), so can write log ζ(1) = log8, and so

ř

p
1
p = log log ζ(1) = log log8.

This is obviously nonsense, but actually one can show rigorously that
ř

pďx
1
p = log log x+ O(1);

called Mertens2.)

2. What goes wrong with
ř

p
1p≡a (q)

p ? Why is complete multiplicativity important?

3. Fourier analysis on abelian group G = (Z/qZ)× to bring back multiplicativity.

f̂(χ) :=
1

|G|
ÿ

x∈G
f(x)χ(x)  f(x) =

ÿ

χ∈Ĝ

f̂(χ)χ(x) =⇒ 1x=a =
1

|G|
ÿ

χ∈Ĝ

χ(x)χ(a)

4. What is the principle character χ0?

5. Why is L(1, χ) 6= 0 important?

6. THEME: Duelling Conspiracies

7. What are quadratic characters χ : (Z/qZ)× → {±1} and why are they especially important?

8. What “extreme behaviors” might quadratic characters χ “conspire” with, and how would that
impact L(1, χ)?

9. THEME: Siegel Zeroes/Conspiracies in Quadratic Characters

10. (((If cover 11.5 later, discuss ruling out L(1, χ) = 0 by assuming f.s.o.c. ζ(s)L(s, χ) =
ř

n
r1∗χs(n)
ns

is holomorphic at s = 1, Landau’s theorem for Dirichlet series with non-negative coefficients.)))
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Part II: Sieve Theory
1. Basic setup of sieves, via most basic example of

ř

√
xďpăx 1; i.e. sieving an = 1 · 1√xďnăx up to

sifting level z =
√
x.

2. Notation: P (z) =
ś

păz p, Xd = Xg(d) + rd, V (z) =
ś

păz(1− g(p))

3. THEME: Philosophy of Sieve Theory: what can I know about the sifted sum of an, ONLY
knowing the Xd information? How best to utilize this information?

4. THEME: Truncation/Main-term vs. Error-term Tradeoff.

5. Level of distribution D, and parameter s = logD
log z (and its role in the Fundamental Lemma of

Sieve Theory)

6. How to use Buchstab identity (and iterations of it) to truncate sums while maintaining inequalities
(upper/lower bound).

7. Where does the first error term S2 =
ř

p2ăp1ăz, ¬A2(p1,p2)
1p1p2|n1p∗(n)=p2 of the Buchstab

iteration come from? What does it have to do with products of 3 primes?

8. Multiplying the Buchstab iteration formulas by an and summing
ř

năx, arrive at

S(A, z) =
ÿ

d|P (z)
dďD

rµ(d)1D(n)︸ ︷︷ ︸
=:λd

s ·Xd + S2(A, D, z) + S4 . . .

where (the D, z dependence is in the details of the predicate A2(p1, p2;D, z))

S2(A, D, z) =
ÿ

p2ăp1ăz
¬A2(p1,p2)

ÿ

năx
p1p2|n
p∗(n)=p2

an

9. Statement of Sieve Black Box (SBB) for κ = 1 (key restriction: s ě 2). (((If do 11.5, then need
κ = 2 as well.)))

10. THEME: Parity Problem: (1 ± λ(n)) have the same Xd information, so sieve theory can
not tell them apart. Why does that lead to the lower bound in the Sieve Black Box (SBB) of
f(2) = 0?

11. Back to primes in AP (MMT Prop. 11.4), using SBB on an = 1n≡a (q). Must do “Split Sum
Trick” to lower sifting level z so that s = logD

log z passes SBB threshold s ě 2.

12. Key assumption of
ř 1−ψ(p)

p being small, i.e. ψ(p) = 1 often!

13. (((If have time, do 11.5, which finds primes in APs using the “opposite extreme” of
ř 1+ψ(p)

p

being small, i.e. ψ(p) = −1 often.)))

Part III: Linnik
1. Consider A(t) := (1n≡a (q))nďt =: (an)
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2. Want to apply SBB to the λd term in the formula for S(A(x),
√
x) in II(8) above. Sadly Error-term

can only take up to level of distribution D = x1−, so must do “Split Sum Trick” and then apply
SBB (that is where integral term and error term come from), and get

ÿ

√
xďpăx

ap = S(A(x),
√
x) ě −

∫
. . . + S2(A

(x), x1−︸︷︷︸
=:D

,
√
x) + rerrors

3. Turns out right sum to look at is “logarithmic sum”
ř

√
xďpăx

ap
p instead of

ř

√
xďpăx ap. Relate

the two sums via partial summation/FTC (FTC will lead to negative integral term becoming
double integral).

4. The S2(A, . . .) term survives the summation by parts mostly intact (minor variations, with the
one major change being the transition from an to an

n ), transforming to

S2(A,
√
x) =

ÿ

năx
p1p2|n
p∗(n)=p2
p2ăp1ă

√
x

¬A2(p1,p2;...)

an  S̃2(A) =
ÿ

√
xďnăx
p1p2|n
p∗(n)=p2
p2ăp1ă

√
n

¬A′2(p1,p2;...)

an
n
.

5. Can restrict RHS sum further (thus producing lower bound of S̃2) to only consider n = p1p2p3,
i.e. product of exactly 3 primes. So in total we have

ÿ

√
xďpăx

1p≡a (q)

p
ě −

∫ ∫
. . . + rerrors +

ÿ

√
xďp1p2p3ăx
p∗(n)=p2

p2ăp1ă
√
p1p2p3

...

1p1p2p3≡a (q)

p1p2p3
.

6. Further manipulations lead to

[RHS 3-prime sum] ě
1

3

ÿ

x1/6ďp1,p2,p3ăx1/3

1p1p2p3≡a (q)

p1p2p3
+ rerrors

(The error comes from the fact that in one sum we only have p1 6= p2, but in the other we
could have p1 = p2. So we need to figure out how the cases where not all p1, . . . , p3 are distinct
contribute.)

7. The above is a triple convolution of a function g(b)! Normalize to mean 1: Eb∈Gg(b) = 1 + o(1)
(using Mertens2 from I(1) above!). Along with this L1-control, also have (“Brun-Titchmarsh”)
L8-control g(b) ď 2+.

8. THEME: Triple Convolution Good.

9. State MMTProp9.1: δ = 1
2+ , g : G→ r0, 1s with mean ě δ. (Here abelian group G = (Z/qZ)×.)

Assume mass (ě 1
2η) in ALL index 2 cosets containing a. Then, get lower bound on triple

convolution at a, i.e. (g ∗ g ∗ g)(a) ě . . .

10. Fourier inversion (see I(3) above!) leads to 1
|G|2 (g ∗ g ∗ g)(a) =

ř

χ∈Ĝ χ(a)ĝ(χ)
3.

11. First, the principle character (see I(4) above!) χ0 contributes ě δ3. Try naive triangle inequality
on the other χ, i.e. what’s the worst case of |ĝ(χ)|? (Trivial bound is ď δ.)
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12. Calculate ĝ(χ), write as weighted sum of exponentials
ř

b (m) e(
b
m ) · wb, where g(•) ∈ r0, 1s =⇒

wb ∈ r0, 1
m s (L8-control). Also,

řm−1
b=0 wb = δ (L1-control). Remember δ = 1

2+ .

13. By “m-spoke wheel with δ-chipped spokes, originally each of length 1
m ” illustration, and δ = 1

2+ ,
we see that for m ě 3 we get non-trivial bound, which ends up being

max
χ∈Ĝ:χ2 6=χ0

|ĝ(χ)| ď 1

4

√
1 + (4δ − 1)2.

At around δ = 1
2+ , this better upper bound is ď 0.36!

14. Again, THEME: Siegel Zeroes/Conspiracies in Quadratic Characters

15. Finally know how to split the triple convolution sum III(10):

1

|G|2
(g ∗ g ∗ g)(a) =

ÿ

χ∈Ĝ

χ(a)ĝ(χ)3

ě δ3︸︷︷︸
χ0

−
ÿ

χ∈Ĝ:χ2 6=χ0

|ĝ(χ)|3 +
ÿ

χ∈Ĝ:χ2 6=χ0

χ(a)ĝ(χ)ă0

(χ(a)ĝ(χ))3 +
ÿ

χ∈Ĝ:χ2 6=χ0

χ(a)ĝ(χ)ě0

(χ(a)ĝ(χ))3

︸ ︷︷ ︸
ě0

ě δ3 −max

 max
χ∈Ĝ:χ2 6=χ0

|ĝ(χ)|, max
χ∈Ĝ:χ2 6=χ0

χ(a)ĝ(χ)ă0

(−χ(a)ĝ(χ))

 ·
ÿ

χ∈Ĝ:χ2 6=χ0

|ĝ(χ)|2

16. So we just need lower bound on χ(a)ĝ(χ). And finally, MMTLemma9.2: we use assumption that
there is mass (ě 1

2η) in ALL index 2 cosets containing a to conclude lower bound χ(a)ĝ(χ) ě

η − δ ⇐⇒ (−χ(a)ĝ(χ)) ď δ − η.

17. Final lower bound of

1

|G|2
(g ∗ g ∗ g)(a) ě δ3 −max

{
1

4

√
1 + (4δ − 1)2, δ − η

}
·

−δ2 + ÿ

χ∈Ĝ

|ĝ(χ)|2
.

Use Plancherel to bound last sum by ď δ and WIN!
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