Outline: Primes in APs and Sieve Theory

Hunter Liu and Daniel Rui 6/6/24

This document is a list of the questions we hope you can answer, and topics/themes we hope you will understand by the end of our talk! The material for the talk is drawn mostly from [Matomäki&Merikoski&Teräväinen \(MMT\) "Primes in arithmetic progressions and short intervals](https://arxiv.org/abs/2401.17570) without L[-functions",](https://arxiv.org/abs/2401.17570) and Terry Tao's 254A Notes.

Overarching Questions:

- 1. Fix an integer (the modulus) $q \ge 2$. For a residue class $a \in (\mathbb{Z}/q\mathbb{Z})^{\times}$, how many primes p in the arithmetic progression (AP) $a(q)$? (Dirichlet: infinitely many.) How soon can I be guaranteed to see a prime $p \equiv a(q)$? (Linnik: first such prime $\ll q^L$ for some $L > 0$.)
- 2. How does the "conspiracy" of quadratic characters $\chi : (\mathbb{Z}/q\mathbb{Z})^{\times} \to {\pm 1}$ with certain "extreme" functions, like the Liouville function λ (i.e. "the presence of a Siegel zero") impact the study of the above questions?
- 3. What are the ideas behind sieve theory? What are the main results/"out-of-the-box tools"? How can I apply them to some concrete examples? What are the fundamental limitations? How can we push past those limitations?

Part I: Dirichlet

- 1. How Euler used the Euler product factorization $\zeta(s)$:= $\frac{1}{n^s}$ = $_p(1-\frac{1}{p^s})^{-1}$ to prove infinitude of primes, more precisely (by taking log of Euler product and manipulating) $\sum_{p} \frac{1}{p} = \infty$. minitude of primes, more precisely (by taking log of Euler product and mampulating) $\sum_{p} \frac{1}{p} = \infty$.
 $\left(\sum_{n \leq x} \frac{1}{n}\right) = \log x + O(1)$, so can write $\log \zeta(1) = \log \infty$, and so $\sum_{p} \frac{1}{p} = \log \log \zeta(1) = \log \log \infty$. $\sum_{n \leq x} \frac{1}{n} = \log x + O(1)$, so can write $\log \zeta(1) = \log \omega$, and so $\sum_{p} \frac{1}{p} = \log \log \zeta(1) = \log \log \omega$.
This is obviously nonsense, but actually one can show rigorously that $\sum_{p \leq x} \frac{1}{p} = \log \log x + O(1)$; called Mertens2.)
- 2. What goes wrong with $\sum_{p} \frac{1_{p \equiv a \ (q)}}{p}$ $\frac{a_1(a)}{p}$? Why is complete multiplicativity important?
- 3. Fourier analysis on abelian group $G = (\mathbb{Z}/q\mathbb{Z})^{\times}$ to [bring back multiplicativity.](https://terrytao.wordpress.com/2014/11/23/254a-notes-1-elementary-multiplicative-number-theory/#1xa)

$$
\hat{f}(\chi) := \frac{1}{|G|} \sum_{x \in G} f(x) \overline{\chi(x)} \qquad \leadsto \qquad f(x) = \sum_{\chi \in \hat{G}} \hat{f}(\chi)\chi(x) \qquad \Longrightarrow \qquad 1_{x=a} = \frac{1}{|G|} \sum_{\chi \in \hat{G}} \chi(x) \overline{\chi(a)}
$$

- 4. What is the principle character χ_0 ?
- 5. Why is $L(1, \chi) \neq 0$ important?
- 6. THEME: Duelling Conspiracies
- 7. What are quadratic characters $\chi : (\mathbb{Z}/q\mathbb{Z})^{\times} \to {\pm 1}$ and why are they especially important?
- 8. What "extreme behaviors" might quadratic characters χ "conspire" with, and how would that impact $L(1, \chi)$?
- 9. THEME: Siegel Zeroes/Conspiracies in Quadratic Characters
- **10.** (((If cover 11.5 later, discuss ruling out $L(1,\chi) = 0$ by assuming f.s.o.c. $\zeta(s)L(s,\chi) = \sum_{n} \frac{[1*\chi](n)}{n^s}$ is holomorphic at $s = 1$, Landau's theorem for Dirichlet series with non-negative coefficients.))

Part II: Sieve Theory

- 1. Basic setup of sieves, via most basic example of $\sum_{\sqrt{x} \leq p < x} 1$; i.e. sieving $a_n = 1 \cdot 1_{\sqrt{x} \leq n < x}$ up to sifting level $z = \sqrt{x}$.
- 2. Notation: $P(z) = \prod_{p < z} p$, $X_d = Xg(d) + r_d$, $V(z) = \prod_{p < z} (1 g(p))$
- 3. THEME: PHILOSOPHY OF SIEVE THEORY: what can I know about the sifted sum of a_n , ONLY knowing the X_d information? How best to utilize this information?
- 4. THEME: Truncation/Main-term vs. Error-term Tradeoff.
- 5. Level of distribution D, and parameter $s = \frac{\log D}{\log z}$ (and its role in the Fundamental Lemma of Sieve Theory)
- 6. How to use Buchstab identity (and iterations of it) to truncate sums while maintaining inequalities (upper/lower bound).
- 7. Where does the first error term $S_2 =$ $p_2 < p_1 < z, \, \neg A_2(p_1, p_2) 1_{p_1p_2|n} 1_{p_*(n)=p_2}$ of the Buchstab iteration come from? What does it have to do with products of 3 primes?
- 8. Multiplying the Buchstab iteration formulas by a_n and summing $\sum_{n \leq x}$, arrive at

$$
S(\mathcal{A}, z) = \sum_{\substack{d|P(z) \\ d \le D}} \underbrace{[\mu(d)1_{\overline{\mathcal{D}}}(n)]}_{=: \overline{\lambda_d}} \cdot X_d + S_2(\mathcal{A}, D, z) + S_4 \dots
$$

where (the D, z dependence is in the details of the predicate $A_2(p_1, p_2; D, z)$)

$$
S_2(\mathcal{A}, D, z) = \sum_{\substack{p_2 < p_1 < z \\ \neg A_2(p_1, p_2)} \sum_{\substack{n < x \\ p_1 p_2 | n \\ p_2 (n) = p_2}} a_n
$$

- 9. Statement of Sieve Black Box (SBB) for $\kappa = 1$ (key restriction: $s \ge 2$). (((If do 11.5, then need $\kappa = 2$ as well.))
- 10. THEME: PARITY PROBLEM: $(1 \pm \lambda(n))$ have the same X_d information, so sieve theory can not tell them apart. Why does that lead to the lower bound in the Sieve Black Box (SBB) of $f(2) = 0?$
- 11. Back to primes in AP (MMT Prop. 11.4), using SBB on $a_n = 1_{n \equiv a(q)}$. Must do "Split Sum Trick" to lower sifting level z so that $s = \frac{\log D}{\log z}$ passes SBB threshold $s \geq 2$.
- 12. Key assumption of $\sum \frac{1-\psi(p)}{p}$ being small, i.e. $\psi(p) = 1$ often!
- **13.** ((If have time, do 11.5, which finds primes in APs using the "opposite extreme" of $\sum \frac{1+\psi(p)}{p}$ being small, i.e. $\psi(p) = -1$ often.)))

Part III: Linnik

1. Consider $A^{(t)} := (1_{n \equiv a \ (q)})_{n \leq t} =: (a_n)$

2. Want to apply SBB to the λ_d term in the formula for $S(\mathcal{A}^{(x)}, \sqrt{x})$ in II(8) above. Sadly Error-term can only take up to level of distribution $D = x^{1-}$, so must do "Split Sum Trick" and then apply SBB (that is where integral term and error term come from), and get

$$
\sum_{\sqrt{x}\leq p
$$

- 3. Turns out right sum to look at is "logarithmic sum" $\sum_{\sqrt{x} \leq p \leq x} \frac{a_p}{p}$ instead of $\sum_{\sqrt{x} \leq p \leq x} a_p$. Relate the two sums via partial summation/FTC (FTC will lead to negative integral term becoming double integral).
- 4. The $S_2(\mathcal{A},\ldots)$ term survives the summation by parts mostly intact (minor variations, with the one major change being the transition from a_n to $\frac{a_n}{n}$, transforming to

$$
S_2(\mathcal{A}, \sqrt{x}) = \sum_{\substack{n \leq x \\ p_1p_2|n \\ p_2(p_1, p_2, \dots)}} a_n \qquad \leadsto \qquad \tilde{S}_2(\mathcal{A}) = \sum_{\substack{\sqrt{x} \leq n < x \\ p_1p_2|n \\ p_2(p_1, p_2, \dots)}} \frac{a_n}{n}.
$$

5. Can restrict RHS sum further (thus producing lower bound of \tilde{S}_2) to only consider $n = p_1 p_2 p_3$, i.e. product of exactly 3 primes. So in total we have

$$
\sum_{\sqrt{x} \le p < x} \frac{1_{p \equiv a \ (q)}}{p} \ge -\boxed{\int \int \ldots}_{+} \left[\text{error} \right] + \sum_{\substack{\sqrt{x} \le p_1 p_2 p_3 < x \\ p_4 (n) = p_2 \\ p_2 < p_1 < \sqrt{p_1 p_2 p_3}}} \frac{1_{p_1 p_2 p_3 \equiv a \ (q)}}{p_1 p_2 p_3}.
$$

6. Further manipulations lead to

[RHS 3-prime sum]
$$
\geq \frac{1}{3} \sum_{x^{1/6} \leq p_1, p_2, p_3 \leq x^{1/3}} \frac{1_{p_1 p_2 p_3 \equiv a (q)}}{p_1 p_2 p_3} + \text{[error]}
$$

(The error comes from the fact that in one sum we only have $p_1 \neq p_2$, but in the other we could have $p_1 = p_2$. So we need to figure out how the cases where not all p_1, \ldots, p_3 are distinct contribute.)

- 7. The above is a triple convolution of a function $g(b)!$ Normalize to mean 1: $\mathbb{E}_{b \in G} g(b) = 1 + o(1)$ (using Mertens2 from I(1) above!). Along with this L^1 -control, also have ("Brun-Titchmarsh") L^{∞} -control $g(b) \leq 2+$.
- 8. THEME: Triple Convolution Good.
- 9. State MMTProp9.1: $\delta = \frac{1}{2^+}, g: G \to [0,1]$ with mean $\geq \delta$. (Here abelian group $G = (\mathbb{Z}/q\mathbb{Z})^{\times}$.) Assume mass $(\geq \frac{1}{2}\eta)$ in ALL index 2 cosets containing a. Then, get lower bound on triple convolution at a, i.e. $(g * g * g)(a) \geq \dots$
- 10. Fourier inversion (see I(3) above!) leads to $\frac{1}{|G|^2}(g * g * g)(a) = \sum_{\chi \in \hat{G}} \overline{\chi(a)}\hat{g}(\chi)^3$.
- 11. First, the principle character (see I(4) above!) χ_0 contributes $\geq \delta^3$. Try naive triangle inequality on the other χ , i.e. what's the worst case of $|\hat{g}(\chi)|$? (Trivial bound is $\leq \delta$.)
- 12. Calculate $\hat{g}(\chi)$, write as weighted sum of exponentials $\sum_{b \ (m)} e(\frac{b}{m}) \cdot w_b$, where $g(\bullet) \in [0,1] \implies$ Carculate $g(\chi)$, which as weighted sum of exponentials $\angle_b(m)$ $\cup_{m} \cup w_b$, where χ
 $w_b \in [0, \frac{1}{m}]$ $(L^{\infty}$ -control). Also, $\sum_{b=0}^{m-1} w_b = \delta (L^1$ -control). Remember $\delta = \frac{1}{2+}$.
- 13. By "m-spoke wheel with δ -chipped spokes, originally each of length $\frac{1}{m}$ " illustration, and $\delta = \frac{1}{2+}$, we see that for $m \geq 3$ we get non-trivial bound, which ends up being

$$
\max_{\chi \in \hat{G}: \chi^2 \neq \chi_0} |\hat{g}(\chi)| \leq \frac{1}{4} \sqrt{1 + (4\delta - 1)^2}.
$$

At around $\delta = \frac{1}{2+}$, this better upper bound is $\leq 0.36!$

- 14. Again, THEME: Siegel Zeroes/Conspiracies in Quadratic Characters
- 15. Finally know how to split the triple convolution sum $III(10)$:

$$
\frac{1}{|G|^2}(g * g * g)(a) = \sum_{\chi \in \hat{G}} \overline{\chi(a)}\hat{g}(\chi)^3
$$

\n
$$
\geq \underbrace{\delta^3}_{\chi_0} - \sum_{\chi \in \hat{G}:\chi^2 \neq \chi_0} |\hat{g}(\chi)|^3 + \sum_{\substack{\chi \in \hat{G}:\chi^2 \neq \chi_0 \\ \chi(a)\hat{g}(\chi) < 0}} (\chi(a)\hat{g}(\chi))^3 + \sum_{\substack{\chi \in \hat{G}:\chi^2 \neq \chi_0 \\ \chi(a)\hat{g}(\chi) < 0}} (\chi(a)\hat{g}(\chi))^3
$$

\n
$$
\geq \delta^3 - \max \left\{ \max_{\chi \in \hat{G}:\chi^2 \neq \chi_0} |\hat{g}(\chi)|, \max_{\substack{\chi \in \hat{G}:\chi^2 \neq \chi_0 \\ \chi(a)\hat{g}(\chi) < 0}} (-\chi(a)\hat{g}(\chi)) \right\} \cdot \sum_{\chi \in \hat{G}:\chi^2 \neq \chi_0} |\hat{g}(\chi)|^2
$$

- 16. So we just need lower bound on $\chi(a)\hat{g}(\chi)$. And finally, MMTLemma9.2: we use assumption that there is mass $(\geq \frac{1}{2}\eta)$ in ALL index 2 cosets containing a to conclude lower bound $\chi(a)\hat{g}(\chi) \geq$ $\eta - \delta \iff (-\chi(a)\hat{g}(\chi)) \leq \delta - \eta.$
- 17. Final lower bound of

$$
\frac{1}{|G|^2}(g*g*g)(a) \geq \delta^3 - \max\left\{\frac{1}{4}\sqrt{1+(4\delta-1)^2}, \quad \delta - \eta\right\} \cdot \left(-\delta^2 + \sum_{\chi \in \hat{G}} |\hat{g}(\chi)|^2\right).
$$

Use Plancherel to bound last sum by $\leq \delta$ and WIN!