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Preface

This book is the re-incarnation of my first:beok Brownign Motion and
Martingales in Analysis, which was published by Wadsworth in-1984. For more
than a decade I have used Chapters 1, 2, 8, and-9 of that book-to give “reading
courses” to graduate students who have complet_ed the first year graduate prob-
ability course and were interested in learning more about processes that move
continuously in space and time. Taking the advice from biology that “form fol-
lows function” I have taken that material on stochastic integration, stochastic
differential equations, Brownian motion and its relation to partial differential
equations to be the core of this book (Chapters 1-5). To this I have added
other practically important topics: one dimensional diffusions, semigroups and
generators, Harris chains, and weak convergence. I have struggled with this
material for almost twenty years. I now think that I understand most of it,
so to help you master it in less time, I have tried to explain it as simply and
clearly as I can.

My students’ motivations for learning this material have been diverse: some
have wanted to apply ideas from probability to analysis or differential geometry,
others have gone on to do research on diffusion processes or stochastic partial
differential equations, some have been interested in applications of these ideas
to finance, or to problems in operations research. My motivation for writing
this book, like that for Probabilily Theory and Examples, was to simplify my life
as a teacher by bringing together in one place useful material that is scattered
in a variety of sources.

An old joke says that “if you copy from one book that is plagiarism, but
if you copy from ten books that is schiolarship.” From that viewpoint this is a
scholarly book. Its main contributors for the various subjects are (a) stochastic
integration and differential equations: Chung and Williams (1990}, Tkeda and
Watanabe (1981), Karatzas and Shreve (1991), Protter (1990), Revuz and Yor
(1991), Rogers and Williams (1987), Stroock and Varadhan (1979); (b) partial
differential equations: Folland (1976), Friedman (1964), (1975), Port and Stone
(1978), Chung and Zhao (1995); (c) one dimensional diffusions: Karlin and
Taylor (1981); (d) semi-groups and generators: Dynkin (1965), Revuz and Yor
(1991); (e) weak convergence: Billingsley (1968), Ethier and Kurtz (1986),
Stroock and Varadhan (1979). If you bought all those books you would spend
more than $1000 but for a fraction of that cost you can have this book, the
intellectual equivalent of the ginzu knife.
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Shutting off the laugh-track and turning on the violins, the road from this
book’s first publication in 1984 to its rebirth in 1996 has been a long and winding
one. In the second half of the 80’s I accumulated an embarrassingly long list
of typos from the first edition. Some time at the beginning of the 90’s I talked
to the editor who brought my first three books into the world, John Kimmel,
about preparing a second edition. However, after the work was done, the second
edition was personally killed by Bill Roberts, the President of Brooks/Cole. At
the end of 1992 I entered into a contract with Wayne Yuhasz at CRC Press
to produce this book. In the first few months of 1993, June Meyerman typed
most of the book into TeX. In the Fall Semester of 1993 I taught a course from
this material and began to organize it into the current form. By the summer
of 1994 I.thought I was almost done. At this point I had the good (and bad)
fortune of having Nora Guertler, a student from Lyon, visit for two months.
When she was through making an average of six corrections per page, it was
clear that the book was far from finished.

During the 1994-95 academic year most of my time was devoted to prepar-
ing the second edition of my first year graduate textbook Probability: Theory
and Ezamples. After that experience my brain cells could not bear to work
on another book for another several months, but toward the end of 1995 they
decided “it is now or never.” The delightful Cornell tradition of a long winter
break, which for me stretched from early December to late January, provided
just enough time to finally finish the book.

I am grateful to my students who have read various versions of this book
and also made numerous comments: Don Allers, Hassan Allouba, Robert Bat-
tig, Marty Hill, Min-jeong Kang, Susan Lee, Gang Ma, and Nikhil Shah. Earlier
in the process, before I started writing, Heike Dengler, David Lando and I spent
a semester reading Protter (1990) and Jacod and Shiryaev (1987), an enterprise
which contributed greatly to my education.

The ancient history of the revision process has unfortunately been lost. At
the time of the proposed second edition, I transferred a number of lists of typos
to my copy of the book, but I have no record of the people who supplied the
lists. I remember getting a number of corrections from Mike Brennan and Ruth
Williams, and it is impossible to forget the story of Robin Pemantle who took
Brownian Motion, Martingales and Analysis as his only math book for a year-
long trek through the South Seas and later showed me his fully annotated copy.
However, I must apologize to others whose contributions were recorded but
whose names were lost. Flame me at rtd1@cornell.edu and I'll have something
to say about you in the next edition.

Rick Durrett
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1 Brownian Motion

1.1. Definition and Construction

In this section we will define Brownian motion and construct it. This event,
like the birth of a child, is messy and painful, but after a while we will be able
to have fun with our new arrival. We begin by reducing the definition of a
d-dimensional Brownian motion with a general starting point to that of a one
dimensional Brownian motion starting at 0. The first two statements, (1.1) and
(1.2), are part of our definition.

(1.1) Translation invariance. {B; — Bo,t > 0} is independent of By and has
the same distribution as a Brownian motion with By = 0.

(1.2) Independence of coordinates. If By = 0 then {B},t > 0}...,{Bd,t >
0} are independent one dimensional Brownian motions starting at 0.

Now we define a one dimensional Brownian motion starting at 0 to be a
process By, t > 0 taking values in R that has the following properties:

(a) Iftg <t < .. <ty then B(tg),B(tl) - B(tg),...B(tn) —B(tn_l) are
independent.

(b) If s, t > 0 then

P(B(s+t)—B(s) € A) = /A(Zrt)'l/z exp(—z?/2t)dz

(c) With probability one, By = 0 and ¢t — B; is continudus.

(a) says that B, has independent increments. (b) says that the increment
B(s +t) — B(s) has a normal distribution with mean vector 0 and variance t.
(c) is self-explanatory. The reader should note that above we have sometimes
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written B, and sometimes written B(s), a practice we will continue in what
follows.

An immediate consequence of the definition that will be useful many times is:

(1.3) Scaling relation. If By = 0 then for any ¢ > 0,
{Bsys 2 0} £ {/°B,,5 2 0)

To be precise, the two families of random variables have the same finite dimen-
sional distributions, i.e., if 5, < ... < s, then

(lei;' - ';Bsnt) g (tl/zle,. . ,tl/zBsn)

In view of (1.2) it suffices to prove this for a one dimensional Brownian motion.
To check this when n = 1, we note that t!/2 times a normal with mean 0 and
variance s is a normal with mean 0 and variance st. The result for n > 1 follows
from independent increments.

A second equivalent definition of one dimensional Brownian motion starting
from By = 0, which we will occasionally find useful, is that B;, ¢ > 0, is a real
valued process satisfying-

(2') Bt is a Gaussian process (i.e., all its finite dimensional distributions are
multivariate normal),

(b"y EB, =0, EB,B; = s At = min{s,t},
(c) With probability one, ¢ — B; is continuous.

It is easy to see that (a) and (b) imply (a'). To get (b’) from (2) and (b) suppose
s <t and write
EB,B, = E(B}) + E(B,s(B; — B,))

=s+ EB,E(B;—B,)=s

The converse is even easier. (a') and (b’) specify the finite dimensional distri-
butions of B;, which by the last calculation must agree with the ones defined
in (a) and (b).

The first question that must be addressed in any treatment of Brownian
motion is, “Is there a process with these properties?” The answer is “Yes,” of
course, or this book would not exist. For pedagogical reasons we will pursue
an approach that leads to a dead end and then retreat a little to rectify the
difficulty. In view of our definition we can restrict our attention to a one di-
mensional Brownian motion starting from a fixed £ € R. We could take =0
but will not for reasons that become clear in the remark after (1.5).
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For each 0 < t; < ... < t, define a measure on R" by

/“:c,tl,...tn(Al X X An) = / d:[:]_ .. / dmn H ptm-—tm..,(xm-—ly mm)
Ay An m=1

where 2o = z, tg = 0,
pi(a, b) = (2mt) /2 exp(—(b — a)?/2t)

and A; € R the Borel subsets of R. From the formula above it is easy to see
that for fixed z the family p is a consistent set of finite dimensional distributions
(f.d.d.’S), that is, if {51, - sn-—l} C {tl, ves tn} and t; ¢ {51, ves sn-—l} then

Bzsysnoy (AL X X Ap_1) = poty, ot (A1 X X Aj_1 XRXAjx--- X Ap1)

This is clear when j = n. To check the equality when 1 < j < n, it is enough
to show that

/Ptj—t,-_, (:c,y) p‘lj+1—ij(y1 z)dy = Pt,~+,—tj_,(17, z)

By translation invariance, we can without loss of generality assume z = 0, but
all this says in that case is the sum of independent normals with mean 0 and
variances t; —¢;_1 and tj4; —t; has a normal distribution with mean 0 and
variance tj4 — tj—1. With the consistency of f.d.d.’s verified we get our first
construction of Brownian motion:

(1.4) Theorem. Let Q, = {functions w : [0,00) — R} and F, be the o-field
generated by the finite dimensional sets {w : w(t;) € A; for 1 < i < n} where
A; € R. For each z € R, there is a unique probability measure v, on (,, F,)
so that v{w :w(0) =z} =1and when 0 < t;--- < t,,

*) vo({w  w(ts) € Ai}) = gyt (A1 X - X An)

This follows from a generalization of Kolmogorov’s extension theorem. We will
not bother with the details since at this point we are at the dead end referred
to above. If C = {w : t — w(t) is continuous} then C ¢ F,, that is, C is not a
measurable set. The easiest way of proving C ¢ F, is to do

Exercise 1.1. A € F, if and only if there is a sequence of times t1, tg, ...
€ [0,00) and a B € R{L%--} (the infinite product o-field R x R x --) so that
A = {w : (w(t1),w(t2),...) € B}. In words, all events in F, depend on only
countably many coordinates.
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The above problem is easy to solve. Let Qa = {m2™" : m,n > 0} be the
dyadic rationals. If Q; = {w : Q; — R} and F, is the o-field generated by the
finite dimensional sets, then enumerating the rationals ¢, g2, ... and applying
Kolmogorov’s extension theorem shows that we can construct a probability v,
on (Qq,%,) so that vz{w : w(0) = 2} = 1 and () in (1.4) holds when the
t; € Qa. To extend the definition from Qs to [0, c0) we will show:

(1.5) Theorem. Let T' < oo and z € R. v, assigns probability one to paths
w : Q2 — R that are uniformly continuous on Q2 N [0,T].

Remark. It will take quite a bit of work to prove (1.5). Before taking on that
task, we will attend to the last measure theoretic detail: we tidy things up by
moving our probability measures to (C,C) where C = {continuous w : [0,00) —
R} and C is the o-field generated by the coordinate maps ¢t — w(t). To do this,
we observe that the map ¢ that takes a uniformly continuous point in Q, to its
extension in C is measurable, and we set

Pr=v; Olb—l.

Our construction guarantees that B,(w) = w; has the right finite dimensional
distributions for ¢ € Q2. Continuity of paths and a simple limiting argument
shows that this is true when ¢ € [0, o).

As mentioned earlier the generalization to d > 1 is straightforward since the
coordinates are independent. In this generality C = {continuous w : [0,00) —
R4} and C is the o-field generated by the coordinate maps ¢t — w(t). The reader
should note that the result of our construction is one set of random variables
Bi(w) = w(t), and a family of probability measures P, z € R9, so that under
Py, By is a Brownian motion with P;(Bo = z) = 1. It is enough to construct the
Brownian motion starting from an initial point z, since if we want a Brownian
motion starting from an initial measure p (i.e., have P,(By € A) = u(4)) we
simply set

Pu(A) = [ ude)Pe(d)

Proof of (1.5) By (1.1) and (1.3), we can without loss of generality suppose
By = 0 and prove the result for T' = 1. In this case, part (b) of the definition
and the scaling relation (1.3) imply

Eo(|B, — B.[*) = Bo|By_,|* = C(t — 5)?

where C = E|B;|* < co. From the last observation we get the desired uniform
continuity by using a result due to Kolmogorov. In this proof, we do not use
the independent increments property of Brownian motion; the only thing we
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use is the moment condition. In Section 2.11 we will need this result when the
X take values in a space S with metric p; so, we will go ahead and prove it in
that generality.

(1.6) Theorem. Suppose that Ep(X,, X:)? < K|t — s|*** where o, 3> 0. If
¥ < a/f then with probability one there is a contant C(w) so that

p(Xq,X:)<Clg—7|" forallq,r € Q2n[0,1]

Proof Lety<ea/B,7>0,L,={({,j):0<i<j<2",0<j—i<L2"}
and G, = {p(X(727"),X(i27™)) < ((F — )27 ") for all (4,5) € I,}. Since
aPP(|Y| > a) < E|Y|? we have

PG < >, (G—-927") P Ep(X(j27"), X (127™))P
(.0)El

SK Y (G-t
(ilj)eI“

by our assumption. Now the number of (4,7) € I, is < 2"2"7, so
P(Gﬁ) S K -9nont (2nn2-—n)-—ﬂ'y+1+a - I{Z—"'\

where A = (1 — 9)(1+ @ — By) — (1 + 7). Since v < a/f, we can pick 7 small
enough so that A > 0. To complete the proof now we will show

(1.7) Lemma. Let A =3.20-m7/(1 - 277). On Hy = NiZ yGn we have
p(Xq7Xr) < Alq - rl‘)‘ for q,7€ Q2 n [07 1]

with |¢ — r| < 2-@-DN

(1.6) follows easily from (1.7):

2 > Kka-N
P(HY) < Y PGS K Y 2™ =
n=N n=N

This shows p(Xy, X;) < Alg — r|” for |¢ — r| < §(w) and implies that we have
p(Xq7XT) < C(w)lq - 7‘|7 for 3,TE [071]

Proof of (1.7) Let ¢, € Q2N[0,1] with 0 < r—g < 2-0-D¥ Pick m > N
so that
9—(m+1)(1-1) <r—-g< 9—m(1-n)
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and write
r=j2"m 427 4 ... 4 9T

g=i2"" —9-91) ... _9-a(k)

where m < r(1) < --- < r(f)and m < ¢(1) < --- < g(k). Now 0 < r—¢g <
2-m(1-1 50 (j — i) < 2™ and it follows that on Hy

(2) p(X(277), X (j27™)) < ((2™7)27™)7
On Hpy it follows from the triangle inequality that
k =)
b))  p(X, X(@E2T™) <Y @My < Y (@ < Com
h=1 h=m
where C, =1/(1 —277) > 1. Repeating the last computation shows
© P(Xe, X(727™) < Cy2™
Combining (a)—(c) gives
p(Xq, Xr) < 3072—7'"(1_") < 3072(1_'7)7'7' —q|

since 27™(~" < 21-7|r — g|. This completes the proof of (1.7) and hence of
(1.6) and (1.5) O

The scaling relation (1.2) implies
E|B; — B,|*™ = Cu|t — s|™ where Cy, = E|By|*™
So using (1.6) with # = 2m and @ = m — 1 and then letting m — oo gives:

(1.8) Theorem. Brownian paths are Holder continuous with exponent v for
any v < 1/2.

It is easy to show:

(1.9) Theorem. With probability one, Brownian paths are not Lipschitz con-
tinuous (and hence not differentiable) at any point.

Proof Let A, = {w: thereis an s € [0,1] so that |B; — B,| < C|t — s| when
|t—s| <3/n}. For1 <k <n-—2let

Yin =max{‘B (f%’-) _B (Eii:_l)‘ :j=0,1,2}

Gn = { at least one Y 5 is <5C/n}
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We claim that A, C G,. To prove this we consider s = 1, which we claim is

the worst possibility. In this case we want to conclude that Y,_,, < 5C/n.
For this we observe that j = 0 is the worst case, but even then

3 2
|B("—3)/" - B(ﬂ-'b’)/ﬂ‘ < |B(n—3)/n - B1| + |B1 - B(n-—2)/n‘ <C (; + ;)

Using An C Gr and the scaling relation (1.2) gives
5C\°
P(An)SP(Gn)SnP |B1/n|S"1'_L"

5C \? 10C _12)?
=TLP(|B1|S;—17§) Sn{;—z—lﬁ(zﬂ) 1/2}

since exp(—z%/2) < 1. Letting n — oo shows P(A,) — 0. Noticing n — A, is
increasing shows P(A,) = 0 for all n and completes the proof. O

Exercise 1.2. Show by considering k increments instead of 3 that if v >
1/2 4+ 1/k then with probability 1, Brownian paths are not Holder continuous
with exponent v at any point of [0,1].

The next result is more evidence that By — B, = /t — s.

Exercise 1.3. Let A, n = B(tm2™") — B(t(m — 1)27"). Compute

2
E| > AL.-t
m<2n

and use the Borel-Cantelli lemma to conclude that )7, (o A2, . — ¢ as. as
n — oo.

Remark. The last result is true if we consider a sequence of partitions II; C
I, C ... with mesh — 0. See Freedman (1970) p.42-46. The true quadratic
variation, defined as the sup over all partitions, is co for Brownian motion.

1.2. Markov Property, Blumenthal’s 0-1 Law

Intuitively the Markov property says

“given the present state, B,, any other information about what hap-
pened before time s is irrelevant for predicting what happens after
time s.”
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Since Brownian motion is translation invariant, the Markov property can be
more simply stated as:

“if s > 0 then By, — By, t > 0 is a Brownian motion that is indepen-
dent of what happened before time s.”

This should not be surprising: the independent increments property ((a) in the
definition) implies that if s; < 52... < sp =sand 0 < t;... < ¢, then

(Biy+s — Bs,... By, 4+s — B,) is independent of (B,,,...B,.)

The major obstacle in proving the Markov property for Brownian motion
then is to introduce the measure theory necessary to state and prove the result.
The first step in doing this is to explain what we mean by “what happened
before time s.” The technical name for what we are about to define is a filtra-
tion, a fancy term for an increasing collection of o-fields, F;, i.e., if s <t then
Fs C F;. Since we want B, € F;, i.e., B, is measurable with respect to F;, the
first thing that comes to mind is

Fl=0(Br:7<5)
For technical reasons, it-is convenient to replace F? by
Fr =y, F?
The fields F;t are nicer because they are right continuous. That is,
NessFi = Miss (NuseFo) = NusoFo = F

In words the F; allow us an “infinitesimal peek at the future,” i.e., A € F; if
it is in ¥, for any € > 0. If B, is a Brownian motion and f is any measurable

function with f(u) > 0 when u > 0 the random variable

limsup (B; — B,)/f(t — s)
tls

is measurable with respect to F; but not F?. Exercises 2.9 and 2.10 consider
what happens when we take f(u) = v/u and f(u) = \/uloglog(1/u). However,
as we will see in (2.6), there are no interesting examples of sets that are in F}
but not in 7. The two o-fields are the same (up to null sets).

To state the Markov property we need some notation. First, recall that we
have a family of measures P, z € R4, on (C, C) so that under P;, B;(w) = w(t)
is a Brownian motion with By = z. In order to define “what happens after time
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s,” it is convenient to define the shift transformations 6, : C — C, for s > 0
by
(Osw)(t) = w(s +t) fort>0

In words, we cut off the part of the path before time s and then shift the path
so that time s becomes time 0. To prepare for the next result, we note that if
Y : C — R is C measurable then Y o, is a function of the future after time s.
To see this, consider the simple example Y (w) = f(w(t)). In this case

Yob, = f0sw(t)) = fw(s +1)) = f(Bs+1)
Likewise, if Y (w) = f(wr,,...w:,) then

Y 00, = f(Bsgrsy - Bogta)

(2.1) The Markov property. If s > 0 and Y is bounded and C measurable
then for all z € R4

E.(Y 00,|F})=EpY
where the right hand side is ¢(y) = E,Y evaluated at y = B(s).

Explanation. In words, this says that the conditional expectation of Y o 6,
given F} is just the expected value of Y for a Brownian motion starting at Bj.
To explain why this implies “given the present state, B, any other information
about what happened before time s is irrelevant for predicting what happens
after time s,” we begin by recalling (see (1.1) in Chapter 5 of Durrett (1995))
that if G C F and E(Z|F) € G then E(Z|F) = E(Z|G). Applying this with
F = F} and G = o(B,) we have

E.(Y 0 0,|F}) = E-(Y 06,|B;)
If we recall that X = E(Z|F) is our best guess at Z given the information in F
(in the sense of minimizing E(Z — X)? over X € F;, see (1.4) in Chapter 4 of
Durrett (1995)) then we see that our best guess at Y o 6, given B, is the same
as our best guess given F;, i.e., any other information in F;} is irrelevant for
predicting Y o 6;.

Proof By the definition of conditional expectation, what we need to show is

(MP) E:(Y 06,;A) = E,(Ep,Y;A) forall Ae F}
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‘We will begin by proving the result for a special class of Y’s and a special class
of A’s. Then we will use the # — A theorem and the monotone class theorem to
extend to the general case. Suppose

Y@= ] fnw(tm)

1<m<n

where 0 < t; < ... <ty and the f,, : R¢ — R are bounded and measurable. Let
O<h<tylet0<sy...<sp<s+h,andlet A ={w:w(s;) €4;,1<j<k}
where A; € R? for 1 < j < k. We will call these A’s the finite dimensional
or f.d. sets in .

From the definition of Brownian motion it follows that if 0 = up < u3 <
... ug then the joint density of (By,,...By,) is given by

L
P::(Bul =U,-. -Btu = yl) = Hpu;-—u;..,(yi-—hyi)

i=1

where yo = z. From this it follows that

)
E; (Hgi(Bu.-)> = /dyl Pu;—uo (Y0, 1)01(91)

.. '/dylpuz-—uz-x(yl-—l7y£)gl(y£)

Applying this result with the u; given by s1,...,5k,s+h,s+t1,...5+ ¢, and
the obvious choices for the g; we have

j=1 m=1

k n
E.(Y 00,34) = E, (H 1ay(Byy) - 1ns (Bon) - ] fm(Bs+tm)>

=/ dmlps;(x7xl)"' dmkpsk-—sk_,(mk-—limk)
Ay A
/ dyps-{-h—Sk(xk;y)()o(y;h)
Rd

where
w(y, h) = /dylptx—h(y7yl)fl(yl)"'/dynpin-—in-x(yn-—l;yﬂ)f"(y")

Using the formula for E, []r_, gi(Bu,) again we have
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(MP-1) E(Y 00s;A) = Ez(¢(Bsyn, h); A) for all f.d. sets A in F7,
To extend the class of A’s to all of 7, ,, we use

(2.2) The m — A theorem. Let A be a collection of subsets of Q that contains
Q and is closed under intersection (i.e., if A, B € A then AN B € A). Let G be
a collection of sets that satisfy

()ifA,BeGand ADBthen A—Beg

(i) If A, €Gand A, T A, then A €G.
If A C G then the o-field generated by A, o(A) C G.
Proof See (2.1) in the Appendix of Durrett (1995).
(MP-2) E (Y 06s; A) = Ez(¢(Bs4n, h); A) forall A € so-{-h

Proof FixY and let G be the collection of sets A for which the desired equality

is true. A simple subtraction shows that (i) in (2.2) holds, while the monotone

convergence theorem shows that (ii) holds. If we let A be the collection of finite

dimensional sets in ¥y, then we have shown A C G so 7, = d(A) C G

which is the desired conclusion. O
Our next step is

(MP-3) E;(Y 06,;A) = E-(¢(Bs,0); A) for all A € F}

Proof Since Ft C F7,, for any h > 0, all we need to do is let A — 0 in
(MP-2). It is easy to see that

$(w) = film) / By Prss, (1, ¥2)F2(v2)
cee / dyn ptn-—tn_l(yn-—l;yn)fn(yn)

is bounded and measurable. Using the dominated convergence theorem shows
that if h — 0 and z;, — = then

o(zn ) = / ds pey—n(zn, 1)) — 9(2,0)

Using (MP-2) and the bounded convergence theorem now gives the desired
result. 0
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(MP-3) shows that (MP) holds for Y =[], ¢;n<, fm(w(tm)) when the f,
are bounded and measurable. To extend to general bounded measurable Y we
will use

(2.3) Monotone class theorem. Let A be a collection of subsets of Q that
contains 2 and is closed under intersection (i.e., if A, B € A4 then AN B € A).
Let H be a vector space of real valued functions on  satisfying

IfA€A 14 €N
() If0< f, €M and f, T f, a bounded function, then f € H.

Then H 'contains all the bounded functions on  that are measurable with
respect to o(A).

Proof See (1.4) of Chapter 5 of Durrett (1995).

To get (2.1) from (2.3), fix an A € F} and let H = the collection of bounded
functions Y for which (MP) holds. M clearly is a vector space satisfying (ii).
Let A be the collection of sets of the form {w : w(t;) € A;,1 < j < n} where
A; € RY. The special case treated above shows that if A € A then 14 € H.
This shows (i) holds and the desired conclusion follows from (2.3). O

The next seven exercises give typical applications of the Markov property.
Perhaps the simplest example is

Exercise 2.1. Let 0 < s < t. If f: R — R is bounded and measurable

Ez:(f(Bt)lfs) = EB,f(Bi—-S)

Exercise 2.2. Take f(z) = z; and f(z) = z;z; with i # j in Exercise 2.1 to
conclude that B} and BiB] are martingales if i # j.

The next two exercises prepare for calculations in Section 1.4.

Exercise 2.3. Let Tp = inf{s > 0: B, = 0} and let R = inf{t > 1: B, = 0}.
R 1s for right or return. Use the Markov property at time 1 to get

(2.4) P (R>1+41t)= / p1(z,y)Py(To > t)dy

Exercise 2.4. Let Ty = inf{s > 0: B, = 0} and let L =sup{t <1: B, = 0}.
L is for left or last. Use the Markov property at time 0 <t < 1 to conclude

(2.5) PL<t)= / 2(0,9)P,(To > 1 — ) dy



Section 1.2 Markov Property, Blumenthal’s 0-1 Law 13
Exercise 2.5. Let G be an open set and let "= inf{¢ : B; ¢ G}. Let K be a
closed subset of G and suppose that for all £ € K we have P,(T' > 1,B; € K) >
a, then for all integers n > 1 and z € K we have P.(T > n,B; € K) > o".

The next two exercises prepare for calculations in Chapter 4.

Exercise 2.6. Let 0 < s <t. If h: R x R¥ — R is bounded and measurable

E; (/0: h(r, B;) dr .‘F,) = /0 h(r, B,) dr

1—3
+E’B(,)/ h(s + u,B,)du
0

Exercise 2.7. Let 0 < s <t. If f: R = R and A: Rx R? — R are bounded
and measurable then
f-,)

E, ( F(By) exp ( /0 *her, B,)dr)
= exp (/0: h(r, B,)dr) Es, {f(B,_,)exp (/0:_, h(s + u,B,,)du)}

The reader will see many other applications of the Markov property below,
so we turn our attention now to a “triviality” that has surprising consequences.
Since

E (Y ob,|F}f)=EpY € F?
it follows (see, e.g., (1.1) in Chapter § of Durrett (1995)) that

Eo(Y 00,|F}) = Eo(Y 0 6;|F7)
From the last equation it is a short step to
(2.6) Theorem. If Z € C is bounded then for all s > 0 and z € RY,

Ex(Z|F) = E=(2|7)).

Proof By the monotone class theorem, (2.3), it suffices to prove the result
when

Z = [] fm(B(tm))
m=1
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and the f,, are bounded and measurable. In this case Z = X(Y o 6,) where

X € F? and Y € C, so using a property of conditional expectation (see, e.g.,

(1.3) in Chapter 4 of Durrett (1995)) and the Markov property (2.1) gives
E(Z|FF)=XE (Y 06,|F})= XEB)Y € F?

and the proof is complete. O

If welet Z € F;t then (2.6) implies Z = E (Z|F?) € F?, so the two o-fields

3
are the same up to null sets. At first glance, this conclusion is not exciting.

The fun starts when we take s = 0 in (2.6) to get
(2.7) Blumenthal’s 0-1 law. If A € 3 then for all z € RY,

P;(A) € {0,1}

Proof Using (i) the fact that A € Fy, (ii) (2.6), (iii) F§ = o(Bo) is trivial
under Py, and (iv) if G is trivial E(X|G) = EX gives

lA=Ex(lAl.‘Fé*-)zEx(lAlfg)sz(A) Px a.s.

This shows that the indicator function 14 is a.s. equal to the number P;(A)
and it follows that P.(A) € {0,1}. O

In words, the last result says that the germ field, g, is trivial. This result
is very useful in studying the local behavior of Brownian paths. Until further
notice we will restrict our attention to one dimensional Brownian motion.

(2.8) Theorem. If r = inf{t > 0: B; > 0} then Py(r =0) = 1.

Proof Py(r <t) > Po(B; > 0) = 1/2 since the normal distribution is sym-
metric about 0. Letting ¢ | 0 we conclude

PQ(T= O) = ltijl}')lpg(T S t) Z 1/2

so it follows from (2.7) that Py(r = 0) = 1. O

Once Brownian motion must hit (0, c0) immediately starting from 0, it
must also hit (—oo, 0) immediately. Since ¢ — B; is continuous, this forces:

(2.9) Theorem. If Tp = inf{t > 0: B; = 0} then Py(Tp =0) = 1.



Section 1.2 Markov Property, Blumenthal’s 0-1 Law 15

Combining (2.8) and (2.9) with the Markov property you can prove

Exercise 2.8. If a < b then with probability one there is a local maximum
of B; in (a,b). Since with probability one this holds for all rational a < &, the
local maxima of Brownian motion are dense.

Another typical application of (2.7) is

Exercise 2.9. Let f(t) be a function with f(¢) > 0 for all t > 0. Use (2.7) to
conclude that limsup, ;o B(t)/f(t) = ¢ P a.s. where ¢ € [0, 0] is a constant.

In the next exercise we will see that ¢ = co when f(t) = t!/2. The law of the
iterated logarithm (see Section 7.9 of Durrett (1995)) shows that ¢ = 2/2 when
f(t) = (tloglog(1/1))/*.

Exercise 2.10. Show that limsup, 0 B(t)/t!/? = co Py a.s., so with probability
one Brownian paths are not Hélder continuous of order 1/2 at 0.

Remark. Let H,(w) be the set of times at which the path w € C is Holder
continuous of order 7. (1.6) shows that P(H, = [0,00)) = 1 for v < 1/2.
Exercise 1.2 shows that P(H, = 0) = 1 for ¥ > 1/2. The last exercise shows
P(t € Hy/2) = 0 for each ¢, but B. Davis (1983) has shown P(Hy/2 # 0) = 1.

Comic Relief. There is a wonderful way of expressing the complexity of
Brownian paths that I learned from Wilfrid Kendall.

“If you run Brownian motion in two dimensions for a positive amount
of time, it will write your name.”

Of course, on top of your name it will write everybody else’s name, as well as all
the works of Shakespeare, several pornographic novels, and a lot of nonsense.
Thinking of the function g as our signature we can make a precise statement
as follows:

(2.10) Theorem. Let g : [0,1] — R? be a continuous function with g(0) = 0,
let ¢ > 0 and let ¢, | 0. Then P, almost surely,

B(0tn)
\/{;

Proof In view of Blumenthal’s 0-1 law, (2.7), and the scaling relation (1.3),
we can prove this if we can show that

- g(G)‘ < € for infinitely many n
0<6<1

(*) Py ( sup |B(8) — g(8)] < e) >0 foranye>0
0<6<1
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This was easy for me to believe, but not so easy for me to prove when students
asked me to fill in the details. The first step is to treat the dead man’s signature
g(z) = 0.

Exercise 2.11. Show that if ¢ > 0 and ¢ < oo then

Py (sup sup |Bf| < e) >0
i 0<s<t

In doing this you may find Exercise 2.5 helpful. In (5.4) of Chapter 5 we will
get the general result from this one by change of measure. Can the reader find
a simple direct proof of (x)?

With our discussion of Blumenthal’s 0-1 law complete, the distinction be-
tween F; and F? is no longer important, so we will make one final improvement
in our o-fields and remove the superscripts. Let

N;={A: AC B with P,(B) =0}
FF=o(FFUNL)
fs‘z n;pf::

N are the null sets and F¥ are the completed o-fields for P,. Since we do
not want the filtration to depend on the initial state we take the intersection of
all the completed o-fields. This technicality will be mentioned at one point in
the next section but can otherwise be ignored.

(2.7) concerns the behavior of B; as t — 0. By using a trick we can use
this result to get information about the behavior as t — co.

(2.11) Theorem. If B; is a Brownian motion starting at 0 then so is the process
defined by Xy =0 and X; =t B(1/t) for ¢t > 0.

Proof By (1.2) it suffices to prove the result in one dimension. We begin by
observing that the strong law of large numbers implies X; = 0 ast — 0,s0 X
has continuous paths and we only have to check that X has the right f.d.d.’s.
By the second definition of Brownian motion, it suffices to show that (i) if
0 <t <. <ty then (X(t1), ... X(£,)) has a multivariate normal distribution
with mean 0 (which is obvious) and (ii) if s < t then

E(X,X:)=stE(B(1/s)B(1/t))=s O
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(2.11) allows us to relate the behavior of B; as t — oo to the behavior as
t — 0. Combining this idea with Blumenthal’s 0-1 law leads to a very useful
result. Let
Fi =0(Bs :5>t) = the future after time ¢

T =My>0 F; = the tail o-field
(2.12) Theorem. If A € 7T then either Pz(4) =0 or P:(4) = 1.

Remark. Notice that this is stronger than the conclusion of Blumenthal’s 0-1
law (2.7). The examples A = {w : w(0) € B} show that for A in the germ
o-field Fyf the value of P;(A) may depend on z.

Proof Since the tail o-field of B is the same as the germ o-field for X, it
follows that Py(A) € {0,1}. To improve this to the conclusion given observe
that A € F{, so 1, can be written as 1g o 6,. Applying the Markov property,
(2.1), gives

P,;(A) = Ex(]-B o) = E:c(E:c(]-B 0 61|F1)) = E:F(EBx 15)

= / (2m)4/2 exp(—|y — z[?/2)P, (B) dy

Taking z = 0 we see that if Py(A) = 0 then P,(B) = 0 for a.e. y with respect
to Lebesgue measure, and using the formula again shows P;(A) = 0 for all z.
To handle the case Po(A) = 1 observe that A° € T and Py(A°) = 0, so the last
result implies P;(A¢) = 0 for all z. O

The next result is a typical application of (2.12). The argument here is a
close relative of the one for (2.8).

(2.13) Theorem. Let B; be a one dimensional Brownian motion and let A =
Np{B: = 0 for some t > n}. Then P;(A) =1 for all z.

In words, one dimensional Brownian motion is recurrent. It will return to 0
“infinitely often,” i.e., there is a sequence of times ¢, T oo so that B, = 0. We
have to be careful with the interpretation of the phrase in quotes since starting
from 0, B; will return to 0 infinitely many times by time ¢ > 0.

Proof We begin by noting that under P., B,/ V/t has a normal distribution
with mean z/ V/t and variance 1, so if we use x to denote a standard normal,

P.(B; < 0) = P;(B,/vt < 0) = P(x < —z/V)
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and limy—.oo P (B < 0) = 1/2. If we let Ty = inf{t : B; = 0} then the last
result and the fact that Brownian paths are continuous implies that forall z > 0

P(To < 00) > 1/2

Symmetry implies that the last result holds for z < 0, while (2.9) (or the Markov
property) covers the last case z = 0.

Combining the fact that P:(Tp < oo) > 1/2 for all z with the Markov
property shows that

P;(B; = 0 for some t > n) = E;(Pp, (To < o)) > 1/2

Letting n — oo it follows that P;(A) > 1/2 but A € T so (2.12) implies
Px(Bt=010)E 1. O

1.3. Stopping Times, Strong Markov Property

We call a random variable § taking values in [0, 0] a stopping time if for all
t >0, {S <t} € F;. To bring this definition to life think of B, as giving the
price of a stock and S as the time we choose to sell it. Then the decision to sell
before time ¢ should be measurable with respect to the information known at
time t.

In-the last definition we have made a choice between {S < t} and {S < t}.
This makes a big difference in discrete time but none in continuous time (for a
right continuous filtration %3) :

If{S<t}eFithen {S<t}=U{S<t-1/n} € F.
If {S<t}eFithen {S<t}=nN{S<t+1/n}eF.

The first conclusion requires only that ¢ — F; is increasing. The second relies
on the fact that ¢ — F; is right continuous. (3.2) and (3.3) below show that
when checking something is a stopping time it is nice to know that the two
definitions are equivalent.

(3.1) Theorem. If G is an open set and T' = inf{t > 0: B; € G} then T is a
stopping time.

Proof Since G is open and t — B, is continuous {T' < t} = U,<:{B,; € G}
where the union is over all rational ¢, so {T" < t} € F;. Here, we need to use
the rationals so we end up with a countable union. 0

(3.2) Theorem. If T, is a sequence of stopping times and T, | T then T is a
stopping time.
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Proof {T <t} =U.{Tn < t}. O

(3.3) Theorem. If T}, is a sequence of stopping times and T}, T T then T is a
stopping time.

Proof {T <t}=n,{T, <t}. O

(3.4) Theorem. If K is a closed set and T' = inf{¢t > 0: B, € K} then T is a
stopping time.

Proof Let D(z,7) ={y:|z—y| < r}, let G, = U{D(z,1/n): z € K}, and
let T, = inf{t > 0 : B; € G,}. Since Gy, is open, it follows from (3.1) that T
is a stopping time. I claim that as n 1 oo, T, T T. To prove this notice that
T > T, for all n, so lim T, < T. To prove T' < lim T,, we can suppose that
Tn 1t < o0. Since B(Ty) € Gy, for all n and B(Ty,) — B(t), it follows that
Bt)e Kand T < t. O

Remark. As the reader might guess the hitting time of a Borel set A, Ty =
inf{t : B; € A}, is a stopping time. However, this turns out to be a difficult
result to prove and is not true unless the filtration is completed as we did at
the end of the last section. Hunt was the first to prove this. The reader can
find a discussion of this result in Section 10 of Chapter 1 of Blumenthal and
Getoor (1968) or in Chapter 3 of Dellacherie and Meyer (1978). We will not
worry about that result here since (3.1) and (3.4), or in a pinch the next result,
will be adequate for all the hitting times we will consider.

Exercise 3.1. Suppose A is an F,, i.e., a countable union of closed sets. Show
that Ty = inf{t¢ : B, € A} is a stopping time.

Exercise 3.2. Let S be a stopping time and let S, = ([2"S] + 1)/2" where
[z] = the largest integer < z. That is,

Spn=(m+1)27"if m2"<S<(m+1)27"

In words, we stop at the first time of the form k2" after S (i.e., > S). From
the verbal description it should be clear that S,, is a stopping time. Prove that
it is.

Exercise 3.3. If S and T are stopping times, then SAT = min{S,T}, SVT =
max{S,T}, and S + T are also stopping times. In particular, if t > 0, then
SAt, SVt and S 4t are stopping times.
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Exercise 3.4. Let T,, be a sequence of stopping times. Show that

sup Ty, iIr}f Tn, limsupTy,, liminf7, are stopping times
n n n

Our next goal is to state and prove the strong Markov property. To do
this, we need to generalize two definitions from Section 1.2. Given a nonnegative
random variable S(w) we define the random shift 65 which “cuts off the part
of w before S(w) and then shifts the path so that time S(w) becomes time 0.”

(Bsw)(t) = {w(S(w) +1) 22 %g < zﬁ

Here A is an extra point we add to C to cover the case in which the whole
path gets shifted away. Some authors like to adopt the convention that all
functions have f(A) = 0 to take care of the second case. However, we will
usually explicitly restrict our attention to {S < oo} so that the second half of
the definition will not come into play.

The second quantity Fg, “the information known at time S,” is a little
more subtle. We could have defined

F = n€>00(BiA(S+€)1t > 0)
so by analogy we could set

Fs = Nes0 0(Bia(s4e),t > 0)
The definition we will now give is less transparent but easier to work with.

Fs={A:An{S <Lt} € Fforallt >0}

In words, this makes the reasonable demand that the part of A that lies in
{S < t} should be measurable with respect to the information available at time
t. Again we have made a choice between < t and < ¢ but as in the case of
stopping times, this makes no difference and it is useful to know that the two

definitions are equivalent.

Exercise 3.5. When F,; is right continuous, the definition of Fg is unchanged
if we replace {S <t} by {S < t}.

For practice with the definition of Fs do
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Exercise 3.6. Let S be a stopping time and let A € Fs. Show that

S onA . ..
R= {oo on A 8 a stopping time

Exercise 3.7. Let § and T be stopping times.
(i) {S<t}, {S>1t}, {S=1}arein Fs.
(ii) {S < T}, {S > T}, and {S =T} are in Fs (and in Fr).
Two properties of Fs that will be useful below are:
(3.5) Theorem. If § < T are stopping times then Fs C Fr.
Proof If A€ Fsthen AN{T <t} =(AN{SL<tHN{T <Lt} € F. O
(3.6) Theorem. If T;, | T are stopping times then Fr = N, F(T,).

Proof (3.5) implies F(T;,) O Fr for all n. To prove the other inclusion, let
A €NF(T,). Since AN{Th <t} € Fy and T, | T, it follows that AN {T <
t}e€Fy,soAe Fp. ' ]

The last result and Exercises 3.2 and 3.7 allow us to prove something that
is obvious from the verbal definition.

Exercise 3.8. Bs € Fg, i.e., the value of Bs is measurable with respect to
the information known at time S! To prove this let S, = ([2"S]+ 1)/2" be the
stopping times defined in Exercise 3.2. Show B(S,) € Fs,_ then let n — oo and
use (3.6).

The next result goes in the opposite direction from (3.6). Here G, 1 G means
n — Gy, is increasing and G = o(Gy)-

Exercise 3.9, Let S < co and T;, be stopping times and suppose that T, T co
as n T co. Show that Fsop, T Fs asn T oo.

We are now ready to state the strong Markov property, which says that
the Markov property holds at stopping times.

(3.7) Strong Markov property. Let (s,w) — Y(s,w) be bounded and R x C
measurable. If S is a stopping time then for all z € R4

E(Ys00s|Fs) = Ep(s)Ys on {S < o0}



22 Chapter 1 Brownian Motion
where the right-hand side is ¢(y,t) = E,Y; evaluated at y = B(S), t= S.

Remark. In most applications the function that we apply to the shifted path
will not depend on s but this flexibility is important in Example 3.3. The verbal
description of this equation is much like that of the ordinary Markov property:

“the conditional expectation of Y o 85 given .7-'_;." is just the expected
value of Ys for a Brownian motion starting at Bg.”

Proof We first prove the result under the assumption that there is a sequence
of times t, T o0, so that P;(S < 00) = 5 P:(S =t,). In this case we simply
break things down according to the value of S, apply the Markov property and
put the pieces back together. If we let 7, =Y;_(w) and A € Fs then

Ex(Ysobs;AN{S<oo})= iE’x(Zn 06, ;AN{S=1t,})

n=1
Nowif A€ Fs, AN{S=t.}=(AN{S<ta}) - (AN{S < tn-1}) € F(tn),
so it follows from the Markov property that the above sum is

= ZEx(EB(tn)Zn;A n{s= tn}) = Ex(EB(S)YS;A n{s < 00})
n=1 ’

To prove the result in general we let S, = ([2"S] + 1)/2" where [z] = the
largest integer < z. In Exercise 3.2 you showed that S, is a stopping time. To
be able to let n — oo we restrict our attention to Y’s of the form

() Yy(w) = fo(s) [] fm(w(tm))
m=1
where 0 < t1 < ... <ty and fy,..., f. are real valued, bounded and continuous.

If f is bounded and continuous then the dominated convergence theorem implies
that

z— / dy pi(z, y)f (v)

is continuous. From this and induction it follows that
o(2,5) = BLY, = fo(s) / dyy pey(2,0)F ()
s / dyn ptn—tn_x(yn—l; yn)f(yn)
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is bounded and continuous.

Having assembled the necessary ingredients we can now complete the proof.
Let A € Fs. Since S < Sn, (3.5) implies A € F(S,). Applying the special case
of (3.7) proved above to S,; and observing that {S, < 00} = {S < oo} gives

E.(Ys, 00s.; AN{S < 00}) = Eo(0(B(Sn), Sn) ; AN {S < 0})
Now as n — 00, S, | S, B(S,) — B(S), ¢(B(Sn),Sn) — #(B(S),S) and
Ys ofs, — Ysols,

so the bounded convergence theorem implies that (3.7) holds when Y has the
form given in (%).

~ To complete the proof now we use the monotone class theorem, (2.3). Let
H be the collection of bounded functions for which (3.7) holds. Clearly H is
a vector space that satisfies (ii) if Y, € H are nonnegative and increase to a
bounded Y, then Y € ‘H. To check (i) now, let A be the collection of sets of
the form {w : w(t;) € G;} where G; is an open set. If G is open the function
1g is a decreasing limit of the continuous functionsfi(z) = (1 — k dist(z, G))*,
where dist(z,G) is the distance from z to G, so if A € A then 14 € H. This
shows (i) holds and the desired conclusion follows from (2.3). O

Example 3.1. Zeros of Brownian motion. Consider one dimensional Brow-
nian motion, let R; = inf{u >t : B, = 0} and let Ty = inf{u > 0 : B, = 0}.
Now (2.13) implies P;(R; < o0) = 1, so B(R;) = 0 and the strong Markov
property and (2.9) imply

P,,(To [o} 03, > 0|.’FR,) = P()(T() > 0) =0
Taking the expected value of the last equation we see that
P.(Ty 0 g, > 0 for some rational t) =0

From this it follows that with probability one, if a point v € Z(w) = {t :
Byi(w) = 0} is isolated on the left (i.e., there is a rational ¢ < u so that (¢,u) N
Z(w) = 0) then it is a decreasing limit of points in Z(w). This shows that the
closed set Z(w) has no isolated points and hence must be uncountable. For the
last step see Hewitt and Stromberg (1969), page 72.

If we let | Z(w)| denote the Lebesgue measure of Z(w) then Fubini’s theorem
implies

T
E(Z)Nn0,T]|) = /0 Po(B, = 0)dt = 0
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So Z(w) is a set of measure zero. O

Example 3.2. Let G be an open set, £ € G, let T = inf{t : B, ¢ G},
and suppose P(T' < o) = 1. Let A C 8G, the boundary of G, and let
u(z) = Pz(Br € A). I claim that if we let § > 0 be chosen so that D(z,6) =
{y:ly—z| <8} CGandlet §=inf{t > 0: B; ¢ D(z,6)}, then

u(z) = Ezu(Bs)

Intuition Since D(z,8) C G, B; cannot exit G without first exiting D(z, §)
at Bs. When Bg = y, the probability of exiting G in A is u(y) independent of
how B; got to y.

Proof To prove the desired formula, we will apply the strong Markov prop-
erty, (3.7), to
Y= ]‘(BTEA)

To check that this leads to the right formula, we observe that since D(z,8) C G,
we have Brofs = Br and 1(p,e4)©0s = 1(Brea). In words, w and the shifted
path fsw must exit G at the same place.

Since S < T and we have supposed Py(T < o) = 1, it follows that
P.(S < o) = 1. Using the strong Markov property now gives

Ez(1(Brea) 0 0s|Fs) = Ep(s)l(Brea) = u(Bs)

Using the definition of u, 1(p,.¢4)00s = 1(B,ea), and taking expected value of
the previous display, we have

‘u(:t:) = E:F]'(BTEA) = E;; (I(BTEA) (o] 05)
=E.E; (I(BTEA) oflg |.'F5) = E,,‘u(Bs) N

Exercise 3.10. Let G, T, D(z,6) and S be as above, but now suppose
that E,T < oo for all y € G. Let g be a bounded function and let u(y) =

E, (f(;r g(B;)ds). Show that forz € G
5
u(z) = E; (/0 g(B;)ds + u(BS)>

Our third application shows why we want to allow the function Y that we
apply to the shifted path to depend on the stopping time S.
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Example 3.3. Reflection principle. Let B; be a one dimensional Brownian
motion, let @ > 0 and let 7, = inf{t : B, = a}. Then

(3.8) Py(T, < t) = 2Py(B; > a)

Intuitive proof We observe that if B, hits a at some time s < ¢ then the
strong Markov property implies that B; — B(T,) is independent of what hap-
pened before time T;. The symmetry of the normal distribution and Py(B; =
a) = 0 then imply

1
(3.9) Py(Ta<t,B;>a) = §P0(Ta <t)

Multiplying by 2, then using {B; > a} C {T, < t} we have
Py(T, <t) =2Py(T, < t,B; > a) = 2Py(B,; > a)

Proof To make the intuitive proof rigorous we only have to prove (3.9). To
extract this from the strong Markov property (3.7), we let

_J1 ifs<tw(t—s)>a
Y, = ?
(w) 0 otherwise

We do this so that if we let S = inf{s <t : B, = a} with inf@ = oo then
Ys(8sw) = 1(B,5a) on {S < oo} = {Ta <t}
If we let ¢(z,s) = E.Y, the strong Markov property implies
Eo(Ys 0 05| Fs) = ¢(Bs,S) on {§ < oo} ={T, <t}
Now Bg =aon {S < oo} and ¢(a,s) =1/2if s < t, so
Py(Ta<t,B:>a)=Eo(1/2;Ta < t)
which proves (3.9).

Exercise 3.11. Generalize the proof of (3.9) to conclude that if u < v < a
then

(3.10) Py(Ta <t,u< By <v)=Py(2a—v < B; <2a—u)
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To explain our interest in (3.10), let M; = maXo<s<: Bs to rewrite it as
Py(M; > a,u< By <v)=Py(2a—v < B; < 2a—u)

Letting the interval (u,v) shrink to z we see that

Py(M;>a,Bi=2)=Py(B;=2a—1z)= Jz_ﬁe—(za—x)’/zt

Differentiating with respect to a now we get the joint density

2(20— :t:) 2
3.11 Py(M;=a,B;=z) = =2t —(2a—-z)*/2t
(3.11) o My , ) Norr e

1.4. First Formulas

We have two interrelated aims in this section: the first to understand the be-
havior of the hitting times T, = inf{¢ : B; = a} for a one dimensional Brownian
motion B;; the second to study the behavior of Brownian motion in the upper
half space H = {z € R? : 25 > 0}. We begin with T, and observe that the
reflection principle (3.8) implies

Py(Ty < t) =2Py(B: > a) =2 / oo(27rt)-1/ ? exp(—z%/2t) dz

Here, and until further notice, we are dealing with a one dimensional Brow-
nian motion. To find the probability density of T,, we change variables = =
t1/2a /5112 dx = —t1/2a/253/2ds to get

(1) PyT.<t)=2 / 0(27rt)‘1/ 2 exp(—a®/2s) (—tl/ 2q/25% 2) ds

t
= / (275%)~ Y/ %q exp(—a?/2s) ds
0

Using the last formula we can compute the distribution of L = sup{t < 1:
B; =0} and R=inf{t > 1: B; = 0}, completing work we started in Exercises
2.3 and 2.4. By (2.5) if 0 < s < 1 then

(o]

Py(L<s)= / ps(0,2)Pp(To > 1 — s)dz

-0

00 (o}
=2 / (275)~Y/? exp(—z? /25) (277%) Y 2z exp(—22 /2r) dr dz
0 1-s

1 {o9] {o9]
== (sr3)~Y2 / z exp(—z*(r + 5)/2rs) dz dr
1-s 0

= %/loo (srs)‘l/zrs/(r + s)dr

-3
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Our next step is to let ¢t = s/(r + s) to convert the integral over r € [1 — 5, 00)
into one over t € [0,s]). dt = —s/(r 4+ s)%dr, so to make the calculations easier
we first rewrite the integral as '

1 /°° (r+s)2 1z s
= AUln L I
T Jios s (r + 5)?

Changing variables as indicated above and then again with ¢ = 42 to get

Pl <s)=2 /’(t(l — )24
(4.2) ™o

2 [V* 2
= —/ (1—u?)"Y2du = = arcsin(v/s)
w Jo w

The reader should note that, contrary to intuition, the density function of L =
the last 0 before time 1,

P(L=1)= 7_17/ W1=1)""2 foro<t<l
0

is symmetric about 1/2 and blows up near 0 and 1. This is one of two arcsine
laws associated with Brownian motion. We will encounter the other one in
Section 4.9.

The computation for R is much easier and is left to the reader.

Exercise 4.1. Show that the probability density for R is given by
Po(R=1+1t)=1/(xt/?(141)) fort>0

Notation. In the last two displays and in what follows we will often write
P(T =1t) = f(t) as short hand for T has density function f(t).

As our next application of (4.1) we will compute the distribution of B,
where 7 = inf{t : B, ¢ H} and H = {z : 23 > 0} and, of course, B; is a d
dimensional Brownian motion. Since the exit time depends only on the last
coordinate, it is independent of the first d — 1 coordinates and we can compute
the distribution of B, by writing for z,0 € R4, y€R

o0
P(:l:,y)(BT = (0’ 0)) = / ds P(:c,y)(T = s)(zﬂ-s)_(d—l)/2e—|$—0|2/25
0

= (2 1;!1/2 /oo ds s_(d+2)/2e_(lx_0I2+y2)/2’
T 0
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by (4.1) with a = y. Changing variables s = (|z — 8|? + y?) /2t gives

y / “lz=0P+y?) (2t P
(2m)d/2 /o 22 |z — )% + y2

so we have

(4.3) Pz y)(Br = (6,0)) =

y I(d/2)
(Jz— 6]2 + y2)d/2 ndl2

where T'(a) = [;° y*~'e~¥dy is the usual gamma function.

When d = 2 and = = 0, probabilists should recognize this as a Cauchy
distribution. At first glance, the fact that B, has a Cauchy distribution might
be surprising, but a moment’s thought reveals that this must be true. To explain
this, we begin by looking at the behavior of the hitting times {T,,a > 0} as
the level a varies.

(4.4) Theorem. Under Py, {T,,a > 0} has stationary independent increments.

Proof The first step is to notice that if 0 < a < & then
Tb 00‘1‘“ = Tb - Ta)

so if f is bounded and measurable, the strong Markov property (3.7) and trans-
lation invariance imply

Eo(f(Ts - Ta) | Pz, ) = Eo (f(Th) 0 0z, |1, )
= B, f(Ty) = Eof (Ts—a)

The desired result now follows from the next lemma which will be useful later.

(4.5) Lemma. Suppose Z; is adapted to G; and that for each bounded mea-
surable function f

E(f(Zt - Z;)lgs) = Ef(Zt—S)

Then Z; has stationary independent increments.

Proof Letty <t ...<ty,andlet f;, 1 <i<nbebounded and measurable.
Conditioning on #;__, and using the hypothesis we have

o[ s

=F (H fi2y; — 20, ) - BE(fa(Z1, — Ztn-1)|ftn_,)>

i=1

n—-1
=F (H fi(Zfi - Zfi—x)) Ef(Zin—fn—x)
i=1
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By induction it follows that

E (Hfi(Zt.‘ - Zii—x)) = HEfi(Zt,-—t.-..,)

i=1

which implies the desired conclusion. O

The scaling relation (1.2) implies
d o9
(46) Ta = a“Tl

So consulting Section 2.7 of Durrett (1995) we see that T, has a stable law with
index a = 1/2 and skewness parameter £ = 1 (since T, > 0).

To explain the appearance of the Cauchy distribution in the hitting lo-
cations, let 7, = inf{t : B = a} (where B} is the second component of a
two dimensional Brownian motion) and observe that another application of the
strong Markov property implies

(4.7) Theorem. Under Py, {Cs; = B(rs),s > 0} has stationary independent
increments.

Exercise 4.2. Prove (4.7).

The scaling relation (1.3) and an obvious symmetry imply

4

(4.8) cisc, ci-c

so again consulting Section 2.7 of Durrett (1995) we can conclude that C; has

the symmetric stable distribution with index o = 1 and hence must be Cauchy.
To give a direct derivation of the last fact let pg(s) = E(exp(i6Cs)). Then

(4.7) and (4.8) imply

wo(s)pa(t) = wo(s +1), ©a(s) = pas(1), wo(s) = p_s(s)

The fact that C, £ —C, implies that wg(s) is real. Since § — @y(1) is con-
tinuous, the second equation implies s — 4(s) = pgs(1) is continuous, and
a simple argument (see Exercise 4.3) shows that for each 8, @(s) = exp(cps).
The last two equations imply that ¢, = sc; and c_y = ¢ so ¢y = —«/|f] for some
&, so Cs has a Cauchy distribution. Since the arguments above apply equally
well to (B}, cBj), where c is any constant, we cannot determine x with this
argument.
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Exercise 4.3. Suppose ¢(s) is real valued continuous and satisfies (s)p(t) =
(s + 1), ©(0) = 1. Let 9¥(s) = In(p(s)) to get the additive equation: ¥(s) +
¥(t) = ¢¥(s + t). Use the equation to conclude that ¥(m2~") = m27"¢(1) for
all integers m,n > 0, and then use continuity to extend this to ¥(t) = t(1)..

Exercise 4.4. Adapt the argument for y(s) = E(exp(i0C;)) to show

Eo(exp(—AT,)) = exp(—axv/A)

The representation of the Cauchy process given above allows us to see that
its sample paths a — T, and s — C, are very bad.

Exercise 4.5. If u < v then Py(a — T, is discontinuous in (u,v)) = 1.
Exercise 4.6. If © < v then Py(s — C, is discontinuous in (u,v)) = 1.

Hint. By independent increments the probabilities in Exercises 4.5 and 4.6
only depend on v — u but then scaling implies that they do not depend on the
size of the interval.

The discussion above has focused on how B; leaves H. The rest of the
section is devoted to studying where B; goes before it leaves H. We begin with
the case d = 1.

(4.9) Theorem. If z,y > 0, then Py(B; = y,To > t) = pi(z,y) — p(z,—Y)
where )
pi(z,y) = (2mt) 7}/ 2~ lom /2

Proof The proof is a simple extension of the argument we used in Section
1.3 to prove that Py(Ty < t) = 2Py(B; > a). Let f > 0 with f(z) = 0 when
z < 0. Clearly

E(f(Be); To > t) = Bz f(B:) — Ex(f(B:); To < 1)

If we let f(z) = f(—=z), then it follows from the strong Markov property and
symmetry of Brownian motion that

Eo(f(B:); To < t) = E5[Eof(Bi-1,); To < 1]
= E;[Eof(Bi-1,); To < 1]
= Ex[f(Bt);TO < t] = Ex(f(Bi))
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since f(y) = 0 for y > 0. Combining this with the first equality shows
E(f(Bt); To > t) = Ez f(B:) — Ef(B)
= [z 9) - mla, )7 ey

The last formula generalizes easily to d > 2.
(4.10) Theorem. Let 7 = inf{t: Bf = 0}. If z,y € H,
Pe(B: =y, 7 > t) = pi(z,y) — pe(,9)
where = (y1,.- ., Yd-1,—¥d)-

Exercise 4.7. Prove (4.10).
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2 Stochastic Integration

In this chapter we will define our stochastic integral I; = f(; H,dX,. To motivate
the developments, think of X, as being the price of a stock at time s and H,
as the number of shares we hold, which may be negative (selling short). The
integral I; then represents the net profits at time ¢, relative to our wealth at
time 0. To check this note that the infinitesimal rate of change of the integral
dl; = H; dX; = the rate of change of the stock times the number of shares we
hold.

In the first section we will introduce the integrands H,, the “predictable
processes,” a mathematical version of the notion that the number of shares
held must be based on the past behavior of the stock and not on the future
performance. In the second section, we will introduce our integrators X, the
“continuous local martingales.” Intuitively, martingales are fair games, while
the “local” refers to the fact that we reduce the integrability requirements
to admit a wider class of examples. We restrict our attention to the case of
martingales with continuous paths ¢t — X; to have a simpler theory.

2.1. Integrands: Predictable Processes

To motivate the class of integrands we consider, we will discuss integration
w.r.t. discrete time martingales. Here, we will assume that the reader is familiar
with the basics of martingale theory, as taught for example in Chapter 4 of
Durrett (1995). However, we will occasionally present results whose proofs can
be found there.

Let X,,,n > 0, be a martingale w.r.t. F,. If H,,n > 1, is any process, we
can define

(H-X), = 2": Hon(Xm — Xm—1)

To motivate the last formula and the restriction we are about to place on the
H,,, we will consider a concrete example. Let &;,&,,... be independent with
P& =1)=P(& =-1)=1/2,andlet X, = &1+ - -+&,. Xp is the symmetric
simple random walk and is a martingale with respect to F, = o(&1,...,&n)-
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If we consider a person flipping a fair coin and betting $1 on heads each time
then X, gives their net winnings at time n. Suppose now that the person bets
an amount H,, on heads at time m (with H,, < 0 interpreted as a bet of —Hp,
on tails). I claim that (H - X), gives her net winnings at time n. To check
this note that if Hp, > 0 our gambler wins her bet at time m and increases her
fortune by H,, if and only if X,, — X1 =1

The gambling interpretation of the stochastic integral suggests that it is
natural to let the amount bet at time n depend on the outcomes of the first
n — 1 flips but not on the flip we are betting on, or on later flips. A process Hy,
that has H,, € F_1 for all n > 1 (here Fy = {8, Q}, the trivial o-field) is said
to be predictable since its value at time n can be predicted (with certainty)
at time n — 1. The next result shows that we cannot make money by gambling
on a fair game.

(1.1) Theorem. Let X, be a martingale. If H, is predictable and each H,, is
bounded, then (H - X), is a martingale.

Proof It is easy to check that (H - X), € F,. The boundedness of the H,
implies E|(H - X)n| < oo for each n. With this established, we can compute
conditional expectations to conclude

E((H - X)n41]Fn) = (H - X)n + E(Hp41(Xnt1 — Xn)|Fn)
= (HX)p + Hi1 E(Xng1 — Xn|Fo) = (H - X)n

since Hp4 € Fy and E(Xp 41 — Xu|Fn) = 0. o

The last theorem can be interpreted as: you can’t make money by gambling
on a fair game. This conclusion does not hold if we only assume that H, is
optional, that is, H,, € F,, since then we can base our bet on the outcome of
the coin we are betting on.

Example 1.1. If X, is the symmetric simple random walk considered above
and H, = &, then

(H'X)n = me‘fm =n
m=1
since €2, = 1. ]

In continuous time, we still want the metatheorem “you can’t make money
gambling on a fair game” to hold, i.e., we want our integrals to be martingales.
However, since the present (¢} and past (< ¢) are not separated, the definition
of the class of allowable integrands is more subtle. We will begin by considering
a simple example that indicates one problem that must be dealt with.
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Example 1.2. Let (Q, F, P) be a probability space on which there is defined
a random variable T with P(T' < t) = ¢t for 0 < ¢t < 1 and an independent
random variable £ with P(§ = 1) = P(§ = —1) = 1/2. Let

0 t<T
X“{g t>T

and let 7; = o(X, : s < t). In words we wait until time 7" and then flip a coin.
Xiisa matrtingale with respect to F;. However, if we define the stochastic
integral I; = fo X,;dX, to be the ordinary Lebesgue-Stieltjes integral then

1
Y1=/ X,dX, = Xp - £=€2=1
0

To check this note that the measure dX, corresponds to a mass of size £ at T
and hence the integral is € times the value there. Noting now that ¥ = 0 while
Y1 =1 we see that I; is not a martingale. O

The problem with the last example is the same as the problem with the
one in discrete time — our bet can depend on the outcome of the event we
are betting on. Again there is a gambling interpretation that illustrates what
is wrong. Consider the game of roulette. After the wheel is spun and the ball
is rolled, people can bet at any time before (<) the ball comes to rest but not
after (>). One way of guaranteeing that our bet be made strictly before T,
i.e., a sufficient condition, is to require that the amount of money we have bet
at time t is left continuous. This implies, for instance, that we canpot react
instantaneously to take advantage of a jump in the process we are betting on.

The simplest left continuous integrand we can imagine is made by picking
a< b, C € F,, and setting

(*) H(s, w) = C(w) ]-(a,b](t)

In words, we buy C(w) shares of stock at time a based on our knowledge then,
ie., C € F,. We hold them to time & and then sell them all. Clearly, the
examples in () should be allowable integrands; one should be able to add two
or more of these, and take limits. To encompass the possibilities in the previous
sentence, we let IT be the smallest o-field containing all sets of the form (a, 5] x A
where A € F,. The II we have just defined is called the predictable o-field.
We will demand that our integrands H are measurable w.r.t. II.

In the previous paragraph, we took the “bottom-up” approach to the defi-
nition of II. That is, we started with some simple examples and then extended
the class of integrands by taking sums and limits. For the rest of the section, we
will take a “top-down” approach. We will start with some natural requirements
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and then add more until we arrive at II. The descending path is more confusing
since it involves four definitions that only differ in subtle ways. However, the
reader need not study this material in detail. We will only use the predictable
o-field. The other definitions are included only to allow the reader to make
the connection with other treatments and to indirectly make the point that the
measure theoretic questions associated with continuous time processes can be
quite difficult.

Let F; be a right continuous filtration. The first and most intuitive con-
cept of “depending on the past behavior of the stock and not on the future
performance” is the following:

H(s,w) is said to be adapted if for each ¢t we have H; € F;.

We encountered this notion in our discussion of the Markov property in Chapter
1. In words, it says that the value at time ¢ can be determined from the
information we have at time t. The definition above, while intuitive, is not
strong enough. We are dealing with a function defined on a product space
[0,00) x Q, so we need to worry about measurability as a function of the two
variables.

H is said to be progressively measurable if for each ¢ the mapping
(s,w) — H(s,w) from [0,t] to R is R x F; measurable.

This is a reasonable definition. However, the “modern” approach is to use
a slightly different definition that gives us a slightly smaller o-field.

Let A be the o-field of subsets of [0,00) x Q that is generated by the
adapted processes that are right continuous and have left limits, i.e.,
the smallest o-field which makes all of these processes measurable. A
process H is said to be optional if H(s,w) is measurable w.r.t. A.

According to Dellacherie and Meyer (1978) page 122, the optional o-field is
contained in the progressive o-field and in the case of the natural filtration of
Brownian motion the inclusion is strict. The subtle distinction between the
last two o-fields is not important for us. The only purpose here for the last two
definitions is to prepare for the next one.

Let II’ be the o-field of subsets of [0, 00)x that is generated by the left
continuous adapted processes. A process H is said to be predictable
if H(s,w) € I".

As we will now show, the new definition of predictable is the same as the old
one. We have added the / only to make the next statement and proof possible.
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(1.2) Theorem. M =1I'.

Proof Since all the processes used to define II are left continuous, we have
I C II'. To argue the other inclusion, let H(s,w) be adapted and left continuous
and let H*(s,w) = H(m2™",w) for m2™" < s < (m+1)27". Clearly H" € IT'.
Further, since H is left continuous, H"(s,w) — H(s,w) as n — co. O

The distinction between the optional and predictable o-fields is not impor-
tant for Brownian motion since in that case the two o-fields coincide. Our last
fact is that, in general, II C A.

Exercise 1.1.  Show that if H(s,w) = 1(4)(s)1a(w) where A € F,, then
H is the limit of a sequence of optional processes; therefore, H is optional and
IcCA.

2.2. Integrators: Continuous Local Martingales

In Section 2.1 we described the class of integrands that we will consider: the
predictable processes. In this section, we will describe our integrators: contin-
uous local martingales. Continuous, of course, means that for almost every w,
the sample path s -+ X,(w) is continuous. To define local martingale we need
some notation. If T' is a nonnegative random variable and Y; is any process we

define
YT _ YTAt on {T > 0}
t 70 on {T = 0}

(2.1) Definition. X; is said to be a local martingale (w.r.t. {F;,t> 0}) if
there are stopping times T, T co so that X,T * is a martingale (w.r.t. {Fiar, :
t > 0}). The stopping times T}, are said to reduce X.

We need to set X7 = 0 on {T' = 0} to deal with the fact that X need not be
integrable. In most of our concrete examples X is a constant and we can take
T) > 0 a.s. However, the more general definition is convenient in a number of
situations: for example (i) below and the definition of the variance process in
(3.1).

In the same way we can define local submartingale, locally bounded, locally
of bounded variation, etc. In general, we say that a process Y is locally A if
there is a sequence of stopping time T}, T oo so that the stopped process Y,©
has property A. (Of course, strictly speaking this means we should say locally
a submartingale but we will continue to use the other term.)
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‘Why local martingales?

There are several reasons for working with local martingales rather than
with martingales.

(i) This frees us from worrying about integrability. For example, let X; be a
martingale with continuous paths, and let ¢ be a convex function. Then ¢(X})
is always a local submartingale (see Exercise 2.3). However, we can conclude
that ¢(X;) is a submartingale only if we know E|p(X;)| < oo for each ¢, a fact
that may be either difficult to check or false in some cases.

(ii) Often we will deal with processes defined on a random time interval [0, 7). If
T < 00, then the concept of martingale is meaningless, since for large t X is not
defined on the whole space. However, it is trivial to define a local martingale:
there are stopping times T,, T 7 so that ...

(iii) Since most of our theorems will be proved by introducing stopping times T,
to reduce the problem to a question about nice martingales, the proofs are no
harder for local martingales defined on a random time interval than for ordinary
martingales.

Reason (iii) is more than just a feeling. There is a construction that makes
it almost a theorem. Let X: be a local martingale defined on [0,7) and let
T, T T be a sequence of stopping times that reduces X. Let Ty = 0, suppose
T1 >0 as.,and for k > 1 let

w={t-(¢-D Ti-14+(k—1)<t<Ti+ (k—1)
LAZARE /4 Ti+(k—1)<t<Ti+k

To understand this definition it is useful to write it out for k¥ = 1,2, 3:

t [0,77]

T 1,71 +1]

_Jt=-1 M+1,T2+1)

7(t) = Tz T2+ 1,T2 + 2
t—2 [T2+2,73+2)
T3 [T5+2,T5+ 3]

In words, the time change expands [0, 7) onto [0, 00) by waiting one unit of time
each time a T}, is encountered. Of course, strictly speaking v compresses [0, 00)
onto [0,7) and this is what allows X ;) to be defined for all ¢ > 0. The reason
for our fascination with the time change can be explained by:
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(2.2) Theorem. {X,(1), Fy(z),t > 0} is a martingale.
First we need to show:

(2.3) The Optional Stopping Theorem. Let X be a continuous local martin-
gale. If S < T are stopping times and X7, is a uniformly integrable martingale
then E(XTl.'Fs) = Xs.

Proof (7.4)in Chapter 4 of Durrett (1995) shows that if L < M are stopping
times and Ypsa, is a uniformly integrable martingale w.r.t. G,, then

E(Yu|GL) =YL
To extend the result from discrete to continuous time let S, = ([2"S5] + 1)/2".

Applying the discrete time result to the uniformly integrable martingale Y, =
Xrama-» with L = 27§, and M = oo we see that

E(X7|Fs,) = Xs,

Letting n — oo and using the dominated convergence theorem for conditional
expectations ((5.9) in Chapter 4 of Durrett (1995)) the result follows. O

Proof of (2.2) Let n = [t]4+ 1. Since y(t) < T, A n, using the optional
stopping theorem, (2.2), gives X i) = E(Xt,an|Fyr)). Taking conditional
expectation with respect to F.,(;) we get

E(Xyw)lFys)) = E(XzannlFos)) = Xa)
proving the desired result. O

The next result is an example of the simplifications that come from assum-
ing local martingales are continuous.

(2.4) Theorem. If X is a continuous local martingale, we can always take the
sequence which reduces X to be T, = inf{¢ : |X;| > n} or any other sequence

T} < Ty, that has T}, T co as n T oo.

Proof Let S, be a sequence that reduces X. If s < ¢, then applying the
optional stopping theorem to X~ at times r = s AT{, and t AT/, gives

EX@EAT, ASa)(s,>o)lF(s A T AS ) =X(sATo, A Sn)l(s.>0)
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Multiplying by 1(7: 50y € Fo C F(s AT, A Sp) we get
EXQEAT, ASa)(s.501:>0)F(s AT ASp))= X(sATH A Sa)l(s.50,7L50)
Asn T oo, F(s AT, ASa) T F(s ATy,), and
X(r ATy ASn)(s,>0,150) = X (r AT ) (1,50
for all 7 > 0, and | X (r AT}, ASu)|L(s, 50,72 >0) < m, s0 it follows from the dom-

inated convergence theorem for conditional expectations (see (5.9) in Chapter
4 of Durrett (1995)) that

B(X(t ATi) Ly 50l F(s AT)) = X(s ATH) (s 50)
proving the desired result. O

In our definition of local martingale in (2.1), we assumed that X; ™ is a

martingale (w.r.t. {Fiar,,t > 0}). We did this with the proof of (2.4) in mind.

The next exercise shows that we get the same definition if we assume X7* is a

martingale (w.r.t. {F;,t > 0}).

Exercise 2.1. Let S be a stopping time. Then X; is a martingale w.r.t.
Fins,t > 0, if and only if it is a martingale w.r.t. F;,¢ > 0.

In the first version of this book I said

“You should think of a local martingale as something
that would be a martingale if it had E|X;| < c0.”

As many people have pointed out to me, there is a famous example which shows
that this is WRONG.

Example 2.1. Let B; be a Brownian motion in dimension d > 3. In Section
3.1 we will see that X; = 1/|B;|"2 is a local martingale. Now

B = [ (omt)2emlomeP /2|0 dy < oo
if and only if p < d/(d — 2) since (i) there is no trouble with the convergence

for large y and (ii) ignoring (2mt)~4/2¢~lv==1/2t which is bounded near 0 and
changing to polar coordinates we have

1
/ p(d=2ppd-1 g o
0
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if and only if —(d—2)p+(d—1)> —1,1e,p < d/(d—2).

To see that X; is not a martingale we begin by noting that (B; — z) =4
t1/2(B; — z) under P; so ast — oo, |B;| — 00 and X; — 0 in probability. To
show that E;X; — 0 we observe that for any R < co

E:X, < (27rt)‘d/2/ |y|—(d—2) dy+ R-(d-2)
lvl<r

The integral is convergent so limsup,_, o EzX: < R=(4-2)_ Since Ris arbitrary
E-X: — 0. Since E- Xy > 0 it follows that E.X, is not constant and hence X;
is not a martingale. o

An even worse counterexample is provided by

Exercise 2.2. In Section 3.1 we will learn that if B; is a two dimensional
Brownian motion then X; = log|B,| is a local martingale. Show E|X;|? < oo
for any p < oo but lim;—.o, EX; = 00 so X is not a martingale.

The last example may leave the reader with the impression that no amount
of integrability will guarantee that a local martingale is an honest martingale,
but as the next very useful result shows, this is a false impression.

(2.5) Theorem. If X, is alocal submartingale and

E ( sup |X,|> < oo

0<s<t

for each t then X, is a submartingale.

Proof Clearly our assumption implies E|X;| < oo for each t so all we have to
check is that E(X;|F;) > X,. To do this, we note that if 7y, is a sequence of
stopping times that reduces X

E(X[| Fonr,) > XT-

then we let n — oo and apply the dominated convergence theorem for condi-
tional expectations. See (5.9) in Chapter 4 of Durrett (1995). O

As usual, multiplying by —1 shows that the last result holds for supermartin-
gales, and once it is true for super- and sub- it is true for martingales (by

applying the two other results). The following special case will be important:

(2.6) Corollary. A bounded local martingale is a martingale.
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Here and in what follows when we say that a process X; is bounded we mean
there is a constant M so that with probability 1, |X;| < M for all t > 0.

In some circumstances we will need a convergence theorem for local mar-
tingales. The following simple result is sufficient for our needs.

(2.7) Theorem. Let X; be a local martingale on [0, 7). If

E’( sup |X,|> < oo
0<s<r
then X, = limyj, X; exists a.s. and EXp = EX,.

Proof Let v be the time scale of (2.2) and let Y; = X,@)- Vi is a martingale.
The upcrossing inequality and the proof of the martingale convergence theorem
given in Section 4.2 of Durrett (1995) generalize in a straightforward way to
continuous time and allow us to conclude that Yo, = limsjeo Yz exists a.s. and
X: = limy, X exists a.s. To prove the last conclusion we note that EYp =
EY; then use the a.s. convergence and the dominated convergence theorem to
conclude EXg = EYy = EY,, = EX,. O

Exercise 2.3. Let X; be a continuous local martingale and let ¢ be a convex
function. Then ¢(X:) is a local submartingale.

Exercise 2.4. Let X be a continuous local martingale and let R < oo be a
stopping time. Then Y; = Xg,, is a local martingale with respect to G, =
FRes-

Exercise 2.5. Show that if X is a continuous local martingale with X; > 0
and EXy < oo then X; is a supermartingale.

2.3. Variance and Covariance Processes

The next definition may look mysterious but it is very important.

(3.1) Theorem. If X; is a continuous local martingale, then we define the
variance process (X); to be the unique continuous predictable increasing
process A; that has Ay = 0 and makes X2 — A; a local martingale.

To warm up for the proof of (3.1) we will prove a result in discrete time.

(3.2) Theorem. Suppose X,, is a martingale with EX?2 < oo for all n. Then

there is a unique predictable process A, with Ag = 0 so that X2 — A, is a
martingale. Furthermore, n — A, is increasing.
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Proof Let Ag =0 and define forn>1
An = An—l + E(Xr?;l}- —l) - Xz—l

From the definition, it is immediate that A, € F,_;, An is increasing (since
X2 is a submartingale), and

E(X2 — Ap|Fn-1) = BE(X3|Fn-1) — An
= Xr21—l — Ana

so A has the desired properties. To see that A is unique, observe that if B
is another process with desired properties, then A, — By, is a martingale and
A, — B, € Fpn_1. Therefore

A, — B, = E(An - Bnl}- —1) =Ap_1— By
and it follows by induction that A, — B, = Ay — By = 0. O

The key to the uniqueness may be summarized as “any predictable dis-
crete time martingale is constant.” Since Brownian motion is a predictable
martingale, the last statement fails in continuous time and we need another
assumption. '

(3.3) Theorem. Any continuous local martingale X; that is predictable and
locally of bounded variation is constant (in time).

Proof By subtracting Xy, we may suppose that Xy = 0 and prove that X is
identically 0. Let V; be the variation of X on [0,t]. We leave it to the reader
to check

Exercise 3.1. If X is continuous and locally of bounded variation then ¢t — V,
is continuous.

Define S = inf{s : V; > K}. Since t < S implies |X;| < K, (2.4) implies
that the stopped process M; = X(t A S) is a bounded martingale. Now if s < t
using well known properties of conditional expectation (see e.g., (1.3) and other
results in Chapter 4 of Durrett (1995)) we have

E((M: — M,)*|Fs) = E(MP|F,) — 2M,E(My|F,) + M

3.4
(3.4 — B(MZ|F,) - M? = B(M? — M2|F.)

an equation that we will refer to as the orthogonality of martingale incre-
ments since the key to its validity is the fact that E(M,(M; — M,)|Fs) =0
(and hence E(M,(M; — M,)) = 0).
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Letting 0 = tp < t1... <t, =t be a subdivision of [0, ], the orthogonality
of martingale increments, the inequality };a? < (3°;|a:|) sup; |a;|, and the
fact that Vips < K imply

EM?=E (Z M} — Mfm_l>
m=1

=EY (M, — M,_,)"

mz=1

<E (Vms sup |M,, — th_1|>
< K Esup M, — M, _,|

If we take a sequence of partitions A, = {0 =1 <} ... <1}, =t} in which
the mesh |Ay| = sup,, |t} —t},_;| — 0 then continuity implies sup,, |M:s —
Mi» | — 0. Since the sup,, < 2K the bounded convergence theorem implies
Esup,, |Min — M= _ | — 0. This shows EM? = 0 so M; = 0 a.s. In the last
conclusion ¢ is arbitrary, so with probability one we have M, = 0 for all rational
t. The desired result now follows from continuity. O

With (3.3) established we can do the

Proof of uniqueness in (3.1) Suppose A; and A are two processes with
the desired properties. Then A, — A} is a continuous local martingale that is
locally of bounded variation and hence must be constant. Since Ag — A = 0 it
follows that A, = A} for all t. O

Proof of existence in (3.1) when X; is a bounded martingale The
existence of A is considerably more complicated than its uniqueness. To inspire
the reader for the battle to come, we would like to point out that (i) we are
about to prove the special case that we need of the celebrated Doob-Meyer
decomposition and (ii) the construction will provide some useful information,
e.g., (3.6). Though (3.1) and (3.8) are quite important, the details of their
proofs are not, so the squeamish reader can skip ahead to the boldfaced “End
of Existence Proof” five pages ahead. ,

Given a partition A = {0 = ¢y < t; < t2...} with lim,t, = oo, we let
k(t) = sup{k : tx <t} be the index of the last point before time t. (To avoid
confusion later, we emphasize now that k(t) is a number not a random variable.)
We next define for a process X, an approximate quadratic variation by

k()

QtA(X) = Z(Xik - Xik—x)z + (Xi - th(i))z
k=1



Section 2.3 Variance and Covariance Processes 45

If the reader recalls what we are trying to define (see (3.1)) then the reason for
the definition is explained by

(2) Lemma. If X; is a bounded continuous martingale then X2 — Q£ (X) is a
martingale.

Proof To prove this, we first note that reasoning as in the proof of (3.4) one
can conclude that if r < s < t then

E (X — X:Y’|17) = B ((X: — Xs)*|17)
— X, — X)) E(X: — X|Fs) + (X, — X;)?
= E((Xe = X)) +(Xs — X;)°

since E(X; — X,|F,) =0.
Writing Q2 = Q@2 + (Q2 — Q%) and working out the difference,

k(1)
QtA - QaA = Z(Xik - Xik—1)2 + (X — th(t))z

k=1
k(s)

- Z(Xik - Xik-1)2 + (Xi - Xik(.))2
k=1

= (ka(.)-n - Xik(.))2 - (X-’ - X‘fk(..))2

k(1)

+ Y (XK — X )P+ (X — X))’

k=k(s)+2

The next step is to take conditional expectation with respect to ¥, and use the
first formula with r = #1(,) and ¢ = #;(5)41. To neaten up the result, define
a sequence u,, k(s) — 1 < n < k(t) + 1 by letting ugy_1 = s, wy = ¢; for
k(s) <7 < k(t), and up(ey41 =1t

E(X? - QT (X)|F)

E(t)+1
= E(thl}-’) - QaA(X) —-F ( Z (Xu; — Xm—x)z f-’)
i=k(s)41
> k(1)1
i=k(s)+1

=X?-QMX)
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where the second equality follows from (3.4). 0

Looking at (a) and noticing that Q#(X) is increasing except for the last
term, the reader can probably leap to the conclusion that we will construct the
process A; desired in (3.1) by taking a sequence of partitions with mesh going
to 0 and proving that the limit exists. Lemma (c) is the heart (of darkness)
of the proof. To prepare for its proof we note that using (a), taking expected
value and using (3.4) gives

E(Q8(X) - Q¥ (X)|F) = E(X? - XI|F.)
= B((X: — X,)*|F.)

To inspire you for the proof of (c), we promise that once (c) is established the
rest of the proof of (3.1) is routine.

(b)

(c) Lemma. Let X; be a bounded continuous martingale. Fix 7 > 0 and let
A; be a sequence of partitions 0 = t§ < tf... < t§ = r of [0,7] with mesh
|An| = supg |t —t7_;| — 0. Then Q2»(X) converges to a limit in L2.

Proof If A and A’ are two partitions, we call AA’ the partition obtained by
taking all the points in A and in A’ If we apply (a) twice and take differences
we see that ¥; = QA(X)—Q2'(X) is a martingale. By definition ¥;2— QA2'(Y)
is a martingale, so

E(QA(X) - Q' (X))* = EY? = EQA*'(Y)

For reasons that will become clear in a moment, we will drop the argument
from Q2 when it is X and we will drop the 7 when we want to refer to the
process t — Q2. Since

(3.5) (a+0)? < 2a® + 22 for any real numbers a and b
(since 2a? + 2b% — (a + b)% = (a — b)2 > 0) we have
AY(Y) £2074(@%) +2004°(@%)
Combining the last two results about @ we see that it is enough to prove that
() if |A] + |A| = 0 then~EQ,AA'(QA) — 0.

To do this let sz € AA’ and t; € A so that t; < s < sg41 < tj41. Recalling
the definition of @2 (X) and doing a little arithmetic we have

QJAH.l - aAk = (X-’H-x - ij)z - (X-’k - Xi,‘)2

= (Xak+1 - X"k)z + 2(X5k+1 — X,k)(X,k — th)
= (X-’k+1 - X-’k)(X-’k-{-l + Xy — 2th)
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Summing the squares gives

QEA(Q%) < Q2% (X) SUP(Xsyys + Xox — 2Xt50)*

where j(k) = sup{j : t; < sr}. By the Cauchy-Schwarz inequality

, ' 1/2
B(@2* (@) £ (FQ2 (0P { Boup(avs + Xor ~2Kor0)'}

Whenever |A| 4 |A’| — 0 the second factor goes to 0, since X is bounded and
continuous, so it is enough to prove

(e) If |X¢| < M for all t then EQA2'(X)? < 12M*%.

The value 12 is not important but it does make it clear that the bound does
not depend on 7, A, or A'.

Proof of (e) IfI' = AA'Iis the partition 0 = sg < s51...< s, = r then

n 2
Q}?(X)z = (Z(X-’m - X-’m—l)z)

m=1

(e.1) = (Ko = Xopoy)?

m=1
n-1

£2 3 (Kan = X VHQECX) — @E, (X))
m=1

To bound the first term on the right-hand side we note that if | X;| < M for all
t then some arithmetic and (3.4) imply

E E":(X-’m - -’m—1)4 S (2M)2E En:(x-’m _X-’m—l)z

m=1 m=1

2 n
(e2) =4M?E S X2 - X2 _,
m=1

<4M?EX? < 4M*
To bound the second term we note that (X,, — X,, _,)? € F,,, then use (b)
and | X, — X;,.| < 2M to get
E((Xsp = Xom{QF(X) = Q5 (XD} Fs,0)
' = (Xop = Xena ) EUQI(X) = Q5 COMNFs,0)
= (Xsm — Ksme1 ) E((Xr = X5 )?|Fs )
S (2M)2(X-’m - X‘-’m»l)2

(e.3)
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Taking expected value in (e.3), summing over m, and using (3.4) as before, we
get

o) EZ(X,M— X, )2(QE(X) — QF (X)) < 4ME Zx? - X2
€. mz=1

<4MPEX? < 4aM*

Plugging this bound and (e.2) into (e.1) proves (e) which completes the proof
of (d) and hence of (c). : O

- It only remains to put the pieces together. Let A, be the partition with
points k2~"r with 0 < k < 2". Since Q™ — Qf*" is a martingale (by (a)),

using the L? maximal inequality (see e.g., (4.3) in Chapter 4 of Durrett (1995))
gives

(f) E (fgp QP — Q:A“I:') <4E|Qfm — QA2
ar
From this and (c) it follows that

(g) There is a subsequence so that Q,A "*) _ alimit A, uniformly on [0,7].

Proof Since Q2 converges in L?, it is a Cauchy sequence in L% and we can
pick an increasing sequence n(k) so that for m > n(k)

A, —
B|Qam —Qr®|? < o7k

Using (f) and Chebyshev’s inequality it follows that
P (supl@f e+ - @ > 1/1) < Kt
t<r

Since the right-hand side is summable, the Borel-Cantelli lemma implies the
inequality on the right only fails finitely many times and the desired result
follows. |

By taking subsequences of subsequences and using a diagonal argument we
can get uniform convergence on [0, N] for all N. Since each @Qf is continuous,
Aq; is as well. Because of the last term (X: — Xi(1))?, Qf is not increasing.
However, if m > n then £ — Qﬁz'l‘_,, . is increasing, so k — Agy-n, is increasing.
Since n is arbitrary and ¢ — A; is continuous it follows that ¢ — A; is increasing.
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The last detail for the case in which X is a bounded martingale is to check
that M2 — A, is a martingale. This follows from the next result (with p = 2).

(3.6) Lemma. Suppose that for each n, Z} is a martingale with respect to .7-},
and that for each t, Z' — Z; in L? where p > 1. Then Z; is a martingale.

Proof The martingale property implies that if s < ¢ then E(Z}|F,) = Z7.
The right-hand side converges to Z, in LP. To check that the left-hand side con-
verges to E(Z;|F,) we note that linearity properties of and Jensen’s inequality
for conditional expectation (see e.g., (1.1a) and (1.1d) in Chapter 4 of Durrett
(1995)) imply

E|\E(Z|Fs) — E(Z|F5) P = E|E(Z) — Zi| Fo)PP
< EE(|2} — Zy|P|F,) = E|Z} — Z,p — 0

Taking limits in LP it follows that E(Z,|F,) = Z, and the proof is complete. O

Proof of existence in (3.1) when X is a local martingale Our first
step in extending the result to local martingales is to prove a result about the
quadratic variation of a stopped martingale. Once one remembers the definition
of Y;T given at the beginning of Section 2.2, the next result should be obvious:
the quadratic variation does not increase after the process stops.

(3.7) Lemma. Let X be a bounded martingale, and T be a stopping time.
Then (X7T) = (X)T.

Proof By the optional stopping theorem (X7T)? — (X)7T is a local martingale
so the result follows from uniqueness. 0

Let T, be a sequence of stopping times increasing to oo so that
yr=xT-. l(¢r,>0) is a bounded martingale
By the previous result there is a unique continuous predictable increasing pro-
cess A™ so that (Y*)2 — AT is a martingale. By (3.7) A} = A}*! fort < T;, so
we can unambiguously define (X); = A} fort < T,. Clearly, (X); is continuous,
predictable, and increasing. The deﬁmtlon implies X2 ., - 1(7,50) = (X)T.at is
a rnartmgale so X2 — (X): is a local martingale. O

End of Existence Proof

Finally, we have the following extension of (c) that will be useful later.
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(3.8) Theorem. Let X; be a continuous local martingale. For every ¢ and
sequence of subdivisions A, of [0,t] with mesh |A,| — 0 we have

sup |@4=(X) — (X)s| — 0 in probability

s<t
Proof Let 6,6 > 0. We can find a stopping time S so that X;° is a bounded
martingale and P(S < t) < §. It is clear that Q*(X) and Q*(X?®) coincide on

[0, 5]. From the definition and (3.7) it follows that (X) and (X 5) are equal on
[0,S]. So we have

ks (?;g Q200 — (X1l > ) <5+ (?;g 1Q3(XS) - (X5).] > )

Since X° is a bounded martingale (c) implies that the last term goes to 0 as
|A] — 0. o
(3.9) Definition. If X and Y are two continuous local martingales, we let
1

(XY= (X +Y) — (X =Y))

Remark. If X and Y are random variables with mean zero,
1 2
cov(X,Y) = EXY = 7(B(X + Y)Y - E(X -Y))
1
= Z(var(X +Y)—var(X —-Y))

so it is natural, I think, to call (X, Y): the covariance of X and Y.

Given the definitions of (X); and (X,Y); the reader should not be surprised
that if for a given partition A = {0 =ty < t1 < t2...} with lims ¢, = oo, we
let k(t) = sup{k : tx <t} and define

k()

QtA(le) = Z(ka - Xik—x)(Yfk - Yfk—x)
k=1

+ (Xf - th(i))(Y‘ - Yfk(t))

then we have

(3.10) Theorem. Let X and Y be continuous local martingales. For every t
and sequence of partitions A, of [0,t] with mesh |An| — 0 we have

sup |Q4+(X,Y) — (X,Y),| — 0 in probability
s<t
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Proof Since
Q2 (X,Y) = 7 (QF(X+7) - Q2~(X ~ V)
this follows immediately from the definition of (X,Y) and (3.8). O
Our next result is useful for computing (X,Y);.
(3.11) Theorem. Suppose X; and Y; are continuous local martingales. (X,Y),
is the unique continuous predictable process A; that is locally of bounded vari-

ation, has Ap = 0, and makes X,;Y; — A; a local martingale.

Proof From the definition, it is easy to see that
1
XH— (XY = 2 (K + %) — (X +Y): — {(X Y — (X - V) }]

is a local martingale. To prove uniqueness, observe that if A; and A} are two
processes with the desired properties, then A; — A} = (X:Y; — A}) — (X:Y:— A4,)
is a continuous local martingale that is locally of bounded variation and hence
=0 by (3.3). o

From (3.11) we get several useful properties of the covariance. In what
follows, X, Y and Z are continuous local martingales. First since X;Y; = VX,

(XY= (¥, X)y
Exercise 3.2. (X +Y,2Z), = (X, Z):+ (Y, Z).
Exercise 3.3. (X — Xy, Z): = (X, Z):-

Exercise 3.4. If a,b are real numbers then (aX,bY); = ab(X,Y);. Taking
a="5, X =Y, and noting (X, X); = (X): it follows that (aX); = a*(X);.

Exercise 3.5. (XT,YT) = (X,Y)T

It is also true that
(X, YT) = (x,7)T

Since we are lazy we will wait until Section 2.5 to prove this. We invite the
reader to derive this directly from the definitions. The next two exercises pre-
pare for the third which will be important in what follows:
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Exercise 3.6. If X; is a bounded martingale then X7 — (X), is a uniformly
integrable martingale.

Exercise 3.7. If X is a bounded martingale and S is a stopping time then
Y; = Xs41—Xs is amartingale with respect to gy and (Y): = (X)s4:—(X)s.

Exercise 3.8. If S < T are stopping times and (X)s = (X)7, then X is
constant on [S,T].

Exercise 3.9. Conversely, if § < T are stopping times and X is constant on

[S, T then (X)s = (X)z.

2.4. Integration w.r.t. Bounded Martingales

In this section we will explain how to integrate predictable processes w.r.t.
bounded continuous martingales. Once we establish the Kunita-Watanabe in-
equality in Section 2.5, we will be able to treat a general continuous local
martingale in Section 2.6.

As in the case of the Lebesgue integral (i) we will begin with the simplest
functions and then take limits to get the general case, and (ii) the sequence of
steps used in defining the integral will also be useful in proving results later on.

St‘ep 1: Basic Integrands

We say H(s,w) is a basic predictable process if H(s,w) = 1(4(s)C(w)
where C € F,. Let Ilp = the set of basic predictable processes. If H = 1¢43C
and X is continuous, then it is clear that we should define

[ . = c@)(Xe) - X))

Here we restrict our attention to integrating over [0,00), since once we know
how to do that then we can define the integral over [0,1] by

1
(H'X)tE/ Ha an:/Ha].[O,t](s)an
o]

To extend our integral we will need to keep proving versions of the next three
results. Under suitable assumptions on H, K, X and Y

(2) (H-X): is a continuous local martingale

() (H+K)Xh=H -Xn+(K-X), (H-(X+Y)h=(H -X)+(H V)
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() (H-X,K-Y): = [, HK,d(X,Y),

In this step we will only prove a version of (a). The other two results will
make their first appearance in Step 2. Before plunging into the details recall
that at the end of Section 2.2 we defined H; to be bounded if there was an M
so that with probability one H; < M for all ¢t > 0.

(4.1.a) Theorem. If X is a continuous martingale and H € bIl, = {H € IIp :
H is bounded}, then (H - X); is a continuous martingale.

Proof
0 0<t<a

(H-X),:{C(X,—Xa) a<t<b
C(Xp— Xa) b<t<oo

From this it is clear that (H - X), is continuous, (H-X): € ; and E|(H - X):| <
oo. Since (H - X ); is constant for ¢ ¢ [a, b] we can check the martingale property
by considering only a < s <t < b. (See Exercise 4.1 below.) In this case,

E((H-XW|Fs)—(H-X)s = E(H - X): — (H - X)5|Fs)
=CE(X;— X,)|Fs) =10

where the last two equalities follow from C € F, and E(X;|F,) = X,. O

Exercise 4.1. If Y; is constant for ¢ ¢ [a,b] and E(Y;|F,) =Y, when a < s <
t < b then Y; is a2 martingale.

Step 2: Simple Integrands

We say H(s,w) is a simple predictable process and write H € II; if H
can be written as the sum of a finite number of basic predictable processes. It
is easy to see that if H € IIy then H can be written as

H(s,w) = Z l(ii-x,ii](s)Ci(w)
i=1

where tg < t; < ...<t, and C; € F;,_,. In this case we let

/Haan = ZCi(Xii - Xii-x)

i=1
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The representation in the definition of H is not unique, since one may subdivide
the intervals into two or more pieces, but it is easy to see that the right-hand

side does not depend on the representation of H chosen.

(4.2.b) Theorem. Suppose X and Y are continuous martingales. If H, K € iIl
then

(H+EK) X)e=(H X))+ (K -X)
(H-X+Y))e=H-X)+(H-Y)

Proof Let H' = H and H 2 = K. By subdividing the intervals in the defin-
tions we can suppose H] = 3 i~ 1z, , +1(s)Ci for j = 1,2. In this case it is
easy to see that each side of the first identity is equal to

D (CH+ CH(Xe; — Xu_,)
i=1
If Hy = 312 Lt,,,64(s)C; then each side of the second identity is

‘ ic,-{(x,i — X))+ (Ve —Ye )} o
=1

Since the sum of a finite number of continuous martingales is a continuous
martingale, it follows from (4.1.a) and (4.2.b) that we have

(4.2.a) Theorem. If X is a continuous martingale and H € bIl; = {H €1I, :
H is bounded}, then (H - X); is a continuous martingale.

Turning to our third result

(4.2.c) Theorem. If X and Y are bounded continuous martingales and H, K €
bII,, then

14
(H-X,K-Y) = / H.K.d(X,)Y),
0
Consequently, E((H - X)(K -Y):) = E [; H,K,d(X,Y), and
14
E(H-X)}=E / H2d(X),
0

Remark. Here and in what follows, integrals with respect to (X,Y), are
Lebesgue-Stieltjes integrals. That is, since s — (X,Y); is locally of bounded
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variation it defines a o-finite signed measure, so we fix an w and then integrate
with respect to that measure. In the case under consideration, the integrand is
piecewise constant so the integral is trivial.

Proof To prove these results it suffices to show that
t
Zy=(H -XQ(K -Y) - / H,K,d{X,Y),
0

is a martingale, for then the first result follows from (3.11), the second by taking
expected values, and the third formula follows from the second by taking H = K
and X =Y. To prove Z; is a martingale we begin by noting that

(H'+ HY) - X)(K-Y) = (H' X)(K-Y) +(H? - X) (K -Y),

t t t
/ (H} + HHK,d(X,Y), = / H!K,d(X,Y), + / H2K,d(X,Y),
1] 1] 1]

The last two observations imply that if the result holds for (H!, K) and (H?, K),
it holds for (H'+ H?, K). Similarly, if the result holds for (H, k') and (H, K2),
it holds for (H, K! + K?2).

In view of the results in the last paragraph, we can now prove the result
by establishing it in the case H = 1(,43;C, K = 1, 4D, and we can furthermore
assume that (i) b <cor(iiya=c¢, b=d.

Case 1. In this case f(; H,K,d(X,Y), =0, so we need to show that (H-X):(K -
Y): is a martingale. To prove this we observe that if J = C(X3 — X,)D1. q
then (H - X);(K -Y): = (J -Y); is a martingale by (4.1.a)

Case ii. In this case
0 s<a
Z, = {CD {(Xs =X )Ys —Ya) —((X,)Y)s —(X,Y)a)} a<s<b
CD{(Xs — Xa)(Vs — Ya) —((X,Y)s — (X, Y)a)} s2b
so it suffices to check the martingale property for a < s <t < b. To do this we

note
Zt - Za = CD{Xth - XaYa - Xa(Yt - Ya) _Ya(Xt _Xa)

—({(X,Y): — (X,Y)s)}
Taking expected value and noting X, € F;, E(Y; — Ys|F,) = 0 we have

E(Z, - Z,|F,) = CDE(X,Y; — (X, Y ) — {X,Y, — (X, Y),}|F) =0

This completes the proof of Case ii and finishes the proof of (4.2.c). O
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Step 3: Square Integrable Integrands, Bounded Martingales
Let II2(X) be the set of all predictable processes H that have

il = (5 [ ﬁfd(X).,)m <o

Exercise 4.2. ||H||x is 2 norm.
Remark. If we define a measure on the predictable o-field by

A x (s,1]) = B((X): — (X)s; 4)
when A € F, then IIo(X) = L%(II, ). p is called the Doléans measure after
C. Doléans-Dade. For a proof that this is a measure see Chung and Williams
(1990), pages 52-53.
Let M? be the set of all martingales adapted to {F;,¢ > 0} that have

IX1l2 = (sup EX?)*/? < o0
13

In the proof of (4.6) we will see that M? is isomorphic to L?(Fw).
Exercise 4.3. X € M? if and only if EXZ < 00 and E{X ) < 0.
The following is the key to our next extension

(4.4) Isometry Property. If X is a bounded martingale and H € bII;, then
I1H# - X |2 = [|H]|x-

Remark. We skipped over the number (4.3) since (4.3.a) and (4.3.b) will be
proved later in this step.

Proof Recalling the definitions and using the last formula in (4.2.c) gives

74
IHI% = E/Hfd(){), :supE'/ H2d(X),
1 0
— sup B(H - X)} = ||H - X} o
4

The first step in extending the integral to IIo(X) is to prove that bII; is dense
in IIp(X). Later we need a slight strengthening of this result so we go ahead
and prove the stronger form.



Section 2.4 Integration w.r.t. Bounded Martingales 57

(4.5) Lemma. If for 1 < i < k we have X’ € M? and H € TI5(X?), then there
is a sequence H™ € bIl; with ||H" — H||x: —» 0for 1<i<k.

Proof Since X! € M2, E(X*); < oo and it follows that bIl; C M,(X?).
Let H; be the collection of predictable G that vanish on (¢,00) for which the
conclusion holds. Clearly, if r < s < t and A € F, then G = Irsjla € He
Suppose now that 0 < G, € H; and G,, T G with G bounded. The dominated
convergence theorem implies

|G - Gallk: = E/(G, — G")2d(X')s — 0

as n — 00, so we can pick n so that the last difference is < €2 for 1 < i < k.
Since G, € Hi, we can find a sequence H™™ ¢ bll; so that ||[H™™ —G"||x: — 0
for 1 <7 < k and then pick m so that |[H™™ — G"||x: < efor 1 <i <k. The
triangle inequality implies that ||H™™ — G||x: < 2¢ for 1 < ¢ < k. Since € is
arbitrary it follows that G € H;.

Using the monotone class theorem now ((2.3) in Chapter 1) it follows that
‘H; contains all bounded predictable processes that vanish on (¢, c0). Nowif K €
Mp(X*) for 1 < i < k and we define K™ = K1jxj<nljo,n) then the dominated
convergence theorem implies that || K™ — I||x: — 0. Since K" is bounded and
vanishes on (n,00), another use of the triangle inequality implies K is a limit
of H™ € bIl;. N

(4.6) Theorem. M? is complete.

Proof Standard martingale convergence theorems imply that if X € M?2,
then as t — oo, X; converges almost surely and in L? to a limit X, with
EX2 = sup, EX?, and the martingale can be recovered from X, by X; =
E(Xw|Ft). Let Fo = o(Ft,t > 0). Since X = limX; € F, the observation
above shows that X — X, maps M? one-to-one into L%(F). On the other
hand, if Y € L%(F), then Y; = E(Y|F,) is a martingale with ¥; — Y as
t — 00, and Jensen's inequality shows that

EY; = E(E(Y|F)*) < E(E(Y* 7)) = EY®

soY; € M2, Combining this with the previous observation shows that X — X,
is an isometry from M2 onto L?(Fs) and proves (4.6). O

With (4.5) and (4.6) established, we can give the

Definition of the integral for ITI5(X). To define H - X when X is a bounded
continuous martingale and H € I(X), let H™ € bII, so that ||H" — H||x — 0.
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Since ||H"® — H™||x — 0 as m,n — oo, (H" - X) is a Cauchy sequence in M?
and by (4.6) must converge to a limit in M2, which we define to be the integral
(H - X). To see that the limit is independent of the sequence of approximations
chosen suppose ||[H" — H||x — 0 and ||H" — H||x — 0 with H* - X — Y and
H".X —Y. Form a third approximating sequence by setting Hr=H"ifnis
odd, ™ = H" if n is even. ||H" — H||x — 0so wehave H" - X — Z. Looking
at the even and odd subsequences of H" it follows that Y = Z =Y so the limit
is unique. In words, the last argument shows that if the limit exists for ANY
sequence of approximations, it must be unique. Note that as a corollary of the
construction we get

(4.3.2) Theorem. If X is a bounded continuous martingale and H € I(X)
then H - X € M? and is continuous.

Proof The fact that H-X € M? is automatic from the definition. If H” € bII3
have ||H" — H||x — 0 then (4.2.a) implies (H" - X); is continuous. Since

[[(H™ - X) — (H - X)||» — 0, using Chebyshev and the L? maximal inequality
we get that

P (sup|(H" X)) —(H-X)| > e) < e'zEsup|(H" XY — (H-X)t|2
t A t
< 6—2'4”(H" - X)Y—(H-X)|]2—0

Since this holds for any € > 0 we say “(H"™ - X); converges uniformly to (H - X),
in probability.” By passing to a subsequence we can have

sup |[(H" - X)1 — (H - X):| = 0 as.
1

and it follows that ¢t — (H - X); is continuous. ]

(4.3.b) Theorem. If X is abounded continuous martingale, and H, K € IIo(X)
then H + K € I5(X) and

(H+K) Xp=(H - X)+ (K- -X)
Proof The triangle inequality for the norm ||-||x implies that H+K € IIo(X).
Let H™, K™ € bIl; with ||[H™ — H||x — 0 and ||[K™ — K||x — 0. The triangle
inequality implies ||(H" + K") — (H + K)||x — 0. (4.2.b) implies
(H* + K™Y - X)y = (H™ - X)s + (K™ - X)4

Now let n — oo and use the fact that (G" - X); — (G - X): in M? when
G=HK,H+K. O
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The proofs of the remaining two equalities
(HAX+Y))e=(H -X):+(H -Y)
(H-X,K-Y) = /Ot H,K,d(X,Y),
will be given in the next section. To develop the results there we will need to

extend the isometry property from bII; to IIo(X). To do this it is useful to
recall some of your undergraduate analysis.

Exercise 4.4. If || - || is 2 norm and ||z, — z|| — 0 then ||z,|| — ||z||-

Exercise 4.5. If X is a bounded martingale and H € IIy(X) then ||H - X||2 =
l1H]|x- '

2.5. The Kunita-Watanabe Inequality

In this section we will prove an inequality due to Kunita and Watanabe and
apply this result to extend the formula given in Section 2.4 for the covariance
of two stochastic integrals.

(5.1) Theorem. If X and Y are local martingales and H and K are two
measurable processes, then almost surely

/0°° |Hs K| d{X, V)]s < (/Om Hfd(X),>1/2 (/Ooo de(Y),)llz

where d|(X,Y)|s stands for dV; where V; is the total variation of r — (X,Y),
on [0, s].

Remarks. (i) If X =Y and d(X), = s then d(Y), = d|(X,Y)|s = s and
(5.1) reduces to the Cauchy-Schwarz inequality. (ii) Notice that H and K are
not assumed to be predictable. We assume only that H(s,w) and K(s,w) are
measurable with respect to R x F where R is the Borel subsets of R. The
reason we can attain this level of generality is that the notion of martingale
does not enter into the proof after the first step.

Proof Step 1: Observe thatifs < ¢, (X +AY, X+AY); > (X +2Y, X +2Y),.
If we let (M, N): = (M,N), — (M, N),, then

0 < (X + XY, X + AY); — (X + XY, X +AY),
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for all s, ¢, and X. If we fix s and ¢ and throw away a countable number of
sets of measure 0 then with probability one the last inequality will hold for all
rational A\. Now a quadratic az? 4 bz + ¢ that is nonnegative at all the rationals
and not identically 0 has at most one real root (i.e., 2 — 4ac < 0), so we have
that

(X, V)92 < (X, X)L (¥, V)

Step 2: Let 0 =ty < t; < --- < t, be an increasing sequence of times, let
h;,k;,1 < i< n, be random variables, and define simple measurable processes

H(s, w) = Z hi(w)l(ii—x,fi)(s)

K(s,w) = zki(w)l(tg-l,t;)(s)

From the definition of the integral, the result of Step 1, and the Cauchy-Schwarz
inequality, it follows that

< DIkl (X, V)|

i=1

n ) /-
< St (e 20, s Ik
i=1

n l/ n 1/2
< (Zh?(x, X)i:i_l) (Zk?(Y,Y)i:j_l)
i=1 i=1

proving that for simple measurable processes:

<([ Hfd(X),)l/z ([ K.?d(Y),)llz

which is (5.1) with the absolute values outside the integral.

/ HK,d(X,Y),
0

2

(5.2)

/ H,K,d(X,Y),
0

Step 3: Let M be a large number and let T = inf{t : (X); or (Y): > M}. By
the monotone convergence theorem, it suffices to prove (5.1) when H = K =0
for s > T and |H,|, |Ks| < M for s < T. Having restricted our attention
to [0,7], (X) and (Y) are finite measures; so using the bounded convergence
theorem, we see that (5.2) holds for bounded measurable processes. To improve
(5.2) to (5.1) (and complete the proof), let J, be a measurable process taking
values in {—1,1} such that

/Ot |[d{X,Y),| = /Ot Jsd(X,Y),
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Tosee that this exists, note that J, is the Radon-Nikodym derivative of d(X,Y),
with respect to d|(X,Y),|. Now apply (5.2) to H, = |H,| and K, = J,|K,|. O

With (5.1) established, we are now ready to take care of unfinished business
from Section 4.

(5.3) Theorem. If H € T2(X) NII(Y) then H € I2(X +Y) and

H-(X4+Y))=(H -X)+(H-Y)
Proof First note that Exercise 3.2 implies

(X +Y)e = (X): + (V) +2(X,Y):
and the Kunita-Watanabe inequality, (5.1), implies

(XY < (VD)2 < ((X)e + (V)1)/2
since 2ab < a% 4 b%, i.e., 0 < (a — b)%. So we have
(X +7): < 2((X)e + (YV)2)
(which should remind the reader of (z + y)? < 2(z% 4 y?)) and it follows that
H € II)(X +Y). To prove the formula now we note that by (4.5) we can find
H™ in bll; so that ||[H® — H||z — 0 for Z = X,Y,X +7Y. (4.2.b) implies that
H" - (X+Y)hy=(H" - X+ (H"-Y)

Now let n — oo and use (H" - Z); — (H-Z), for Z=X,Y, X +Y. O

(5.4) Theorem. If X, Y are bounded continuous martingales, H € II5(X),
K € TI5(Y) then

t
(H-X,K-Y)h :/ H,K,d(X,Y),
0
Proof By (3.11), it suffices to show that
t
(1) Zy=(H -X)(K-Y) —/ H,K,d(X,Y),
0

is a martingale. Let H™ and K™ be sequences of elements of bII; that converge
to H and K in II3(X) and II5(Y), respectively, and let Z} be the quantity
that results when H™ and K" replace H and K in (). By (4.2.c), Z!' is a
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martingale. By (8.6), we can complete the proof by showing Z* — Z, in L!.
The triangle inequality and (4.3.b) imply that

Esup|(H™ - X)(K" - Y)e — (H - X)(K - Y|
< Bsup|((H" ~ H) - X)(K" Y )|
+ Esup |(H - X (K" — K) - Y)|
t
To bound the first term, we use (i} the sup of the product is smaller than the

product of the sup’s, (ii) the Cauchy-Schwarz inequality, (iii) the L? maximal
inequality and (iv) the isometry property in Exercise 4.5:

< E{sup |((H" - H)- X)lsup (K" - Y)uI}
< {Blsup (" — H) - X)) Elsup (K™ - Y} )}/
< 4I(H" — H) - XILIK" - Yll2 = 41" = Hllxl| K" ly 0

as n — oo, since ||H™ — H||x — 0 and ||K"|ly — ||K]|ly < oo. A similar
estimate shows

E (sxtlp |(H - X)((K" — K) -Y)tl) —0

so we have shown (H" - X)(K"-Y); — (H - X)s(K -Y), in L!.

To estimate the second term in Z7 — Z;, we again begin by putting the
absolute values inside, replacing the measure by its variation, and then using
the triangle inequality

13 13
‘ / HYEMd(X,Y), — / H,K,d(X,Y),
0 0

1
5/ |HY K — H K, |d|(X,Y)]s
0
13 13
< [ - IR AL+ [ R - Kl )L
0 0

Using the Kunita-Watanabe inequality, (5.1), the first term is

<(/f | - H,|2d<X>,)l/2 (/ t 3Py,

1/2
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Taking expected values and using the Cauchy-Schwarz inequality

1
B [ |57 — BRI Y,
0

t 1/2 t 1/2
< (E/ |HP — H,|2d(X),) (E/ |I<;'|2d(Y),) —0
0 0

as n — 00, since ||H" — H||x — 0 and ||K"||y — ||K||y < co. Combining this
with a similar estimate on fot |Hs| | KT — K| d|{(X,Y)|s it follows that

13 13
/ HPKMd(X,Y), — / H K, d(X,Y)s
0 0

in L'. We have now shown Z" — Z, in L' and the desired result follows from
(3.6). o

Remark. In some treatments (see e.g., Revuz and Yor (1991) p. 130), if M €

M?and H € TIo(M), H-M is DEFINED to be the unique L € M? with Ly =0
so that

(L,N)=H-(M,N)
for all N € M2
Exercise 5.1. Prove the uniqueness in the last claim.
(5.4) allows us to do easily some things that we would have had to work to
prove in Section 2.3. Let X and Y be continuous local martingales, and suppose

Xy = Yy = 0. The last assumption entails no loss of generality. See Exercise
3.3.

Exercise 5.2. (X,YT) = (X,Y)T.

Exercise 5.3. X7 (Y; — Y,T) is a local martingale.

2.6. Integration w.r.t. Local Martingales

In this section we will extend our integral so that the integrators can be con-
tinuous local martingales and so that the integrands are in

14
M3(X) = {H :/ H2d(X), < 00 as. for all t > 0}
0
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We will argue in Section 3.4 that this is the largest possible class of integrands.
To extend the integral from bounded martingales to local martingales we begin
by proving an obvious fact.

(6.1) Theorem. Suppose X is a bounded continuous martingale, H, K ~€
II3(X) and H, = K, for s < T where T is a stopping time. Then (H - X), =
(K- -X), fors<T.

Proof Write H, = H! + H? and K, = K! + K2 where
H} = I(_,l = HS]-(SST) = I{S]'(JST)
Clearly, (H! - X); = (K!-Y), for all t. Since H? = K2 =0 for s < T, (5.4)
implies
(H?- X)s = (K?-X);=0 fors<T
and it follows from Exercise 3.8 that (H? - X); = (K?2-X) = 0 for t <

T. Combining this with the first result and using (4.3.b) gives the desired
conclusion. |

Exercise 6.1. Extend the proof of (6.1) to show that if X is a bounded
continuous martingale, H, K € II3(X) and H, = K, for S < s <T where S,T
are stopping times then (H-X),—(H-X)s = (K -X);—(K-X)sfor S <s <T.

" To extend the integral now, let S,, be a sequence of stopping times with
1
Sn <Tn = inf{t 1| Xi| >n or / H2d(X), > n}
0

and S, T co. Let HY = H,l(;<s,), and observe that if m < n, (6.1) implies
that (H™ - X); = (H" - X); for t < S, so we can define H - X by setting
(H- X1 =(H"-X)fort < S,.

To’ complete the definition we have to show that if R, and S,, are two
sequences of stopping times < T;, with R, T co and S, T co then we end up
with the same (H - X):. Let HT be the stopped version of the process defined
at the beginning of Section 2.2, let @, = R, A S, and note that (6.1) implies

(HE» . X), = (H%.- X), fors<Qn

Since @n T 00, it follows that (H - X), is independent of the sequence of stopping
times chosen. The uniqueness result and (6.1) imply

(6.2) Theorem. If X is a continuous local martingale and H € II3(X) then
HT . X=H -X)T=H-XT=HT .XT
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In words if we set the integrand = 0 after time T or stop the martingale at time
T or do both, then this just stops the integral at T'.
Our next task is to generalize our abc’s to integrands in IIg.

(6.3) Theorem. If X is a continuous local martingale and H € II3(X), then
(H - X): is a continuous local martingale.

Proof By stopping at 7, = inf{i: f(; H2d(X)s > n or |X;| > n}, it suffices
to show that if X is a bounded martingale and H € II5(X), then (H - X); is a
continuous martingale but this follows from (4.3.a). O

(6.4) Theorem. Let X and Y be continuous local martingales. If H, K €
II3(X) then H 4+ K € II3(X) and

(H+K) - X)e = (H-X)e+ (K - X),
If H € M3(X)NT3(Y) then H € M3(X +Y) and
H-X+Y)e=H-X)e+(H -Y)

Proof To prove the first formula we note that the triangle inequality for the
norm || - ||x implies H + K € II5(X). Stopping at

: ¢
Tn = inf{t : |Xt|,/ H2d(X),, or / K2d(Y), > n}
0 0

reduces the result to (4.3.b)
For the second formula we note that the argument in (5.3) shows that
H € TI3(X 4+ Y) and by stopping we can reduce the result to (5.3). O

After seeing the last two proofs the reader can undoubtedly improve (5.4) to

(6.5) Theorem. If X, Y are continuous local martingales, H € II3(X) and
K € II3(Y) then

14
(H-X,K-Y), = / H,K,d(X,Y),
0

Using Exercise 3.2, we can generalize (6.5) to sums of stochastic integrals.

(6.6) Theorem. Let X = 3°2) H' - X and Y = 37| K7 - Y7 where the X?
and Y7 are continuous local martingales. If H* € Il3(X?) and K7 € II3(Y7),
then

14
ij 70
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We leave it to the reader to make the final extension of the isometry property:

Exercise 6.2. If X is a continuous local martingale and H € I2(X) then
H-X eM?and ||H-X|l2 = ||H|x- .

We will conclude this section by computing some stochastic integrals. The
first formula should be obvious, but for completeness must be derived from the
definitions.

Exercise 6.3. Let X be a continuous local martingale. Let S < T < oo be
stopping times, let C(w) be bounded with C(w) € Fs, and define H, = C for
S <5 <T and 0 otherwise. Then H € II3(X) and

/ H, dX, = C(Xr — Xs)

For the rest of this section, Ap = {0 = tf <t} < ... < tin) = t} is
a sequence of partitions of [0,f] with mesh |A,| = sup; [} —t},| — 0. Our
theme here is that if the integrand H; is continuous then the integral is a limit
of Riemann sums, provided we evaluaie the iniegrand al the left endpoint of the
intervals.

(6.7) Theorem. If X is a continuous local martingale and ¢ — H; is continuous
then as n — oo

14
ZHf?{X(t?-;-l) -X(tH)} — / H,dX, in probability
i )

Proof First note that H € I3(X) so the integral exists. By stopping at
T = inf{s : s5,(X),, or |Hs| > M} and making H constant after time T" to
preserve continuity, we can suppose (X); < M and |H,| < M for all 5. Let
HY = Hyy for s € (t7,1},], HY = H; for s > t. Since s — H, is continuous on
[0,¢] we have for each w that

sup |[H? — Hs| =0

The desired result now follows from the following lemma which will be useful
later.

(6.8) Lemma. Let X; be a continuous local martingale with (X), < M for all
t. If H™ is a sequence of predictable processes with |H"| < M for all s,w and
with sup, |H® — H,| — 0 in probability then (H" - X) — (H - X) in M2
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Proof Exercise 6.2 (or 4.4) implies

(™ — H) - X|| = |H" — H|[}x < MEsup |H} — H,|* -0

as n — oo by the bounded convergence theorem. O

The rest of the section is devoted to investigating what happens when we
evaluate at the right end point or the center of each interval. For simplicity we
will only consider the special case in which H, = 2X,.

Exercise 6.4. If X is a continuous local martingale then
t
/ 2X,dX, = X} - X¢ - (X):
0

Exercise 6.5. Show that if X is a continuous local martingale and we evaluate
at the right end point then

1
S 2y (X (W) = XE} — [ 2K, dX+ 2000 = X2 = XF + (X),
i 0

Comparing the last two exercises you might jump to the conclusion that
if we evaluate at the midpoint we get an integral that performs like the one in
calculus. However, we will not ask you to prove this in general.

Exercise 6.6. Show that if B; is a one dimensional Brownian motion starting
at 0 then

3 2B((k + 12220 (B((k + D2-"0) - B(:2"0)

k=0
converges in probability to f(; 2B, dB; +t = B}

This approach to integration, called the Stratonovich integral, is more con-~
venient than It6’s approach in certain circumstances (e.g., diffusion processes
on manifolds) but we will not discuss it further here. Changing topics we have
one more consequence of (6.7) that we will need in Chapter 5.

Exercise 6.7. Suppose h : [0,00) — R is continuous. Show that f(; hsdB; has
a normal distribution with mean 0 and variance f(: h2ds.
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2.7. Change of Variables, It6’s Formula

This section is devoted to a proof of our first version of 1t6’s fromula, (7.1). In
Section 2.10, we will prove a bigger and better version, (10.2), with a slicker
proof, but the mundane proof given here has the advantage of explaining where

the term with f’’ comes from.

(7.1) Theorem. Suppose X is a continuous local martingale and f has two
continuous derivatives. Then with probability 1, for allt > 0

1010 = [ foxaxo+ L [ reca),

Remark. If A; is a continuous function that is locally of bounded variation,
and f has a continuous derivative then (see Exercise 7.2 below)

(7.2) F(A) — F(Ao) = /0 F(AYA,

As the reader will see in the proof of (7.1), the second term comes from the
fact that local martingale paths have quadratic variation {X)., while the 1/2
in front of it comes from expanding f in a Taylor series.

Proof By stopping at Tas = inf{¢ : |X3| or (X): > M}, it suffices to prove

the result when |X;| and (X); < M. From calculus we know that for any a and
b, there is a c(a,b) in between a and b such that

& £~ £(@) = (b~ )F'(a) + 56 — &)*F"(c(a,D)

Let ¢t be a fixed positive number. Consider a.sequence A, of partitions 0 =
tg <tP...<tp =t with mesh |As;| — 0. From (7.3) it follows that

f(X2) — f(Xo) = Zf(x%) - f(Xer)
(7_4) = Zf,(Xt}‘)(Xt?_{_l - Xt{.‘)
+ %z;y? (W)( Xz, — Xep)?

where g (w) = f"(c(Xer, Xiz, )

it1
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Comparing (7.4) with (7.1), it becomes clear that we want to show
t
(7.5) S F (X)X, = Xop) — /0 F1(X.)dX,
1 V 2 1 ' "
(76) 3 LB Xy, — X = 5 [ FO)AX),
H 0

in probability as n — co. (7.5) follows from (6.8).
To prove (7.6), we let GT = g% (w) = fUc(Xep, Xep, ) when s € (¢7,t14,),
G? = f'(X;) for s > t and let
A} = Z (Xtiga _Xii)2

ii+153

so that .
S o)Xy, ~ X2 = [ Graar
R 0

and what we want to show is

1) [ tant— [ rocan,

To do this we begin by observing that the uniform continuity of f* implies that
as n — 0o we have G} — f”(X,a¢) uniformly in s, while (3.8) implies that A7
converges in probability to (X),. Now by taking subsequences we can suppose
that with probability 1, A%,, converges weakly to (X );a:. In other words, if
we fix w and regard s — A%,, and s — (X );a: as distribution functions, then
the associated measures converge weakly. Having done this, we can fix w and
deduce (7.7) from the following simple result:

(7.8) Lemma. If (i) measures p, on [0,t] converge weakly to pe, a finite
measure, and (ii) g, is a sequence of functions with |g,| < M that have the
property that whenever s, € [0,t] — s we have gn(sn) — g(s), then as n — oo

/gnd/ln - /gd/—loo

Proof By letting p),(A) = pn(A)/1a([0,t]), we can assume that all the y,
are probability measures. A standard construction (see (2.1) in Chapter 2 of
Durrett (1995)) shows that there is a sequence of random variables X,, with
distribution p, so that X,, — X, a.s. as n — oo The convergence of g, to g
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implies gn(Xn) — 9(Xw ), so the result follows from the bounded convergence
theorem. O

(7.8) is the last piece in the proof of (7.1). Tracing back through the proof,
we see that (7.8) implies (7.7), which in turn completes the proof of (7.6). So
adding (7.5) and using (7.4) gives that for each ¢,

f(Xt)_f(X0)=/0 f’(X,)dX,-i—%/O F(Xs)d(X)s as.

Since each side of the formula is a continuous function of ¢, it follows that with
probability 1 the equality holds for all ¢ > 0, the statement made in (7.1). O

(7.9) Remark. In Chapter 3 we will need to use Ité’s formula for complex
valued f. The extension is trivial. Write f = u + iv, apply It6’s formula to u
and v, multiply the v formula by i and add the two.

Exercise 7.1. Let A; be a continuous process with total variation |[Al: < M
for all t. If K™ is a sequence of measurable processes with |K"(s,w)| < M for
all 5,w and sup, |K} — K,| — 0 then sup, |(K" — K) - A)| — 0.

Exercise 7.2. Use the fact that f(b) — f(a) = f'(c(a,b))(b — a) for some ¢
between a and b, and Exercise 7.1 to prove (7.2).

2.8. Integration w.r.t. Semimartingales

X is said to be a continuous semimartingale if X; can be written as M;+ A,
where M; is a continuous local martingale and A; is a continuous adapted pro-
cess that is locally of bounded variation. A nice feature of continuous semi-
martingales that is unheard of for their more general counterparts is

(8.1) Theorem. Let X; be a continuous semimartingale. If the (continuous)
processes M; and A: are chosen so that A = 0, then the decomposition X; =
M; + A; is unique.

Proof If M} + A} is another decomposition, then A; — A} = M| — M, is a
continuous local martingale and locally of bounded variation, so by (3.3) A:— A}
is constant and hence = 0. |

Remark. In what follows we will sometimes write “Let X; = M; + A; be a
continuous semimartingale” to specify that the decomposition of X; consists of
the local martingale M; and the process A; that is locally of bounded variation.
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Exercise 8.1. Show that if X; = M; + A; and X] = M] + A} are continu-
ous semimartingales then X, + X; = (M; + M]) + (A: + A}) is a continuous
semimartingale.

In this section we will extend the class of integrators for our stochastic in-
tegral from continuous local martingales to continuous semimartingales. There
are three reasons for doing this.

(i) If X is a continuous local martingale and f is C? then Ité’s formula shows
us that f(X;) is always a semimartingale but it is not a local martingale unless
f"(z) = 0 for all z. In the next section we will prove a generalization of It&’s
formula which implies that if X is a continuous semimartingale and f is C?
then f(X,) is again a semimartingale.

(ii) Tt can be argued that any “reasonable integrator” is a semimartingale. To
explain this, we begin by defining an easy integrand to be a process of the
form

n
H=Y Hl,mr,,
i=0
where 0 = Ty < 171 £+« < Ty are stopping times, and the H; € Fr, have

|H;| < oo a.s. Let bIl, ; be the collection of bounded easy predictable processes
that vanish on (¢, 00) equipped with the uniform norm

| H|lu = sup |H,(w)|

For easy integrands we define the integral as

(H-X)= iHi(XT.-.H )

i=1

Finally, let L® be the collection of all random variables topologized by conver-
gence in probability, which comes from the metric || X||o = E(|X|/(1 + |X]))-
See Exercise 6.4 in Chapter 1 of Durrett (1995).

A result proved independently by Bichteler and Dellacherie states

(8.2) Theorem. If H — (H - X) is continuous from bII, ; — L° for all ¢ then
X is a semimartingale.

Since any extension of the integral from bIl.; will involve taking limits, we
need our integral to be a continuous function on the simple integrands (in some
sense). We have placed a very strong topology on the domain and a weak
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topology on the range, so this is a fairly weak requirement. Protter (1990)
takes (8.2) as the definition of semimartingale. In his approach one gets some
very deep results without much effort but then one must sweat to prove that a
semimartingale (defined as a good integrator) is a semimartingale (as defined
above).

(iii) Last but not least, it is easy to extend the integral from local martingales
to semimartingales if we replace II3(X) by a slightly smaller class of integrands
that does not depend on X.

Getting back to business, let X; = M;+ A; be a continuous semimartingale.
We say H € IbIl = the set of locally bounded predictable processes, if

there is a sequence of stopping times Ty, T co so that |H(s,w)| < n for s < Th.
If H € Ib1I we can define

(H - A)(w) = /0 H,(w)dA, ()

as a Lebesgue-Stieltjes integral (which exists for a.e. w). To integrate with
respect to the local martingale M; we note that

L
[ mzan, < n¥ay, < oo
0

and T, — oco. So IbII C II3(M), we can define (H - M),, and let
(H-X)y=(H M) +(H- A

since by the uniqueness of the decomposition this is an unambiguous definition.
From the definition above, it follows immediately that we have

(8.3) Theorem. If X is a continuous semimartingale and H € 011, then (H-X)
is a continuous semimartingale.

The second of our abc’s is also easy. We name it in honor of the similar rela-
tionships between addition and multiplication.

(8.4) Distributive Laws. Suppose X and Y are continuous semimartingales,
and H, K € £b11. Then

((H+E)-X)e = (H-X)e + (K - X),
H- X+Y)u=(H -Xn+H-Y)
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Proof This follows easily from the definition of the integral with respect to
a semimartingale, the result for local martingales given in (6.4), and the fact
that the results are true when X and Y are locally of bounded variation. In
proving the second result we also need Exercise 8.1. O

The rest of this section is devoted to defining the covariance for semimartin-
gales and proving the third of our abc’s.

(8.5) Definition. If X = M + A and X/ = M’ + A’ are continuous semimartin-
gales we define the covariance (X, X'); = (M, M')..

To explain this we recall the approximate quadratic variation @ (X) defined
in Section 2.3, and note

(8.6) Theorem. Suppose X = M + A and X! = M’ + A’ are continuous
semimartingales. If A,, is a sequence of partitions of [0, {] with mesh |A,| — 0
then

Q™ (X, X'y — (M, M') in probability

Proof Since
QP (X, X') = QP (M, M') + Qi (A,M") + QP~(X, 4")

it suffices to show that if Y; is a continuous process and V; is continuous and
locally of bounded variation then Q2" (Y, V) — 0 almost surely. To do this we
note that
QL (Y,V) < |Vlssup [Yip,, — Yir|
1

As n — oo the second term — 0 almost surely, while the first one has |V|; < oo
and the desired result follows. O

(8.7) Theorem. Suppose X* and Y/ are continuous semimartingales i Kie
B, X =570 H - X, Y =37 | K7.Y7, then

14
X, Y), = /HjKjdX",YJ‘,
(X,Y) 2; A ( )

Proof Let M’ and N7 be the local martingale parts of X* and Y7, let M =
ShyH' M and N = di=1 Ki . Ni. 1t follows from our definition that
(X,Y): = (M, N),, so using (6.6) and then (M* N7), = (X’ Y7), gives the
desired result. o
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2.9. Associative Law

Let X, be a continuous semimartingale. In some computations, it is useful to
write the integral relationship

t
Y,:/ K,dX,
0

as the formal equation
dYt = I{tht

where the dY; and dX; are fictitious objects known as “stochastic differentials.”
A good example is the derivation of the following formula, which (for obvious
reasons) we call the associative law:

(%) H-(K-X)=(HK)-X

Proof using stochastic differentials d(H -Y); = H,dY;. Letting ¥; =
(K - X): and observing dY; = K;dX; gives

d(H . (I{ 'X))t = Ht d(I{ 'X)t = HtI{t dXt = d((HI{) 'X)t O

The above proof is not rigorous, but the computation is useful because it
tells us what the answer should be. Once we know the answer, it is routine
to verify by checking that it holds for basic predictable processes and then
following the extension process we used for defining the integral to conclude
that it holds in general.

(9.1) Lemma. Let X be any process. If H, K € 1I;, then (%) holds.

Proof Since the formula is linear in H and in K separately, we can without
loss of generality suppose H = 1(4,5)C and K = 1(. gD and further that either
(i) b < cor (i) a=c,b=d. In case (i), both sides of the equation are = 0 and
hence equal. In case (ii),

0 0<t<a
(I(X)tz{D(Xt—Xa) aStSb
D(Xy—X,) b<t<oo
s° 0 0<t<a
(H‘(K.X)),z{CD(Xt—Xa) a<t<Lb
CD(Xy— X,) b<t<oo

and it follows that (H - (K - X)), = (HK) - X):. o
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To extend to more general integrands, we will take limits. First, however,
we need a technical result.

(9.2) Lemma. Suppose p is a signed measure with finite total variation, h and
k are bounded, and let ¥([0,t]) = f(; ksp(ds). Then

/0 t h v(ds) = /0 t hoks pu(ds)

Proof of (9.2) The Radon-Nikodym derivative dv/du = k, so the desired
identity is just the well known fact that

1 1 dl/
h,v(ds =/h,—-—- ds
[ hevtds) = [ m gl uias)

See for example Exercise 8.7 in the Appendix of Durrett (1995). O

To simplify the extension to II;(X), we will take the limit for K and then
for H.

(9.3) Lemma. Let X be a continuous local martingale. If H € bII; and
K € II5(X), then (%) holds.

Proof Let K™ € bIl; such that K® — K in II5(X). Since H is bounded,
HK"™ — HK in II5(X), and it follows from Exercise 6.2 that (HK") - X —

(HK)-X in M2 To deal with the left side of (x), we observe that using (6.4)
twice, Exercise 6.2, (6.5) with (9.2), and the fact that H, is bounded we have

H - (K -X)—H-(K"-X)|l; = ||H - (K = k") - X)|I3
=E/ HZd{(K — K™)-X),
0
=E / HY(K, — KM)?d(X),
0
<ClK - K™%
soasn— 00, H-(K"-X)— H-(K-X)in M? and the result follows. O

(9.4) Lemma. Let X be a continuous local martingale. If H € IIo(K - X) and
K € IIx(X), then (x) holds.
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Proof Let H" € bII; such that H® — H in IIo(K - X). (6.4) and Exercise
6.2 imply

\H™ (K -X) - H- (K -X)|l2= [[(H" = H) - (K - X)||l = ||H" - H||x-x

so H* - (K - X) — H - (K - X) in M2, To deal with the right side of (%), we
observe that using the definition of the norm then (6.5) with (9.2)

||H"K —HK||% = E / (H? — H))2K2d(X),
0
=||H" - H|lz.x =0
so applying Exercise 6.2 we have H"K - X — HK - X in M2 O

(9.5) Lemma. Let X be a continuous local martingale. If K € I3(Y) and
H € I3(K - X) then (x) holds.

Proof Let T, = inf{t: [j K2d(X), or [} H2d(K - X), > n}. Let AT~ =
H-’]‘(SSTn) and I\’Z"‘ = K; ]‘(SSKn) (94) lrnphes that

A% (K™ .X)= (H™R™). X

Using (6.2) now it follows that (H - (K - X)) = (HK - X), for t < Ty, and
letting n — oo gives the desired result. O

(9.6) Associative Law. Suppose X is a continuous semimartingale. If H, K €
IbIT then H - (K - X)= HK - X.

Proof In view of (9.5) and the definition of the integral it suffices to prove the
result when X; = A; is continuous adapted and locally of bounded variation.
However, by stopping the first time |H,|, |K,| or the variation of A on [0,s]
exceeds n the statement reduces to something covered by (9.2). O

2.10. Functions of Several Semimartingales

In this section, we will prove a version of Itd’s formula for functions of several
semimartingales. The key to the proof is the following

(10.1) Integration by Parts. If X and Y are continuous semimartingales
then

13 13
XY= XoYo = [ YadXot [ Xod¥o+ (XY
0 0
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Proof Let A, = {t!'} be a sequence of subdivisions of [0,f] with mesh |A,|
going to 0. We can write

XiYy = XoYo = 3 (Xep,, — Xir)(Vipy, —Yep)

i

+ 2Ky, = Xap)Yar + 3 Xer (Vi — Yip)
(8.6) implies that

Z(Xi.'-{-x - Xi;)(Yii-{-x - Y‘x) —* (X:Y)f

in probability, while application of (6.7) to each of the last two sums implies
that they converge to f(; Y.dX, and to f(;X,dY,. O

When Y is locally of bounded variation then (X,Y); = 0 and this reduces
to the ordinary integration by parts formula of Lebesgue-Stieltjes integration.

1 1
/ Y, dX, :Xth—Xng—/ X,dY,
0 0

Note that the right hand side makes sense in a path-by-path sense.
We are now ready to prove the following generalization of (7.1):

(10.2) 1td’s formula. Let f : R4 - Rand 0 < ¢ < d. If X},..., X§ are
continuous semimartingales and X;*!,..., X¢ are locally of bounded variation
then

d 1 | t ..
$) - 1) = Y [ Depaxi+ g X [ pysee)ane 3,

1<i,j<e

prbvided the derivatives D;f, 1 < j < d and D;;f, 1 < 4,5, < c exist and are
continuous.

Remark. At this point saving a derivative or two may seem like pinching
pennies but when we get to Chapter 4 and apply this result to u(t, B;) we will
be very happy to not have to check that the partial derivatives u; and uy,g;
exist. :

Proof By stopping, it suffices to prove the result when | X}|,(X*), < M for
all 7,¢. Since any function f satisfying the hypotheses can be approximated by
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polynomials g, in such a way that gn,Dign, 1 <i < d and Djjg,, 1 <i,j<c
converge to f,D;f, and D;; f uniformly on [-M, M4, it suffices to prove the
result when f is a polynomial. For then (6.8) and Exercise 7.2 allow us to pass
from the result for g, to that for f.

To prove the result for a polynomial, it suffices by linearity to prove the
result when f is a monomial z¥:1z%2...z%~ where ki, ko,..., ks € {1,...,d}.
(The reader should note that k;,...,k, are superscripts, not powers, e.g., our
monomial might be z'z*z'z!z2.)

If n =1 and k; = k, then (10.2) says that

1
X,’“-X(f:/ 1dx*
0

which is trivially true. To prove the result for a general monomial, we use
induction. Let ¥; = [[_; x¥ (™) be a monomial for which (10.2) holds, and
let Z, = X,k("“). Applying (10.1) gives
t t
ViZi~Yolo= [ Zad¥.+ [ Ydzo+ (¥,2).
0 0

Applying (10.2) to Y gives

K—Y(,:Z/Ot IT x| axio

isn it
(10.3)
1 T gkem o)
= m) | g(x*G) xkG)y,
+2;§;‘/0 I x5 | agx, x40
iy mEi,d

so using the associative law (9.6),

t t n-+1

/ Z,dY, =Z/ fo(m) de(‘)
0 i<n V0 | m=1
- m#i

i,j<n mal

m#i,j

1 1 n
Y,dZ, =/ Xf("‘) de(n+1)
[ram= [ (11

m=1

1 t [ nil . ) )
1 m) k(i) xE()
+2§:/0 ||X,( d(x*0 xFG)y,

i#]

By definition,
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To evaluate the third term (Y, Z);, we observe that by (10.3) and the formula
for the covariance of stochastic integrals, (8.7),

1 n
¥,2), =% / T] x5 | a(xH, x+w+n),
g‘sn 0 m=1

m#Ei

Adding the last three equalities gives

3 n+l
Y2, — YoZo = Z H XHm) | gx*@)
i<n+170 m=1

1 ‘Y E(m k(G vEG
+§AZ /0 HXs() d(X*O) xE0)Y,
i, J<n¢1 m=‘1.
m#Ed,j m#£i, )
(Notice that for each 7 in the sum for (Y, Z),, there are two terms i = ¢, j = n+1,
and i =n 41,5 = 7 in the last sum.) The proof is complete. O

Chapter Summary

With the completion of the proof of the multivariate form of Itd’s formula, we
have enough stochastic calculus to carry us through most of the applications in
the book, so we pause for a moment to recall what we’ve just done.

In Section 2.1, we introduced the integrands H;, the predictable processes
and in Section 2.2 the (first) integrators X, the continuous local martingales.
In Section 2.3 we defined the variance process associated with a local mar-
tingale, and more generally the covariance (X,Y); of two local martingales.
Theorem (3.11) tells us that the covariance could have been defined as the
unique continuous predictable process A; that is locally of bounded variation,
has Ag = 0, and makes X,;Y; — A; is a martingale. The next result gives a
pathwise interpretation of (X,Y);:

(3.10) Quadratic Variation. Suppose X and Y are continuous local martin-
gales. If A, is a sequence of partitions of [0,¢] with mesh |A,| — 0 then

kﬂ
D (Xu — Xt,,) - (Vi — Yy ,) = (X,Y); in probability
k=1

Taking X =Y we see that {X), is the “quadratic variation” of the path up to
time ¢.
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In Section 2.4-2.5, we defined the integral, beginning with bounded con-
tinuous martingales and considering a sequence of progressively more general
integrands.

I L(a,5)(s)C(w) with C € F,
I, finite sum of elements of g
O(X) H with B [[° H?d(X), < o0
I3(X) H with fot H?d{X), < oo as. for each ¢

A key role in this development was played by the

(5.1) Kunita-Watanabe Inequality. If X and Y are local martingales and
H and K are two measurable processes, then almost surely

/Om H K| d(X, V)], < (/0“’ Hfd(x),)l/z (/Ooo de(Y),)l/2

where d|(X,Y)|, stands for dV, where V; is the total variation of r — (X,Y),
on [0, s].

In Section 2.6, we generalized the integrators X, to continuous local mar-
tingales and, in Section 2.8, to continuous semimartingales which are the
sum (in a unique way) of a continuous local martingale M, and a continuous
process A; that is locally of bounded variation. Further, we defined the covari-
ance of two semimartingales X; = M; + A; and X] = M{ + A} to be that of
their martingale parts, i.e., (M, M'):, and generalized the quadratic variation
interpretation in (3.10), see (8.6).

To be able to integrate with respect to semimartingales we had to restrict
the integrands to the class of locally bounded predictable processes, £bII, but
in this generality the integral has many nice properties.

(8.3) Closure under Integration. If X is a continuous semimartingale and
H € IbII, then (H - X), is a continuous semimartingale.

(8.4) Distributive Laws. Let X and Y be continuous semimartingales, and
H,K € £bIl.

(H+EK)-X)o=H X4 K -X)
(H-(X+Y)=(H -X),+(H Y)



Chapter Summary 81

(8.7) Covariance of Stochastic Integrals. Suppose X * and Y7 are contin-
uous semimartingales H*, K7 € IbIl, X = 37 H' - X', Y = 3 ' | Ki.Yi,
then

14
X,Y), = /H;‘Kg‘d Xt YY),
(X, Y) 2; A ( )

(9.6) Associative Law. Let X be a continuous semimartingale. If H, K € IbII
then H - (K -X)=HK - X.

As the reader probably remembers, the first three results were only obtained
after several improvements

Integrands = 1I, I, 15 iII
a. Closure (4.2.2) (4.3.a) (6.3) (8.3)
b. Distributive Laws (4.2.b) (4.3.b), (5.3) (6.4) (8.4)
¢. Covariance Formula (4.2.c) (5.4) (6.5), (6.6) (8.6), (8.7)

In Section 2.7, we proved a change of variables formula. This led to:

(10.1) Integration by Parts. Let X and Y be continuous semimartingales.
t t
XY - Xo¥o = [ VX + [ Xd¥ot (XY),
0 0

which in turn led to a bigger and better change of variables formula.

(10.2) 1t&’s formula. Let f : R4 - Rand 0 < ¢ < d. If X},...,X¢ are
continuous semimartingales and X£+! ..., X& are locally of bounded variation

d t 1 t . .
)= 106 = 3 [ Diptaaxi+ g 3 [ Dasxdeet x),

1<i,7<e

provided the derivatives D;f, 1 < j < d and D;;jf, 1 < 4,5, < c exist and are
continuous.

Coming Attractions

Section 2.11 is devoted to a proof of the Meyer-Tanaka formula, which
extends the version of Ité’s formula given in (7.1) to f that are a difference of
two convex functions. This leads in a nice way to the definition of an occupation
time density (or “local time”) L¢ for a continuous semimartingale that is jointly
continuous in ¢ and a.
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The developments described in the previous paragraph are used only in
(9.3) of Chapter 4 and in Example 2.1 of Chapter 5. The material in Section
2.12 concerning Girsanov’s formula is not used until Section 5.5. We would like
to suggest that the reader proceed now to the beginning of Chapter 3.

2.11. The Meyer-Tanaka Formula, Local Time

In this section we will prove an extension of 1t6’s formula due to Meyer (1976)
that has its roots in work of Tanaka (1963). See (11.4). Loosely speaking
it says that Itd’s formula is valid if f is a difference of two convex functions.
Since such functions are differentiable except at a countable set and have a
second derivative that is a nice signed measure, this is a modest generalization.
However, this is the best one can do in general: if B; is a standard Brownian
motion and X; = f(B;) is a semimartingale then f must be the difference of
two convex functions. See Cinlar, Jacod, Protter, and Sharpe (1980). The
developments in this section follow those in Sections 4 and 5 of Chapter IV of
Protter (1990) but things are simpler here since we have no jumps. Qur first
step is

(11.1) Theorem. Let f : R — R be convex and let X be a continuous
semimartingale. Then f(X) is a semimartingale and

f(X) - f(Xo) = /0 f(Xs)dX, + Ky

Here f'(z) = limnyo(f(z) — f(z — h))/h is the left derivative which exists at all
z by convexity and K; is a continuous adapted increasing process.

Proof Let X; = M, 4+ A; be the decomposition of the semimartingale. By
stopping we can suppose without loss of generality that |X;| < N, |A|: < N and

(M) < N for all t. Let g be a C* function with compact support in [—co, 0]
and having [ g(s)ds = 1. Let

(2) falz) = / f (m + %) 9(y) dy

Then f, is convex and C*™. Using It&’s formula we have
t 1

6) A -fe = [ L)X+ 5 [ 2G)d00,
0 0

Our strategy for the proof will be to let n — oo in (b) to get the desired
formula. Since a convex function is Lipschitz continuous on each bounded
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interval, it is easy to see that f,(z) — f(z) uniformly on compact sets. Since
| X:| < N, it follows that

(c) fa(X:) — f(X¢) uniformly in ¢

To deal with the first term on the right, we differentiate (a) to get
@ @) = [ o+ L) sy 1 72)

as n — co. Nowif I} = [ fi(X,)dM, and I, = [} f'(X,)dM, then the
L? maximal inequality for martingales and the isometry property of stochastic
integrals (Exercise 6.2) imply

B (sup (7 - 1)?) < tsup B - °
=48 /om (FL(Xs) = F(X))2 (M), — 0

by the bounded convergence theorem. (Recall (M), < N.) By passing to a
subsequence we can improve the last conclusion to

(e) sup (I'* — I)> — 0 almost surely
t

Let J? = fotf,’,(X,)dA, and J; = f(;f’(X,)dA,. In this case it follows
from the bounded convergence theorem that for almost every w

(f) sup |7 — Ji| < / 74X, = F/(X.)| dA, — 0
13 0

To take the limit of the third and final term K} = f F1(X,)d(X), we
note that (b) implies

1
(8) K = fan(Xt) = Fan(Xo) — /0 Fan(Xs) dX,

Combining (c), (e), and (f) we see that almost surely the right hand side of (g)
converges to a limit uniformly in ¢, so the left hand side does also. Since K;'*
is continuous adapted and increasing the limit is also. 0

If we fix X then for a given f we call K the increasing process associ-
ated with f. The increasing process associated with |z — a| is called the local
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time at a, and is denoted by L{. To prove the first property that justifies this
name, (11.3), we need the following preliminary

(11.2) Lemma. The increasing process associated with (z —a)* or (z —a)~ is
(1/2)L.

Proof Let fi(z) = (z—a)*, f2(z) = (z — @)™, and let K} be the increasing
process associated with f;. We begin by observing fi+f> = |z—al,s0 K} 4+ K2 =
L§. Our second claim is that since fi — fo = £ — a we have K,l - Kf =0. To
see this let g(z) = z — a which has ¢’(z) = 1 and note X; — Xp = f(; 1dX, so
the associated K; must be = 0. O

(11.3) Theorem. L§ only increases when X; = a or to be precise, if we let
£% be the measure with distribution function ¢ — L§, then £% is supported by
{t: X; =a}.

Proof Intuitively, |X: — a| is a local martingale except when X; = a so L}
is constant when X; # a. To prove (11.3), however, it is easier to use the
alternative definitions in (11.2). Let S < T be stopping times so that [S,T] C
{t: Xi < a}. Applying (11.1) to f(z) = (z — a)* we have

T
1
(X — a)* — (X5 — a)* = /S Lt,>a) 4% + 5(2% — L)

The left-hand side and the integral on the right-hand side vanish so L} = L%.
Since this holds when S = ¢ with ¢ any rational and T' = inf{t > S : X; >
a— 1/n} for any n, it follows that £2({t : X; < a}) = 0. A similar argument
using (z — a)~ instead of (z — a)*t shows £2({t : X; > a}) = 0 and the proof is
complete. O

We are now ready for our main result.

(11.4) Meyer-Tanaka formula. Let X be a continuous semimartingale. Let
f be the difference of two convex functions, f’ be the left derivative of f and
suppose f” = p in the sense of distribution (i.e., ¢ has distribution function
). Then

f(Xt)—f(X0)=/0 F1(Xs)dX, + %/u(da)L;‘

Proof Since f is the difference of two convex functions and the formula is
linear in f, we can suppose without loss of generality that f is convex. By
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stopping we can suppose |X;| < N and (X): < N for all {. Having done this
we can let

N
s@) =3 [ wale—dl

Since (f — g) = 0 on [-N, N] it follows that f(z)— g(z) = a+ bz for |z| < N.
Since the result is trivial for linear functions, it suffices now to prove the result
for g, which is almost trivial. Differentiating the definition of g we have

N

g (z)= % N p(da)sign(z — a)

Starting with the definition of the local time
t
| X:—a|—|Xo—a|= / sign(X, — a)dX, + L}
0

and then integrating 1/2 f_{VN p(da) gives

N t
o(X) — o(Xo) = 3 /  (da) / sign(X, — a) dX,
N
+3 [ maars

(11.5) and (11.6) below will justify interchanging the two integrals in the first
term on the right-hand side to give

t N
9(Xe) — 9(X0) = /0 ¢'(X,)dX, + % /_ N p(da)L?

Since L§ = 0 for |a| > N (recall | X;| < N and use (11.3)) this proves the result
for g and completes the proof of (11.4). O

For the next two results let S be a set, let S be a o-field of subsets of S, and
let p¢ be a finite measure on (S, S). For our purposes it would be enough to take
S = R, but it is just as easy to treat a general set. The first step in justifying
the interchange of the order of integration is to deal with a measurability issue:
if we have a family H{(w) of integrands for a € S then we can define the
integrals f(; H¢ dX, to be a measurable function of (a,t,w).

(11.5) Lemma. Let X be a continuous semimartingale with X = 0 and
let H}(w) = H(a,t,w) be bounded and S x II measurable. Then there is a
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Z(a,t,w) € S x II such that for p-almost every a Z(a,t,w) is a continuous
version of f(: HtdX,. :

Proof Let X; = M; + A; be the decomposition of the semimartingale. By
stopping we can suppose that |A|; < N, |My| < N and (X); = (M): < N for
all ¢.

Let M be the collection of bounded H € & x II for which the conclusion
holds. We will check the assumptions of the Monotone Class Theorem, (2.3)
in Chapter 1. Clearly H is a vector space. To check (i) of the MCT suppose
H(a,t,w) = f(a)K(t,w) where K(t,w) € bII and f(a) € bS. In this case

t t
/ H!dX, = f(a)/ K, dX,
0 0
so fK € H. Taking f and K to be indicator functions of sets in & and II
respectively, we have checked (i) of the MCT with A= {AxB: A€ §,B €11}
To check (ii) of the MCT let 0 < H™ € ‘H with H" T H and H bounded.

The L? maximal inequality for martingales and the isometry property of the
stochastic integral imply

B (sup (™ M) = (B M)) < dsup BI(E™ - b)e = (1° - M)
= 4E / (H™ — HY)2d(M), -0
By passing to a subsequence we have for y almost every a
sup |(H™ - M) = (H* - M)y| =0
To deal with the bounded variation part we note that
Bsup|(H™ - A) = (* - A S B [ |~ HFldlAl 0

as n — oo by the bounded convergence theorem. Combining the last two results
completes the proof, O

(11.6) Fubini’s Theorem. Let X be a continuous semimartingale, let H{ €
b(S xII), and let Zf € S xII be a continuous version of f(; H8 dX, for p-almost
every a. Then Y; = fs Z§{ pu(da) is a version of H - X where H; = fs H{ p(da).

Less formally,
1 14
// H?dX, u(da):/ /H;‘u(da)dX,
sJo 0 Js
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Proof Let X; = M;+ A; be the decomposition of the semimartingale. By
stopping we can suppose that |[A]; < N, |[My| < N and (X); = (M) < N for
all ¢. As noted in the proof of (11.5), the result in the special case X = A is
just Fubini’s theorem from measure theory, so we will suppose for the rest of
the proof that X = M.

Let M be the collection of bounded H € S x 1I for which the conclusion
holds. Again, we will check the assumptions of the Monotone Class Theorem,
(2.3) in Chapter 1. Clearly H is a vector space. To check (i) of the MCT,
suppose H(a,t,w) = f(a)K (t,w) where K(t,w) € bIl and f(a) € bS. In this
case Z8 = f(a)(X - X): so

[ 2t utda) = (15 - 30: [ (@) u(da)
S S

= ({ [ f@)uida) K} - ) = (11 - %),
so fK € M. Taking f and K to be indicator functions of sets in S and II
respectively, we have checked (i) of the MCT with A= {AXxB: A€ S,B €I}
To check (ii) of the MCT let 0 < H™ € ‘H with H" T H and H bounded.

Letting ||¢|| be the total mass of y applying Jensen’s inequality to the proba-
bility measure p(-)/||¢l|, then multiplying each side by ||z|| we have

-—1—~E(/ sup |Z;"® — Z“|u(da))2
el ™ \Js e " !
< s |2 - 2P u(da)
s i

Using Fubini’s theorem, the L? maximal inequality, and the isometry property
the right-hand side

= [ Bswp |z - 221 u(da)
S t

<4 [ supB|Zp" - 201 u(de)
s t

= 4/51:7 (/Om(H;':a — H3)? d(X),) p(da) — 0

by using the bounded convergence theorem three times. Putting the absolute
values inside the integral we have

E(sgp| [ zeutda- [ Zé‘u(da)|)2

2
< E(/ sup |Z;"° — Z{‘lu(da)) —0
s 1
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Taking H} = [ H;""® p(da) and passing to a subsequence nj we have that with
probability one (H"* -X), = [ Z;'*'* u(da) converges uniformly to [ Z{ p(da).
The last detail is to check that H™ - X converges to H - X in M?, for then it
follows that [ Z¢ u(da) = (H - X):. In view of the isometry property, we can
complete the last detail by showing that ||H™ — H||x — 0 but this is routine.

1 = ?
[ ([ - [ B2 ue0) ax,
lell™ Jo s s
<E / / (H™ — H2)? p(da) d(X), — 0
0 Js
by using the bounded convergence theorem three times. O

We can now complete the identification of L as the local time at a.

(11.7) Theorem. Let X be a continuous semimartingale with local time L§.
If g is a bounded Borel measurable function then

/—0:0 Lig(a)yda = /ot a(X,)d(X)s

Proof Suppose first that g is continuous and let f € C? with f/ = ¢g. In
this case comparing (11.4) with Ité’s formula proves the identity in question.
Since the identity holds for any continuous function, using the Monotone Class
Theorem proves the result for a bounded measurable g. |

When X is a Brownian motion the identity in (11.7) becomes

/00 Lig(a)da= /(: 9(Xs)ds

—0Q

From this, we see that L{ can be thought of as the time spent at a up to time
t, or to be precise it is a density function for the occupation time measure
n(A) = 3 14(X,) ds.

There are many ways of defining local time for Brownian motion. The
one we have given above is famous for making it easy to prove that there is a
version in which L¢ is a jointly continuous function of a and ¢. It is somewhat
remarkable that this property is true for a continuous local martingale and it
is not any more difficult to prove the result in this generality.

(11.8) Theorem. Let X be a continuous local martingale. There is a version
of the L§ in which (a,t) — L§ is continuous.
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Example 11.1. (11.8) is not true for X; = |B;|, which is a semimartingale by
(11.1). Introducing subscripts to indicate the process we are referring to, we
clearly have L5 (t) = LE(t) + Lg*(t) for a > 0 and L (t) = 0 for a < 0. Since
LY (t) £ 0 it follows that @ — L%(t) is discontinuous at a = 0.

One can complain that this example is trivial since 0 is an end point of
the set of possible values. A related example with 0 in the middle is provided
by skew Brownian motion. Start with |B;| and flip coins with probability
p > 1/2 of + and 1 — p of — to assign signs to excursions of By, i.e., maximal
time intervals (a,b) on which |B;| > 0. If we call the resulting process Y; then

$(ty — 2pLY(t) as a | 0 and L (t) — 2(1 — p)L%(t) as a T 0. For details see
Walsh (1978).

Proof As usual, by stopping we can suppose that |X;| < N and (X): < N
for all t. By (11.2)

1 t
-2—L§‘ = (Xt - a)+ - (Xo - a)+ - / ]-{X,>a} dX,
0

It is clear that (a,t) — (X; — a)*t — (Xp — a)* is continuous, so we only have
to investigate the joint continuity of the stochastic integral

t
I,“:/O lix,>a) 4Xs

Fix a time T' < oo and regard a — I° as a mapping from R to C([0,T7], R), the
real valued functions continuous on [0,7], which we equip with the sup norm
[|I£)l = supg<i<t |f(s)]- In view of Kolmogorov’s continuity theorem ((1.6) in
Chapter 1) it suffices to show that for some «, 8 > 0 we have

E||I* - ) < Cla—b|**™

Suppose without loss of generality that a < b. One of the Burkholder Davis
Gundy inequalities ((5.1) in Chapter 3) implies that

T 2
E”Ia — Lb”4 < CFE (/ 1{4<Xz$b} d(X),)
0

To bound the right-hand side we note that using (11.7) and then the Cauchy-
Schwarz inequality and Fubini’s theorem:

:E(/a”,;;dm)

b
=(- a)/ E(LZ)?dz < (b—a)® sup E(L%)?
a z€(a,b)

2
<(b—-a)E / b(L§)2 dz
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To bound the sup, we recall the definition of L%.
T
=|Xr—z|- [Xo—z|- / sgn(X, — z) dX,
0

which with the trivial inequalities (a+b8)? < 2a%+2b% and |y—z|—|z—z| < |y—2|
implies that

T 2
E(L%)? < 2E(XT — Xo)? + 2E ( / sign(X, — z) dX,)
0

< 22N +2E((X)r) < 8(N? + N)

by the isémetry property and the bounds we have imposed on |X;| and (X); by
stopping. This gives us what we need to check the inequality in Kolmogorov’s
continuity theorem and completes the proof. g

Remark. The proof above almost works for semlmartmgales X = My + As
If we define I = fo 1¢x,5a) dM, and J§ = fo 1¢x,>a} dA; then the argument
above shows that (a,t) — I{ is continuous, so we will get the desired conclusion
if we adopt assumptions that imply (a,t) — J{ is continuous.

2.12. Girsanov’s Formula

In this section, we will show that the collection of semimartingales and the
definition of the stochastic integral are not affected by a locally equivalent
change of measure. For concreteness, we will work on the canonical probability
space (C,C), with F; the filtration generated by the coordinate maps X;(w) =
wy. Two measures @ and P defined on a filtration F; are said to be locally
equivalent if for each ¢ their restrictions to F;, @; and P; are equivalent, i.e.,
mutually absolutely continuous. In this case we let oy = d@y/dP;. The reasons
for our interest in this quantity will become clear as the story unfolds.

(12.1) Lemma. Y; is a (local) martingale/Q if and only if a;Y; is a (local)
martingale/P.

Proof The parentheses are meant to indicate that the statement is true if
the two locals are removed. Let ¥; be a martingale/Q, s <t and A € F,. Now
if Z € Fi, then (i) f[ZdP = [Z dPy, and (ii) [ ZoywdP, = [Z dQ:. So using
(i), (i1), the fact that Y is a martingale/Q, (ii), and (i) we have

/athP /athdPt /Kth
A
/YdQ,—/a,Y,dP,=/ a,Y,dP
A
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This shows «;Y; is a martingale/P. If Y is a local martingale/Q then there
is a sequence of stopping times 7,, T oo so that Y;ar, is 2 martingale/Q and
hence a;Y;ar, is a martingale/ P. The optional stopping theorem implies that
AT, YiaT, is a martingale/ P and it follows that a;Y; is a local martingale/P.

To prove tlie converse, observe that (a) interchanging the roles of P and
Q and applying the last result shows that if 8; = dP;/dQ:, and Z; is a (local)
martingale/ P, then 8,7, is a (local) martingale/Q and (b) f; = a; ', so letting
7y = Yy we have the desired result. O

Since 1 is a2 martingale/Q we have
(12.2) Corollary. a; = dQ:/dP; is a martingale/P.
There is a converse of (12.2) which will be useful in constructing examples.

(12.3) Lemma. Given o; a nonnegative martingale/P there is a unique locally
equivalent probability measure @ so that d@:/dP: = ;.

Proof The last equation in the lenima defines the restriction of @ to F; for
any t. To see that this defines a unique measure on C, let t; < t2... < t,, A;
be Borel subsets of R?, and let B = {w : w(¢;) € A; for 1 <i < n}. Define the
finite dimensional distributions of a measure @ by setting

mm:émw

whenever ¢ > t,. The martingale property of «; implies that the finite di-
mensional distributions are consistent so we have defined a unique measure on

(C,C). O
We are ready to prove the main result of the section.

(12.4) Girsanov’s formula. If X is a local martingale/P and we let A; =
fot a;ld{a, X),, then X; — A; is a local martingale/Q.

Proof Although the formula for A looks a little strange, it is easy to see that
it must be the right answer. If we suppose that A is locally of b.v. and has
Agp = 0, then integrating by parts, i.e., using (10.1), and noting (a, A); = 0
since A has bounded variation gives

3 1 1
(125) at(Xt‘—‘At)“a()X() = / (X,—A,)d&,-l—/ CY,(LY,—-/ a,dA,-I—(a,X)t
o] o] o]
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At this point, we need the assumption made in Section 2.2 that our filtration
only admits continuous martingales, so there is a continuous version of « to
which we can apply our integration-by-parts formula.

Since o, and X, are local martingales/P, the first two terms on the right
in (12.5) are local martingales/P. In view of (12.1), if we want X; — A; to be
a local martingale/Q, we need to choose A so that the sum of the third and
fourth terms = 0, that is,

14
/ a, dA, = (o, X )
0

From the last equation and the associative law (9.6), it is clear that it is neces-
sary and sufficient that

t
A::/ o td{o, X ),
0

The last detail remaining is to prove that tlie integral that defines A: exists.
Let T, = inf {t tor < n"l}. If t < Ty, then

t t
/ MSn/ dl{a, X)|s < o0
0. 0

7

by the Kunita-Watanabe inequality. So if T' = lim,_.o T, then A; is well
defined for ¢ < T'. The optional stopping theorem implies that Ea;ar, = Eay,
so noting aiar, = a¢ on T, >t we liave

E(ay T <t)y=E(ar,; Ta < t)

Since a; > 0 is continuous and T, < T, it follows that
E(a; T<t) L E(a;Tn <t)=E(ar,;Tn <t) < 1/n

Letting n — oo, we see that a; = 0 a.s. on {T'< t}, so

QT <) =E(asT<t)=0

But P; is equivalent to @, so 0 = P(T <t) = P(T <t). Sincet is arbitrary
P(T < 00) = 0, and the proof is complete. o

(12.4) shows that the collection of semimartingales is not affected by change
of measure. Qur next goal is to show that if X is a semimartingale/P, @ is
locally equivalent to P, and H € £bll, then the integral (H - X); is the same
under P and Q. The first step is
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(12.6) Theorem. The quadratic variation (X); and hence the covariance
(X,Y); is the same under P and Q.

Proof The second conclusion follows from the first and (3.9). To prove the
first we recall (8.6) shows that if A, = {0 =tF <} ... <t} =t} is asequence
of partitions of [0,¢] with mesh |A,| — 0 then

D (Kup,, = Xez)? = (X)e

1

in probability for any semimartingale/P. Since convergence in probability is
not affected by locally equivalent change of measure, the desired conclusion
follows. ) |
(12.7) Theorem. If H € £bII then (H - X); is the same under P and Q.
Proof The value is clearly the same for simple integrands. Let M and N be
the local martingale parts and A and B be the locally bounded variation parts
of X under P and @ respectively. Note that (12.6) implies (M); = (N):. Let
Tn - inf{t H (M)t, |A|t or |B|t 2 TL}

If H € £bII and H; = 0 for ¢ > T;, then by (4.5) we can find simple H™ so that
1™ = Hllg, 1™ = Hlly ~0 and [ [HP ~ Hd(A]+1B]; -0
These conditions allow us to pass to the limit in the equality
(H™ - (M + A)) = (H™ - (N + B)):
(the left-hand side being computed under P and the right under @) to conclude

that for any H € £bII the integrals under P and @ agree up to time T5. Since
n is arbitrary and T}, — oo the proof is complete. 0O






3 Brownian Motion, II

In this chapter we will use Ité’s formula to deepen our understanding of Brow-
nian motion or, more generally, continuous local martingales.

3.1. Recurrence and Transience

If B, is a d-dimensional Brownian motion and B is the ith component then Bi
is a martingale with (B); = ¢. If i # j Exercise 2.2 in Chapter 1 tells us that
B'B’ isa martmgale, so (3.11) in Chapter 2 implies (B?, B/); = 0. Using this
1nformat10n in Itd’s formula we see that if f : R4 — R is C? then

£(B)= 1B = ¥ [ Dis(ByiBi+ 3 Y [ Dar(Bds

Wiiting Vf = (D1f, ..., Daf) for the gradient of f, and Af = Y5, Dy f for
the Laplacian of f, we can write the last equation more neatly as

(L.1) f(B,)——f(BO):'/Ot Vf(B,)-dB,Jr%/Ot AF(B,)ds

Here, the dot in the first term stands for the inner product of two vectors and
the precise meaning of that is given in the previous equation.

Functions with Af = 0 are called harmonic. (1.1) shows that if we com-
pose a harmonic function with Brownian motion the result is a local martingale.
The next result (and judicious choices of harmonic functions) is the key to de-
riving properties of Brownian motion from It6’s formula.

(1.2) Theorem. Let G be a bounded open set and 7 = inf{t : B: ¢ G}. If
feC?and Af =0in G, and f is continuous on the closure of G, G, then for
z € G we have f(z) = =cf(B ).

Proof Our first step is to prove that P;(r < co) = 1. Let K = sup{|z —y] :
£,y € G} be the diameter of G. If z € G and |B; — z| > K then B; ¢ G and
7 < 1. Thus

Pt <1)> P(|Bi—2z|>K)=Py(|B1|>K)=€ex >0
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This shows sup, Pz(r > k) < (1 — ex)* holds when k¥ = 1. To prove the last
result by induction on k we observe that if p;(z,y) is the transition probability
for Brownian motion, the Markov property implies

Pr2k) < /G P, 9)Py(r > k—1)dy
<(1-ex)" 'P(B1€G) < (1—ex)*

where the last two inequalities follow from the induction assumption and the
fact that |By — z| > K implies B1 ¢ G. The last result implies that Py(r <
oo} =1 for all £ € G and moreover that

(1.3) supEzrP <oo forall0<p< oo

To get the last conclusion recall that (see e.g., (5.7) in Chapter 1 of Durrett
(1995))

o
E 7P = / ptP~ Py (T > t)dt
0

When Af = 01in G, (1.1) implies that f(B;) is a local martingale on [0, 7).
We have assumed that f is continuous on G and G is bounded, so f is bounded
and if we apply the time change v defined in Section 2.2, X; = f(B,)) is a
bounded martingale (with respect to G; = ¥,(1)). Being a bounded martingale
X: converges almost surely to a limit X, which has X; = E;(Xw|G:) and
hence E;X: = E:Xo. Since 7 < co and f is continuous on G, Xo = f(B;).
Taking ¢ = 0 it follows that f(z) = E;Xp = ExX o = E-f(Br). 0

In the rest of this section we will use (1.2) to prove some results concerning

the range of Brownian motion {B; : ¢ > 0}. We start with the one-dimensional
case.

(1.4) Theorem. Let a < z < b and T = inf{t: B; ¢ (a,b)}.

b—=z r—a
Px(BT:.a)zb_ Px(BT:b)zb——a

Proof f(z)=(b—z)/(b—a)has f’ =0 in (a,b), is continuous on [a,b], and
has f(a) =1, f(b) = 0, so (1.2) implies f(z) = E.f(Br) = Pz(Br = a). O

Exercise 1.1 Deduce the last result by noting that B; is a martingale and
using the optional stopping theorem at time T

Let T; = inf{t : B; = z}. From (1.4), it follows immediately that
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(1.5) Theorem. For all z and y, Pz(T, < o0) = 1.

Proof Since P (T, < o) = Pr_y(Tp < o), it suffices to prove the result
when y = 0. A little reflection (pun intended) shows we can also suppose
z > 0. Now using (1.4) Pr(To < Tmc) = (M — 1)/M, and the right-hand side
approaches 1 as M — oo. 0O

- It is trivial to improve (1.5) to conclude that
(1.6) Theorem. For any s < oo, Pz(B; = y for some ¢ > s) = 1.
Proof By the Markov property,
Py(B: =y for some t > 5) = E(Pp(s)(Ty < 00)) =1 O
The conclusion of (1.6) implies (argue by contradiction) that for any y
with probability 1 there is a sequence of times ¢, T oo (which will depend on
the outcome w) so that B; = y, a conclusion we will hereafter abbreviate as
“B: = y infinitely often” or “B; = y i.0.” In the terminology of the theory

of Markov processes, what we have shown is that one-dimensional Brownian
motion is recurrent.

Exercise 1.2 Use (1.6) to conclude

limsup B; = co liminf B; = —c0
1—+00 t—00

In order to study Brownian motion in d > 2, we need to find some ap-
propriate harmonic functions. In view of the spherical symmetry of Brownian
motion, an obvious way to do this is to let p(z) = f(|z|?) and try to pick
f:R — R so that Ap = 0. We use |z|? = z? + - -- z2 rather than |z| since it
is easier to differentiate:

Dif(|z*) = £'(|z]?)22:
Diif(|2?) = £"(|2|* 4? + 2f'(|z]*)

Therefore, for Ap = 0 we need
0= {"(lof*)w? + 27 (121}

= 4|z f"(|z|?) + 2d f'(|=]?)
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Letting y = |z|? we can write the above as 4yf”(y) + 2df'(y) = 0 or, if y > 0,
) = 22 )
2y

Taking f'(y) = Cy~%/? guarantees Ap = 0 for z # 0, so by choosing C appro-

priately we can let
_ | log|z| d=2
o(z) = { |:c|2"d d>3

We are now ready to use (1.2) in d > 2. Let S, = inf{t : |B:| = r} and
r < R. Since p has Ap = 0in G = {z : r < |z| < R}, and is continuous on G,
(1.2) implies
¢(z) = Ezp(Br) = p(r)Pz(S: < Sr)+ ¢(R)(1 — Pz(S- < Sr))

where ¢(r) is short for the value of ¢(z) on {z : |z| = r}. Solving now gives

_ p(R) — o(z)
1.7) Po(Sr < Sp)=C o

In d = 2, the last formula says

log R — log|z|

(1.8) Po(Sr < Sm) = T

If we fix 7 and let R — oo in (1.8), the right-hand side goes to 1. So
P;(S, <o0)=1 forany z and any r >0
and repeating the proof of (1.6) shows that

(1.9) Theorem. Two-dimensional Brownian motion is recurrent in the sense
that if G is any open set, then Py(B; € G 1.0.) = 1.

If we fix R, let » — 0 in (1.8), and let Sp = inf{t > 0 : B; = 0}, then for
z#£0
P (Se < Sr) < lim P (S, <Sr)=0
r—

Since this holds for all R and since the continuity of Brownian paths implies
Sr 1 00 as R | oo, we have P;(Sp < 00) = 0 for all £ # 0. To extend the last
result to z = 0 we note that the Markov property implies

Py(B; = 0 for some ¢t > €) = Eo[Pp (To < o)) =0
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for all € > 0, so Po(B; = 0 for some ¢ > 0) = 0, and thanks to our definition of
So =inf{t > 0: B; = 0}, we have

(1.10) P.(So<o0)=0 forallz

Thus, in d > 2 Brownian motion will not hit 0 at a positive time even if it starts
there.

Exercise 1.3 Use the continuity of the Brownian path and Pr(Sp = c0) =1
to conclude that if  # 0 then Py(S, Tooasr | 0) = 1.

For d > 3, formula (1.7) says

R2-d _ |p|2-4d
(1.11) Po(S; <Sr)= s —aa _lrzl»—d

There is no point in fixing R and letting » — 0, here. The fact that two
dimensional Brownian motion does not hit points implies that three dimensional
Brownian motion does not hit points and indeed will not hit the line {z : z; =
zo = 0}. If we fix r and let R — oo in (1.11) we get

(1.12) P(S, <o) = (r/|z[)¢"2 <1 if|z|>r

From the last result it follows easily that for d > 3, Brownian motion is tran-
sient, i.e. it does not return infinitely often to any bounded set.

(1.13) Theorem. As t — oo, |By| — 0 a.s.

Proof Let A, = {|B:| > n!/2 for all £ > S,,} and note that S, < co by (1.3).
The strong Markov property implies

P2(A5) = Ex(Pp(s,)(Siz < 00)) = (n*/?/n) % = 0
as n — co. Now limsup Ap, = NF_, USLy An has
P(limsup Ap) > limsup P(A,) =1

So infinitely often the Brownian path never returns to {z : |z| < n'/?} after
time S, and this implies the desired result. O

Dvoretsky and Erdds (1951) have proved the following result about how
fast Brownian motion goes to co in d > 3.
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(1.14) Theorem. Suppose g(t) is positive and decreasing. Then
Py(|B:| < g(t)\/t_ io.astToo)=1or0

according as [ g(t)¥~2/t dt = 0o or < c0.

Here the absence of the lower limit implies that we are only concerned with the
behavior of the integral “near co.” A little calculus shows that

lo o]
/ t7llog™*tdt =0 or < o0

according as & < 1 or @ > 1, so By goes to oo faster than v//(logt)*/4-2 for
any a > 1. Note that in view of the Brownian scaling relationship B; =4 /2B,
we could not sensibly expect escape at a faster rate than v/z. The last result
shows that the escape rate is not much slower.

Review. At this point, we have derived the basic facts about the recur-
rence and transience of Brownian motion. What we have found is that

(i) Pz(|B:| < 1 for some t > 0) = 1 if and only if d < 2
(ii)y Py(B; = 0 forsomet >0)=0ind > 2.
The reader should observe that these facts can be traced to properties of what

we have called ¢, the (unique up to linear transformations) spherically sym-
metric function that has Ap(z) = 0 for all £ # 0, that is :

|z| d=1

p(z) = { log|z| d=2

|z|2¢ d>3

and the features relevant for (i) and (ii) above are
(i) ¢(z) — o0 as |z| — oo if and only if d < 2

(ii) |p(z)] = 0 as £ — 0 in d > 2.

3.2. Occupation Times

Let D = B(0,7) = {y : |yl < r} the ball of radius r centered at 0. In Section
3.1, we learned that B; will return to D i.o.in d < 2 but not in d > 3. In this
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section we will investigate the occupation time f0°° 1p(B:) dt and show that for
any z

2.1y P (f°1p(B)di=oc0)=1 ind<2
(22) E: [ 1p(By)dt<oco ind>3
Proof of (2.1) Let Tp =0 and G = B(0,2r). For k > 1, let

Sk = inf{t > Tk—l . Bt c D}
Ty = inf{t > St : B; € G}

Writing r for 71 and using the strong Markov property, we get for k > 1

Tx
P (/ ID(Bt) dt > s

Sk

-

.'Fsk> = PB(Sk) (/ ID(Bt) dt > s) = H(s)
0

From this and (4.5) in Chapter 1 it follows that

T
/ 1p(B:)dt areiid.
Sk

Since these random variables have positive mean it follows from the strong law
of large numbers that

oo n T
1p(B;)dt > lim / 1p(B;)dt =0 as.
| 108 dm > [ o(8)

proving the desired result. O

Proof of (2.2) If f is a nonnegative function, then Fubini’s theorem implies

B [ fya= [ Ei@yi= [ [aEorwae
= [ [ s@ndrway

where pi(z,y) = (2at)~4/2e~17=9I*/2t is the transition density for Brownian
motion. As t — oo, pi(z,y) ~ (2m)~¥?, so if d < 2 then [ pi(z,y)dt = oo.
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When d > 3, changing variables ¢ = |z — y|%/2s gives
” )dt = T L -ly-slra gy
A A e

O s A\ |z — y|?

= B — T3 e ) d

23) L(w|x~y|2) : ( 257 )
' et G
= —orajz / s(8/2)=2,=3 44
0
_F(Qg"l) 2~d
- 27Td/2 |2-‘y|

where T'(a) = [;° s*1e~*ds is the usual gamma function. If we define

G(z,y) = /Ooo iz, y) di

then in d > 3, G(z,y) < oo for = # y, and

(24) E,/Ooo f(By)dt = /G(m,y)f(y) dy

To complete the proof of (2.2) now we observe that taking f = 1p with D =
B(0,r) and changing to polar coordinates

-
/ G(0,y)dy = / s971 Cys?dds = -clrz < 00
D 0 2

To extend the last conclusion to z # 0 observe that applying the strong Markov
property at the exit time 7 from B(0, |z|) for a Brownian motion starting at 0
and using the rotational symmetry we have

o0

E'x/ ID(B,)dszE'g/ ].D(B,)dSSEQ/ 1p(Bs)ds 0
0 0

T

We call G(z,y) the potential kernel, because G(-,y) is the electrostatic
potential of a unit charge at y. See Chapter 3 of Port and Stone (1978) for more
on this. In d < 2, f0°° pi(z,y) dt = oo so we have to take another approach to
define a useful G:

G(z,y) = /0°° (Pe(z,y) —ar) dt
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where the a: are constants we will choose to make the integral converge (at
least when z # y). To see why this modified definition might be useful note
that if [ f(y) dy = 0 then (assuming we can use Fubini’s theorem)

oo
[cawiwa= [ BsfBa
0
When d = 1, we let a; = p;(0,0). With this choice,
G(;c y) = _....].'.._ /m(e“(y—")z/zt — l)t—1/2 dt
’ V2r Jo

and the integral converges, since the integrand is < 0 and ~ —(y— z)? /28312 as
t — co. Changing variables ¢ = (y — z)%/2u gives

1 0 —u 2u 1/2 —(y—1z)?
G(:c,y) - /""27r /oo(e - 1) ((y — 2)2) 212 du
ly—=| [ (/" - ) —3/2
= e et e ’ds|u du
(2.5) 2\/—7; 0 0
|y— :Cl i dse=* e u—3/2 d
= —-——-'\/-;-/0 S€e /s ) u

- )
=—|_L\/-;r—fl/ dse™*s™ Y2 = —|y—z|
0

since

(o} o
/ dse™*s™2 = / dre"12\/2 = -;—\/5 N2 = /7
0 0

The computation is almost the same for d = 2. The only thing that changes
is the choice of a;. If we try a; = p(0,0) again, then for z # y the integrand
~ —t~! as ¢ — 0 and the integral diverges, so we let a; = p(0,e1) where
e; = (1,0). With this choice of a;, we get

1 = —lz—y|*/2t —1/2ty ;—1
G(m,y):-z-; A (e —e Yt~ dt

0 1/2t
= —1—/ / e~ *ds |t~ tdt
2rdo \Jjo-yir/2

1 o0 1/2s
= ——/ ds e_’/ tde
27 Jo lz—yl?/2s

- ( I dse™) (~log(le 1) = - log(lz— )

(2.6)
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To sum up, the potential kernels are given by

(T(d/2—=1)/27%2) - |z —y|>~¢ d>3
2.7) G(z,v) = { (~1/7) - log(|z — 3l) d=2
—1-|z—y d=1
The reader should note that in each case G(z,y) = Cp(|z — y|) where ¢ is
the harmonic function we used in Section 3.1. This is, of course, no accident.
z — G(z,0) is obviously spherically symmetric and, as we will see, satisfies
AG(z,0) = 0 for z # 0, so the results above imply G(z,0) = A + Byp(|z|).
The formulas above correspond to A = 0, which is nice and simple. But
what about the weird looking B’s? What is special about them? The answer is
simple: They are chosen to make LAG(z,0) = —&; (a point mass at 0) in the
distributional sense. It is easy to see that this happens in d = 1. In that case
¢(z) = |z| then . 0
’ - z>
¢'(z) = 1 z<0
so if B = —1 then By"(z) = —26;. More sophisticated readers can check that
this is also true in d > 2. (See F. John (1982), pages 96-97.)
To explain why we want to define the potential kernels, we return to Brow-
nian motion in the half space, first considered in Section 1.4. Let H = {y : y4 >
0}, 7=inf{t: B: ¢ H}, and let

= (%1,---1Yd-1,—Ya)
be the reflection of y through the plane {y € R? : y; = 0}

(2.8) Theorem. If z € H, f > 0 has compact support, and {z : f(z) >0} C H
then

B, ( [ 1@oi) = [censwi- [censwi

Proof Using Fubini’s theorem which is justified since f > 0, then using (4.9)
from Chapter 1 and the fact that {z : f(z) > 0} C H we have

E. /0 F(By)dt = /Om EL(f(Bo)ir > t) dt
= [ [ o) - a0
= [ [t - aorwaver
- [ ] @ -
= [ d- [Ganrwa



Section 3.3 Exit Times 105

The compact support of f and the formulas for G imply that [ |G(z,y)f (y)|dy
and [|G(z,%)f(y)|dy are finite, so the last two equalities are valid.

The proof given above simplifies considerably in the case d > 3; however,
part of the point of the proof above is that, with the definition we have chosen
for G in the recurrent case, the formulas and proofs can be the same for all d.

Let Gu(z,y) = G(z,y) — G(z,7). We think of Gy(z,y) as the “expected
occupation time (density) at y for a Brownian motion starting at « and killed
when it leaves H.” The rationale for this interpretation is that (for suitable f)

B ([ rBoat) = [ Gaten)rway

With this interpretation for Gy introduced, we invite the reader to pause
for a minute and imagine what y — Gpg(z,y) looks like in one dimension. If
you don’t already know the answer, you will probably not guess the behavior
as y — 00. So much for small talk. The computation is easier than guessing
the answer:

G(=z,y) = —|z -yl
so Gu(z,y) = —|z — y| + |z + y|. Separating things into cases, we see that

_f—(z-y)+(z+y)=2y whenO<y<=z
GH(:v,y)—-{__(y__m)_;_(m_;_y):Z:c whenz < y

SO We can write
(2.9) Gg(z,y)=2(zAy) forallz,y>0

It is somewhat surprising that y — Gg(z,y) is constant = 2z for y > z, that
is, all points y > = have the same expected occupation time!

3.3. Exit Times

In this section we investigate the moments of the exit times 7 = inf{¢ : B; ¢ G}
for various open sets. We begin with G = {z : |z| < r} in which case 7 = S, in
the notation of Section 3.1.

(3.1) Theorem. If |z| < r then E,S, = (r? — |z|*)/d

Proof The key is the observation that

| B|? — dt = i {(B;)z -1}
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being the sum of d martingales is a martingale. Using the optional stopping
theorem at the bounded stopping time S, At we have

|z|> = Bz {|Bs,at|* — (S- A t)d}

(1.3) tells us that E;S, < oo, and we have |Bs ;| < 72, so letting ¢t — oo
and using the dominated convergence theorem gives |z|? = E; (r? — S,.d) which
implies the desired result. O

Exercise 3.1. Let a,b> 0 and T = inf{¢ : B; ¢ (—a,b)}. Show ExT = ab.

To get more formulas like (3.1) we need more martingales. Applying Itd’s
formula, (10.2) in Chapter 2, with X! = X3, a continuous local martingale, and
X2 = (X): we obtain

(X, (X)) — f(Xo,0) = /0' D1 f(Xs,(X)s)d X,
(3.2) +/0 Do f(Xs, (X)s)d(X)s
+ %/0‘ D f(X,,{X)s)d(X)s

From (3.2) we see that if (3 D1, + Dp)f = 0, then f(Xy, (X)) is a local mar-
tingale. Examples of such functions are

f(z,y) =z, 22—y, 23— 3zy, z* — 622y +3y%. ..
or to expose the pattern
fn(m:y) = Z cn,mmn—zmym
0<m<[n/2]

where [n/2] denotes the largest integer < n/2, cp 0 = 1 and for 0 < m < [n/2]
we pick

1
§cn,m(n —2m)(n—2m —1) = —(m + 1)cn,m41

so that Dz /2 of the mth term is cancelled by D, of the (m + 1)th. (Dzz of
the [n/2]th term is 0.)

The first two of our functions give us nothing new (X; and X? — (X), are
local martingales), but after that we get some new local martingales:

X? = 8Xe(X)e, XE—6XA(X):+3(X)2,



Section 3.3 Exit Times 107

These local martingales are useful for computing expectations for one dimen-
sional Brownian motion.

(3.3) Theorem. Let 7, = inf{¢ : | B;| > a}. Then
(i) Eota = a?, (ii) Eo72 = 5a%/3.

The dependence of the moments on a is easy to explain: the Brownian scaling
relationship B.; =4 ¢'/2B, implies that 7,/a% =4 7.

Proof (i) follows from (3.1), so we will only prove (ii). To do this let X; =
B} — 6Bt + 3t? and T,, < n be stopping times so that T, T co and X;ar, is a
martingale. Since 7;, < n the optional stopping theorem implies

0= EO{B?,‘AT,‘ = GBf,,ATn (1a ATn) + 3(1a ATn)*}
Now |Br, at,| < a, so using (1.3) and the dominated convergence theorem we
can let n — oo to conclude 0 = a*—6a®Ey1,+3Ep7?. Using (i) and rearranging
0

gives (ii).

Exercise 3.2 Find a, b, cso that B —aB#t+bBt?—ct? is a (local) martingale
and use this to compute Epr2.

Our next result is a special case of the Burkholder Davis Gundy inequal-
ities, (5.1), but is needed to prove (4.4) which is a key step in our proof of
(5.1).

(3.4) Theorem. If X; is a continuous local martingale with Xy = 0 then

E (sup X,‘i) < 38LE(X)Z
1

Proof First suppose that |X:| and (X); are < M for all ¢. In this case (2.5)
in Chapter 2 implies X} — 6 X2(X); + 3(X)?2 is a martingale, so its expectation
is 0. Rearranging and using the Cauchy-Schwarz inequality

EX}+3E(X)? = 6E(X}X):) < 6(EXH2(E(X)D)/?

Using the L* maximal inequality ((4.3) in Chapter 4 of Durrett (1995)) and the
fact that (4/3)* < 3.1605 < 19/6 we have

1/2
Esup X2 < (4/3)EX{ <19 (E’sup Xf) (B(X)})Y/?
s<t s<t
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Since | X,| < M for all s we can divide each side by E(sup, <, X2)!/2 then square
to get B

E (sup Xf) < 38L(E(X)2)Y/?
s<t

The last inequality holds for a general martingale if we replace ¢t by T}, = inf{¢ :
t,|X:|, or (X): > n}. Using that conclusion, letting n — co and using the
monotone convergence theorem, we have the desired result. |

If we notice that f(z,y) = exp(z — y/2) satisfies ($ D11 + D3)f = 0, then
we get another useful result.

(3.5) The Exponential Local Martingale. If X is a continuous local mar-
tingale, then £(X); = exp(X: — (X)) is 2 local martingale.

If we let Y; = exp(X; — $(X):), then (3.2) says that
1
(3.6) Y%-Y%= [ Yax,
0

or, in stochastic differential notation, that dY; = Y;dX,. This property gives
Y: the right to be called the martingale exponential of Y;. As in the case of the
ordinary differential equation

i) = fta(t)  f(O)=1

which for a given continuous function a(t) has unique solution f(t) = exp(A:),
where A; = fot a(s) ds. It is possible to prove (under suitable assumptions) that
Z is the only solution of (3.6). See Doléans-Dade (1970) for details.

The exponential local martingale will play an important role in Section 5.3.
Then (and now) it will be useful to know when the exponential local martingale
is a martingale. The next result is not very sophisticated (see (1.14) and (1.15)
in Chapter VIII of Revuz and Yor (1991) for better results) but is enough for
our purposes.

(3.7) Theorem. Suppose X; is a continuous local martingale with (X); < M1
and Xo = 0. Then Y; = exp(X; — %(X)t) is a martingale.

Proof Let Z; = exp(2X; — %(ZX )1), which is a local martingale by (3.5).
Now,

Y32 = exp(2X: — (X)1) = Zy exp({X):)
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So if Ty, is a sequence of times that reduces Z;, the L? maximal inequality
applied to Y;ar, gives

E (sup Yfm) <4EY]q, < 4eM B(Ziat,) = 4™
<t

3
Letting n | co and using the monotone convergence theorem we have
2
4 > E (sup Yf') > (E sup IY,I)
s<t s<t

by Jensen’s inequality. Using (2.5) in Chapter 2 now, we see that ¥; is a
martingale. 0O

Remark. It follows from the last proof that if X, is a continuous local mar-
tingale with X = 0 and (X); < M for all ¢ then ¥; = exp(X; — %(X),) is a
martingale in M2,

Letting # € R and setting X; = 6B, in (3.6), where B, is a one dimensional
Brownian motion, gives us a family of martingales exp(§B; — 6%¢/2). These
martingales are useful for computing the distribution of hitting times associated
with Brownian motion.

(3.8) Theorem. Let T, = inf{t : B; =a}. Thenfora>0and A >0

Epexp(—AT,) = e_“m

Remark. If you are good at inverting Laplace transforms, you can use (3.8)
to prove (4.1) in Chapter 1:

t
Py(T, L&) = / (27rs3)1/2ae_“2/2’ ds
0

Proof Py(T, < 00) = 1 by (1.5). Let X; = exp(6B; — 6%t/2) and S, < n be
stopping times so that S, T oo and X;ag, is a martingale. Since S, < =, the
optional stopping theorem implies

1 = Eqexp(0Br, as, — 0% (Ta A Sn)/2)

If & > 0 the right-hand side is < exp(fa) so letting n — oo and using the
bounded convergence theorem we have 1 = Egexp(fa — 627,/2). Taking § =
v/2) now gives the desired result. |
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(3.9) Theorem. Let 7, = inf{¢ : |B;| > a}. Then fora >0 and A > 0,
Eyexp(—At) = 2e_“‘/ﬁ/(1 + e_z“‘/ﬁ)
Proof Let 1,()\) = Ey exp(—AT,). Applying the strong Markov property at
time 7, (and dropping the subscript a to make the formula easier to typeset)
gives
Ey exp(—AT,) = Eg(exp(—At); B, = a)
+ Eo(exp(—A7)¥2,(A); B = —a)

Symmetry dictates that (7, B;) =4 (7, —B;). Since B, € {—a, a} it follows that
7 and B, are independent, and we have

1
Pa(A) = 5(1 + 124(A)) Eg exp(—AT)
Using the expression for ¥,()) given in (3.8) now gives the desired result. O

Another consequence of (3.8) is a bit of calculus that will come in handy
in Section 7.2.

(3.10) Theorem. If § > 0 then

—2% /2t -6t dt = 1 _ \/55
\/27rt.e e mexp( |z|v26)

Proof Changing variables ¢ = 1/2s, dt = —ds/2s? the integral above

s 2 ds
e™? se—0/2s

- / V27 252
\/— -0/2s, —2%s d
\/—/ 27rs3 fe :

Using (3.8) now with @ = v/§ and A = 22 and consulting the remark after (3.8)
for the density function of T, we see that the last expression is equal to the
right-hand side of (3.10). O

The exponential martingale can also be used to study a one dimensional
Brownian motion B; plus drift. Let Z; = 0B + ut where o > 0 and p is real.
X: = Zi — pt is a martingale with (X); = 0% so (3.7) implies that

exp(8(Z; — ut) — 6%%/2)
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is a martingale. If # = —2u/0? then —0u — 6202 /2 = 0 and exp(—(2u/0%)Z:)
is a local martingale. Repeating the proof of (3.8) one gets

Exercise 3.3. Let T, = inf{t : Z; = —a}. If a, p > 0 then

Po(T- < 00) = exp(~2aps/?)

3.4. Change of Time, Lévy’s Theorem
In this section we will prove Lévy’s characterization of Brownian motion (4.1)
and use it to show that every continuous local martingale is a time change of

Brownian motion:

(4.1) Theorem. If X; is a continuous local martingale with Xy, = 0 and
(X): =t, then X; is a one dimensional Brownian motion.

Proof By (4.5) in Chapter 1 it suffices to show

(4.2) Lemma. For any s and ¢, X,4: — X, is independent of F, and has a
normal distribution with mean 0 and variance i.

Proof of (4.2) Applying the complex version of Itd’s formula, (7.9) in Chap-
ter 2, to X! = X 4, — X, and f(z) = €%, we get

. 1 t . 1 02 t . 1
et X 1= i0/ e Xv dX! — ?,/ e Xv du
0 0

Let 7! = F,4r and let A € F; = F;. The first term on the right, which we
will call ;, is a local martingale with respect to ;. To get rid of that term let
Tw T oo be a sequence of stopping times that reduces Yz, replace t by ¢ A T,
and integrate over A. The definition of conditional expectation implies

E(Yirr,; A) = E(E (Yiat,| )5 A) = E(Yo;4) =0

since Yy = 0. So we have

. 2 tAT, s
E(e'oxtATn;A) — P(A) =0 - %—E (/ e'ox“ du;A)
0
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Since |e®*| = 1, letting n — oo and using the bounded convergence theorem
gives

2 1
E(e%i; A) — P(A) = —%E (/ XL du;A)
0

- _g /E (£%%;4) du

by Fubini’s theorem. (The integrand is bounded and the two measures are
finite.) Writing j(t) = E(e'?%+; A), the last equality says

-y =-% [ it du

Since we know that |j(s)| < 1, it follows that |j(t) — j(u)| < [¢ — u|6%/2,
so j is continuous and we can differentiate the last equation to conclude j is
differentiable with 52

7)==

Together with j(0) = P(A), this shows that j(t) = P(A)e=?"*/2, or

E(eiBX:;A)z / e_921/2dP
A

Since this holds for all A € Fj it follows that
(4.3) E(eXi|Fy) = e~0"4/2

or in words, the conditional characteristic function of X7 is that of the normal
distribution with mean 0 and variance .

To get from this to (4.2) we first take expected values of both sides to
.conclude that X/ has a normal distribution with mean 0 and variance ¢. The
fact that the conditional characteristic function is a constant suggests that X;
is independent of F}. To turn this intuition into a proof let g be a C! function
with compact support, and let

e(0) = /eioxg(m) dz

be its Fourier transform. We have assumed more than enough to conclude that
¢ is integrable and hence

o(z) = -2-1; / % o(—8) dz
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Multiplying each side of (4.3) by ¢(—6) and integrating we see that E(g(X{)|F3)
is a constant and hence

E(g(X)|F0) = Eg(X3)

A monotone class argument now shows that the last conclusion is true for
any bounded measurable g. Taking ¢ = 1p and integrating the last equality
over A € F we have

P(A)P(X! € B) = / E(15(X!)|Ft)dP = P(X! € B)
A

by the definition of conditional expectation, and we have proved the desired
independence. 0O

Exercise 4.1. Suppose X}, 1 < i < d are continuous local martingales with
Xop=0and

i i t ifi=j
XN XN, =
(X5 X7 0 otherwise

then X, = (X1,...,X%) is a d-dimensional Brownian motion.

An immediate consequence of (4.1) is:

(4.4) Theorem. Every continuous local martingale with Xy = 0 and having
(X)oo = 00 is a time change of Brownian motion. To be precise if we let v(u) =
inf{t : (X): > u} then B, = Koy is a Brownian motion and X; = Bx},-

Proof Since v((X):) =t the second equality is an immediate consequence of
the first. To prove that we note Exercise 3.8 of Chapter 2 implies that « — B,
is continuous, so it suffices to show that B, and B2 — u are local martingales.

(4.5) Lemma. By, F,), © > 0 is a local martingale.

Proof of (4.5) Let T, = inf{t : |X:| > n}. The optional stopping theorem
implies that if u < v then )

E(Xy)aTu | Frw) = Xy(u)aTs

where we have used Exercise 2.1 in Chapter 2 to replace F, (a7, by Fy(u).- To
let n — oo we observe that the L2 maximal inequality, the fact that X,';’(u) AT, —

(X)y(v)aT, is @ martingale, and the definition of y(v) imply
Esup X2, )ar, < 4sup EXZ a7,

= 4sup E(X) (a1, < 4V
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The last result and the dominated convergence theorem imply that as n —
00, XytyaT, — Xty in L? for t = u,v. Since conditional expectation is a
contraction in L? it follows that E(X,(u)aT, |[Fy)) — E(Xy(w)|Fy)) in L?
and the proof is complete. O

To complete the proof of (4.4) now it remains to show

(4.6) Lemma. B -y, F.

Fup u>0isa local martingale.

Proof of (4.6) As in the proof of (4.5), the optional stopping theorem implies
that if u < v then

E(X’f(”)ATn - (X)’Y(”)ATn |f‘7(“)) = X‘f(u)ATn - (X)‘y(u)ATn

To let n — oo we observe that using (a + 5)2 < 242 + 2b%, (3.4), and the
definition of y(v) then

2
Esup (Xff(u)/\:rn —(X )v(u)ATn) <2E sup Xywyara +2E(X)2
S CE(X)} 0y < Cv*

The proof can now be completed as in (4.5) by using the dominated convergence
theorem, and the fact that conditional expectation is a contraction in L2. 0O

Our next goal is to extend (4.4) to X; with P({X)e < 00) > 0. In this
case X, (4) is a Brownian motion run for an amount of time (X).. The first
step in making this precise is to prove

(4.7) Lemma. limy;o, X; exists almost surely on {(X)o < o0}.
Proof Let T, = inf{t: (X): > n}. (3.7) in Chapter 2 implies that
(XT")t = (X)U\Tn <n

Using this with Exercise 4.3 in Chapter 2 we get X;o7, € M 2 50 limy—. oo XitaT,
exists almost surely and in L2. The last statement shows lim;_, . X; exists
almost surely on {Ty = 00} D {(X)w < n}. Letting n — oo now gives (4.7). O

To prove the promised extension of (4.4) now, let y(u) = inf{¢ : (X): > u}
when u < (X) oo, let Xoo = limy—oo Xz on {(X)oo < 00}, let B; be a Brownian
motion which is independent of {X;,¢ > 0}, and let

_ [ X5 u < {X)eo
Yo = {Xoo +B(u— (X)) u2(X)w
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(4.8) Theorem. Y is a Brownian motion.

Proof By (4.1) it suffices to show that ¥;, and Y2 — u are local martingales
with respect to the filtration ¢(Y; : £ < u) . This holds on [0, (X )] for reasons
indicated in the proof of (4.4). It holds on [(X)e,00) because B is a Brownian
motion independent of X. O

"The reason for our interest in (4.8) is that it leads to a converse of (4.7).
(4.9) Theorem. The following sets are equal almost surely:

C = {limt—.o X¢ exists } B = {sup, | X:| < o0}
A={{X)o <0} By = {sup, X: < oo}

Proof Clearly, C C B C B,. In Section 3.1 weshowed that Brownian motion
has limsup,_,, Bt = co. This and (4.8) implies that A° C BS, or By C A.
Finally (4.7) shows that A C C. O

The result in (4.8) can be used to justify the assertion we made at the
beginning of Sections 2.6 that II3(X) is the largest possible class of integrands.
Suppose H € I and let T = sup{t : f(; H2d(X); < 0o}. (H-X): can be defined
for ¢ < T and has

- x).= [ B2400),
soon {(H - X)r = 00} D {T < 0o} we have

limsup(H - X) = o0 lminf(H - X); = -0
1T T

and there is no reasonable way to continue to define (H - X); fort > T.

Convergence is not the only property of local martingales that can be
studied using (4.9). Almost any almost-sure property concerning the Brownian
path can be translated into a corresponding result for local martingales. This
immediately gives us a number of theorems about the behavior of paths of local
martingales. We will state only:

(4.10) Law of the Iterated Logarithm. Let L(t) = +/2tloglogt fort > e.
Then on {{X)e = o0},

limsup X¢/L({X):) =1 as.
1—+00
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Proof This follows from (4.9) and the result for Brownian motion proved in
Section 7.9 of Durrett (1995). O

Finally we have a distributional result that can be derived by time change.

Exercise 4.2. Suppose h : [0,00) — R is measurable and locally bounded.
Use (4.4) to generalize Exercise 6.7 in Chapter 2 and conclude that

t t
X = / h,dB, is normal with mean 0 and variance / h%ds
0 0

3.5. Burkholder Davis Gundy Inequalities

Let X; be a local martingale with X¢ = 0 and let X = sup,;|X;|. This
section is devoted to a proof of the following inequalities. B

(5.1) Theorem. For any 0 < p < oo there are constants 0 < ¢, C < oo so that

cE(XWW/* < E(X}Y < CE(X)}?

Remark. This result should be contrasted with the L? maximal inequality for
martingales that only holds for 1 < p < o0

E(XI)P < (pp ) E|X, [P

Lévy’'s Theorem, (4.4), tells us that any continuous local martingale is a time
change of Brownian motion B;, so it suffices to let B} = sup, ¢, |B;s| and show
that B

’

(5.2) Theorem. For any 0 < p < oo there are constants 0 < ¢, C < co so that
for any stopping time 7

cET?? < E(B:)P < CEr?/?

Proof of (5.2) The key is the following pair of odd looking inequalities.

(5.3) Lemma. Let 8> 1and § > 0. Then for any A > 0

(a) P(Br > BA, M2 <62 < (ﬁ 1), s P(B: > 1))
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2

ﬁf_lP(‘rl/z > A)

(b) P(rY/2 > BA,B: < 6)) <

Remark. The inequalities above are called “good A” inequalities, although the
reason for the name is obscured by our formulation (which is from Burkholder
(1973)). The name “good X" comes from the fact that early versions of this
and similar inequalities (see Theorems 3.1 and 4.1 in Burkholder, Gundy, and
Silverstein (1971)) were formulated as P(f > A) < Cp g P(g > A) for all A that
satisfy P(g > A) < KP(g > A). Here 5, K > 1.

Proof It is enough to prove the result for bounded 7 for if the result holds
for 7 A n for all n, it also holds for 7. Let

Sy =inf{t: |B(t AT)| > A}
Se =inf{t: |B(t A1) > BA}
T =inf{t : (t AT)Y2 > 62}

Since B} > ) implies §) < Sy < 7 and 7'/2 < 6) implies T' = oo we have

P(B: > BA, 2 < 6))
S P(B(rAS:AT)— B(rAS1AT)| > (B-1)A)
<(B-1)"2A"2E{(B(r AS2 AT)— B(T A S AT))?*}

where the second inequality is due to Chebyshev. Now if R; < R, are bounded
stopping times then

E{B(R\)B(R2)} = E{B(R1)E(B(R2)|¥r,)} = E B(R\)?
So we have

E(B(Rz) — B(R)))? = EB(R;)* — 2EB(R1)B(Rz) + EB(Ry)?
= EB(Ry)? — EB(R,)? = E(R2 — R1)

since B — t is a martingale. Resuming our first computation we find

=(B—-1)"A2E{(TAS: AT) = (TASLAT)}
<(B-1)"22"46)X)2P(S1 < )
= (B-1)"26%P(B: > ))

since T'A T < (61)? proving (a).
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To prove (b) we interchange the roles of B(t A7) and (¢t A 7)*/2 in the first
set of definitions and let
S =inf{t: (r At)Y2> A}
Sy =inf{i: (r A1)Y2 > BA}
T =inf{t : |B(r At)| > 61}

Reversing the roles of B, and s'/2 in the proof, it is easy to check that

P(rY2> BA B <8A) < P((TAS: AT) = (tASLAT) > (B2 — 1)A?)
<SBP=1)""AE{(tAS2 AT) = (T A S AT}
and using the stopping time result mentioned in the proof of (a) it follows that
the above is
= (B2~ 1)"IAT2E{B(r AS; AT)® — B(t A 51 AT)?}
< (B = 1)7IAT2(63)°P(51 < 0)
<(B2-1)"16%P(r2% > »)

since |B(7 A T)| < (6A)? proving (b). O

It will take one more lemma to extract (5.2) from (5.3). First, we need
a definition. A function ¢ is said to be moderately increasing if ¢ is a
nondecreasing function with ¢(0) = 0 and if there is a constant K so that
©(22) < Kyp(A). It is easy to see that ¢(z) = zP is moderately increasing
(K = 2°) but ¢(z) = e** — 1 is not for any a > 0. To complete the proof of
(5.2) now it suffices to show (take # = 2 in (5.3) and note 1/3 < 1)

(5.4) Lemma. If X,Y > 0 satisfy P(X > 2),Y < 6)) < 62°P(X > A) for all
§ > 0 and ¢ is a moderately increasing function, then there is a constant C

that only depends on the growth rate K so that

Ep(X) < CEp(Y)

Proof It is enough to prove the result for bounded ¢ for if the result holds
for ¢ An for all n > 1, it also holds for ¢. Now ¢ is the distribution function
of a measure on [0, c0) that has

h oo
o(h) = / do(}) = / Loy dp(3)
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Replacing k by a nonnegative random variable Z, taking expectations and using
Fubini’s theorem gives

(5.5) Ep(Z) = /0 " P(Z > 2 dp(N)
From our assumption it follows that
P(X>2)\)=P(X >2)\,Y <6+ P(X >2)\,Y >68))
< 82P(X > A)+ P(Y > 6))
Integrating dy(A) and using (5.5) with Z = X/2,X,Y/é
Ep(X/2) < 6°Ep(X) + Ep(Y/8)

Pick 6 so that K62 < 1 and then pick N > 0 so that 2V > 6=, From the
growth condition and the monotonicity of ¢, it follows that

Ee(Y/8) < KN Eo(Y)

Combining this with the previous inequality and using the growth condition
again gives

Ep(X) < KEp(X/2) < KE&Ep(X) + KN Ep(Y)
Solving for E¢(X) now gives

N41

K
& s
Ep(X) < 1= I{§2E(’0(Y) O

381 Revisited. To compare with (3.4), suppose p = 4. In this case K = 2* =
16. Taking § = 1/8 to make 1— K62 = 3/4 and N = 3, we get a constant which
is

16%.4/3 = 87,381.333...

Of course we really don’t care about the value, just that positive finite constants
0< ¢, C < oo exist in (5.1).

3.6. Martingales Adapted to Brownian Filtrations

Let {B;,t > 0} be the filtration generated by a d-dimensional Brownian motion
B; with By = 0, defined on some probability space (2, F, P). In this section
we will show (i) all local martingales adapted to {B:,¢ > 0} are continuous and
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(ii) every random variable X € L?(,Be,P) can be written as a stochastic
integral.

(6.1) Theorem. All local martingales adapted to {B;,t > 0} are continuous.

Proof Let X; be a local martingale adapted to {8;,t > 0} and let T, < n
be a sequence of stopping times that reduces X. It suffices to show that for
each n, X(¢ ATy) is continuous, or in other words, it is enough to show that
the result holds for martingales of the form Y; = E(Y|B;) where Y € B,. We
build up to this level of generality in three steps.

Step 1. -Let Y = f(B,) where f is a bounded continuous function. If ¢ > n,
then ¥; = f(By,), so t — Y; is trivially continuous for ¢t > n. If t < n, the
Markov property implies ¥; = E(Y|B;) = h(n — ¢, B;) where

o 2) = [ Gmsagae T ) dy

It is easy to see that h(s,z) is a continuous function on (0,00) X R, so Y; is
continuous for ¢ < n. To check continuity at ¢ = n, observe that changing
variables y = z + z1/5, dy = s%/2 dz gives

hs,2) = / (zﬂl)d/g e f(z + 2/5) dz

so the dominated convergence theorem implies that as ¢t | n, h(n — t,B;) —

f(Bn)-

Step 2. Let Y = fi(Bi,)f2(Bi,) where {1 < t2 < n and f1, f2 are bounded and
continuous. If ¢ > {1, then

Y: = fi(B:,)E(f2(Bt,)|B:)

so the argument from step 1 implies that Y; is continuous on [¢;, c0). On the
other hand, if ¢ < t;, then Y; = E(Y;,|B;) and

Y, = fl(th)E(fz(Btz)lgh) = fl(Bh)g(B‘x)

where 1
= e emly=T R 2(t-1) "
9= [ G Fas) dy

is a bounded continuous function, so

Ye = E(fi(B.,)g(By,)|B) fort <t
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and it follows from step 1 that Y; is continuous on [0,%,]. Repeating the ar-
gument above and using induction, it follows that the result holds if Y =
fi(By,)- - fu(By,) where t; < i3 < --- < tx < nand fi,..., fr are bounded
continuous functions.

Step 3. Let Y € B, with E|Y| < co. It follows from a standard application of
the monotone class theorem that for any € > 0, there is a random variable X¢
of the form considered in step 2 that has E|X¢—Y| < e. Now

|E(X€|B:) — E(Y|B:)| < E(|X* - Y||B:)

and if we let Z; = E(]X¢ — Y||B), it follows from Doob’s inequality (see e.g.,
(4.2) in Chapter 4 of Durrett (1995)) that

AP (supz, > ,\) <EZ,=EX‘-Y|<e

t<n

Now X¢(t) = E(X¢|B:) is continuous, so letting ¢ — 0 we see that for a.e.
w, Yz(w) is 2 uniform limit of continuous functions, so ¥; is continuous. (]

Remark. I would like to thank Michael Sharpe for telling me about the proof
given above.

We now turn to our second goal. Let B; = (B},..., Bf) with By = 0 and
let {B%,¢ > 0} be the filtrations generated by the coordinates.

(6.2) Theorem. For any X € L*(Q, B, P) there are unique H’ € Iy(BY)
with

d oo .
X:EX+Z/ H!dB!
i=1 0

Proof We follow Section V.3 of Revuz and Yor (1991). The uniqueness is
immediate since the isometry property, Exercise 6.2 of Chapter 2, implies there
is only one way to write the zero random variable, i.e., using H(s,w) = 0.
To prove the existence of H,, the first step is to reduce to one dimension by
proving:

(6.3) Lemma. Let X € L?(Q, Bo, P) with EX = 0, and let X; = E(X|B.,).
Then X :Xl + +Xd

Proof Geometrically, see (1.4) in Chapter 4 of Durrett (1995), X; is the pro-
jection of X onto L? the subspace of mean zero random variables measurable
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with respect to Bi,. f Y € L} and Z € LJ? then Y and Z are independent so
EYZ = EY - EZ = 0. The last result shows that the spaces L? and LJ? are

orthogonal. Since L%, ..., L2 together span all the elements in L? with mean 0,
(6.7) follows. O

Proof in one dimension Let Z be the set of integrands which can be written
as 37 1 Ajl(s;_,,s;] Where the A; and s; are (nonrandom!) real numbers and
0=s0< 51 <...<5,. Foranyintegrand H € Z C II3(B), we can define the
stochastic integral ¥; = fot H, dB,, and use the isometry property, Exercise 6.2
of Chapter 2, to conclude ¥; € M2, Using (3.7) and the remark after its proof,
we can further define the martingale exponential of the integral, Z;, = £(Y),
and conclude that Z; € M2, Itd’s formula, see (3.6), implies that Z; — Zp =
fot Zs;dY,. Recalling ¥; = (H - B); and using the associative law, (9.6) in
Chapter 2, we have

t
Zy — Zp = / ZH,dB,
0

Yy =0and (Y)p =0, s0 Z = 1. Since Z; € M? wehave EZ; =1 = Z; and it
follows that

{o9]
Z=EZ + / ZyH,1j0,4(s) dB,
. 0

i.e., the desired representation holds for each of the random variables in the set
J={&H-B),:HeZ,t>0}.

To complete the proof of (6.2) now, it suffices to show
(6.4) Lemma. If W € L? has E(ZW) =0 for all Z € J then W =0.

(6.5) Lemma. Let G be the collection of L? random variables X that can be
written as EX + f0°° H,dB,. Then G is a closed subspace of L2,

Proof of (6.4) We will show that the measure W dP (i.e., the measure p
with du/dP = W) is the zero measure. To do this, it suffices to show that
W dP is the zero measure on the o-field o(B,,. .., B;,) for any finite sequence
0=1% <t <ty <...<tn. Let Aj, 1 < j < n be real numbers and z be a
complex number. The function

o(z)= E [W exp (z Y; X (By, — B,j,l))]

is easily seen to be analytic in C, i.e., ¢(z) is represented by an absolutely
convergent power series. By the assumed orthogonality, we have ¢(z) = 0 for
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all real z, so complex variable theory tells us that ¢ must vanish identically. In
particular ¢(Z) = 0, when i = /~1. The last equality implies that the image
of W dP under the map

w = (By, () = Bio(®@)s ., Beo (w) = Bro_, (w))

is the zero measure since its Fourier transform vanishes. This shows that W dP
vanishes on o(B;, — By,,...,B;, — By _,) = 0(By,,...,B;,) and the proof of
(6.4) is complete. O

Proof of (6.5) It is clear that G is a subspace. Let X,, € G with
o
(6.6) X, —EX, = / H}dB,
0

and suppose that X, — X in L2. Using an elementary fact about the variance,
then (6.6), and the isometry property of the stochastic integral, Exercise 6.2 in
Chapter 2, we have

E(Xpn = Xm)? = (EXn— EXm)? = E{(Xn = Xm) = (EXn — EXm)}?
=F /m(H;‘ — HM)?ds

Since X, — X in L? implies E(X, — X»)? — 0 and EX,, — EX, it follows
that ||[H™ — H"||p — 0.

The completeness of Il2(B), see the remark at the beginning of Step 3 in
Section 2.4, implies that there is a predictable H so that ||H" — H||p — 0.
Another use of the isometry property implies that H™ - B converges to H - B
in M2. Taking limits in (6.6) gives the representation for X. This completes
the proof of (6.5) and thus of (6.2). O






4 Partial Differential Equations

A. Parabolic Equations

In the first third of this chapter, we will show how Brownian motion can be
used to construct (classical) solutions of the following equations:

1
utz-z—Au
u —-l—Au-i—
t-—z g
u,:%Au-}—cu

in (0, 00) x R4 subject to the boundary condition: u is continuous at each point
of {0} x R4 and u(0,z) = f(z) for z € R9. Here,

62u1 62ud
Au=Za vt

and by a classical solution, we mean one that has enough derivatives for the
equation to make sense. That is, u € C™2, the functions that have one contin-
uous derivative with respect to ¢ and two with respect to each of the z;. The
continuity in u in the boundary condition is needed to establish a connection
between the equation which holds in (0,00) x R4 and u(0,z) = f(z) which
holds on {0} x RY. Note that the boundary condition cannot possibly hold
unless f : RY — R is continuous.

We will see that the solutions to these equations are (under suitable as-
sumptions) given by

E; f(B:)
B (78 + [ oi=s,B)ds)

E, (f(B,)eXp (/Ot ot - s,B,)ds))
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In words, the solutions may be described as follows:
(i) To solve the heat equation, run a Brownian motion and let u(¢, z) = E; f(B:).

(ii) To introduce a term g(z) add the integral of g along the path.

(iii) To introduce cu, multiply f(B:) by m; = exp(f(; c(t — s, By)ds) before
taking expected values. Here, we think of the Brownian particle as having mass
1 at time 0 and changing mass according to m, = ¢(t — s, B, )m,, and when we
take expected values, we take the particle’s mass into account. An alternative
interpretation when ¢ < 0 is that exp( f(; c(t — s, B;)ds) is the probability the
particle survives until time ¢, or —c(r, z) gives the killing rate when the particle
is at z at time r.

In the first three sections of this chapter, we will say more about why the
expressions we have written above solve the indicated equations. In order to
bring out the similarities and differences between these equations and their el-
liptic counterparts discussed in Sections 4.4 to 4.6, we have adopted a rather
robotic style. Formulas (m.2) through (m.6) and their proofs have been devel-
oped in parallel in the first six sections, and at the end of most sections we
discuss what happens when something becomes unbounded.

4.1. The Heat Equation
In this section, we will consider the following equation:

(1.1a) v € C*? and u; = $Au in (0, 00) x R4,

(1.1b) u is continuous at each point of {0} x R4 and (0, z) = f(z).

This equation derives its name, the heat equation, from the fact that if the
units of measurement are chosen suitably then the solution u(t,z) gives the
temperature at the point £ € R? at time ¢ when the temperature profile at
time 0 is given by f(z).

The first step in solving (1.1), as it will be six times below, is to find a
local martingale.

(1.2) Theorem. If u satisfies (1.1a), then M, = u(t—s, B,) is a local martingale
on [0,t).

Proof Applying Itd’s formula, (10.2) in Chapter 2, to u(zo,...,zq) with
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X0 =t—sand X! = Bl for1 <i<d gives

u(t — s, By} — u(t, Bp) = / —uy(t — r, By )dr
0
+/ Vu(t - r,B,) - dB,
0
+ —1-/ Au(t — r, B,)dr
2 Jo -

To check this note that dX = —dr and X has bounded variation, while the
X} with 1 < i < d are independent Brownian motions, so

xixiy, ={r 1<i=j<d
(X5, X7 0 otherwise

(1.2) follows easily from the Itd’s formula equation since —u; + $Au = 0 and
the second term on the right-hand side is a local martingale. O

Our next step is to prove a uniqueness theorem.
(1.3) Theorem. If there is a solution of (1.1) that is bounded then it must be

v(t,z) = E; f(B:)

Here = means that the last equation defines v. We will always use u for a
generic solution of the equation and v for our special solution.

Proof If we now assume that u is bounded, then M,,0 < s < t, is a bounded
martingale. The martingale convergence theorem implies that

M; =limM, exists a.s.
sTt

If u satisfies (1.1b), this limit must be f(B;). Since M, is uniformly integrable,
it follows that
u(t,z) = E; My = E; My = v(t,z) O

Now that (1.3) has told us what the solution must be, the next logical step
is to find conditions under which v is a solution. It is (and always will be) easy

to show that if v is smooth enough then it is a classical solution.

(1.4) Theorem. Suppose f is bounded. If v € C!:2 then it satisfies (1.1a).
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Proof The Markov property implies, see Exercise 2.1 in Chapter 1, that

E(f(B)|Fs) = Ep,(f(Bt-s)) = v(t — 5, B,)

The left-hand side is a martingale, so the right-hand side is also. If v € C2,
then repeating the calculation in the proof of (1.2) shows that

v(t — s, B;) — v({,Bp) = / (—ve + -lz-Av)(t -7, B.)dr
o

+ a local martingale

The left-hand side is a local martingale, so the integral on the right-hand side
is also. However, the integral is continuous and locally of bounded variation,
so by (3.3) in Chapter 2 it must be = 0 almost surely. Since v; and Av are
continuous, it follows that —v; + %Av = 0. For if it were # 0 at some point
(,z), then it would be # 0 on an open neighborhood of that point, and, hence,
with positive probability the integral would not be = 0, a contradiction. 0

It is easy to give conditions that imply that v satisfies (1.1b). In order to
keep the exposition simple, we first consider the situation when f is bounded.

(1.5) Theorem. If f is bounded and continuous, then v satisfies (1.1b).

Proof (B;— By) 4 /2y , where N has a normal distribution with mean 0
and variance 1, so if ¢, — 0 and z, — z, the bounded convergence theorem
implies that

V(tn, 2n) = Ef(zn + tY°N) — f(z) o

The final step in showing that v is a solution is to find conditions that
guarantee that it is smooth. In this case, the computations are not very difficult.

(1.6) Theorem. If f is bounded, then v € C*? and hence satisfies (1.1a).

Proof By definition,

o(t,z) = Eof(By) = / Pz, ) F(y) dy
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where py(z,y) = (2nt)~2e~1==91*/2t Writing D; = 8/8z; and D, = 8/6t, a
little calculus gives

"(2’:' - yi)

D;ipi(z,y) = -——t-——pt(:c,y)

z; — y)* —t
Dipi(z,y) = BB =t 0 )

z; — i zj — yj .,
Dijpl(x:y): ( y)tg . yJ)pl(m)y) z;é]

—d/2 z —yl?
Dipi(z,y) = (-—2-/* + l—z—tj’i) iz, y)

If f is bounded, then it is easy to see that for a = ¢, 75, or ¢

/WM@MﬂM@<m

and is continuous in RY, so (1.6) follows from the next result on differentiating
under the integral sign. This result is lengthy to state but short to prove since
we assume everything we need for the proof to work. Nonetheless we will see
that this result is useful.

(1.7) Lemma. Let (S,S,m) be a o-finite measure space, and g : S — R be
measurable. Suppose that for z € G an open subset of R? and some hg > 0 we
have:

(2) u(z) = [5 K(=z,y)9(y) m(dy)
where K and 0K/0z; : G x § — R are measurable functions with

(b) K(z" + hei,y) — K(z",y) = Jy 3 (2" + ei,y) df for || < hp and y € S
(c) ui(z) = [g -gf:(:c y)9(y) m(dy) is continuous at z*
and (d) fs —ho

Then Ju/dz; exists at z* and equals u;(z*).

ax'(:c + Be;, y)g(y)l df m(dy) < co.

Proof Using the definition of u in (a), then (b) and Fubini’s theorem, which
is justified for |h| < kg by (d), we have

u(z™'+ he;) — u(z*) = /(K(m' + hei, y) — K(27,9))9(y) m(dy)

/ / —(” + fe;, y)g(y) m(dy) df
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Dividing by h and letting h — 0 the desired result follows from (c). (]

Later we will need a result about differentiating sums. Taking S = Z with
S = all subsets of S, and p is counting measure in (1.7), then setting g = 1
and fa(z) = K(z,n) gives the following. Note that in (a) and (c) of (1.7) it is
implicit that the integrals exist, so here in (a) and (c) we assume that the sums
converge absolutely.

(1.8) Lemma. Suppose that for z € G an open subset of R4 and some hg > 0
we have:

(2) u(z) = T, ()

where f,, and 8f, /0z; : G— R, n € Z are measurable functions with
(b) falz® + hes) — fulz®) = [ Un(g* + fe;) do for |h| < ho and n € Z
() u(z) =3, %ﬁf(m) is continuous at z*

and (d) ¥, /2,

Then du/0z; exists at z* and equals ui(z*).

%ﬁ-’;—(m"‘ + Ge;)l df < oo.

Unbounded f. For some applications, the assumption that f is bounded
is too restrictive. To see what type of unbounded f we can allow, we observe
that, at the bare minimum, we need E|f(B:)| < oo for all . Since

1 2
— I 2] o 1
BB = [ G |7()ldy
a condition that guarantees this for locally bounded f is
() ||~ %1log" |f(z)] =0 asz— oo

Replacing the bounded convergence theorem in (1.5) and (1.6) by the dominated
convergence theorem, it is not hard to show:

(1.9) Theorem. If f is continuous and satisfies (), then v satisfies (1.1).

4.2. The Inhomogeneous Equation

In this section, we will consider what happens when we add a function g(¢, z)
to the equation we considered in the last section. That is, we will study

(2.1a) u € C*? and u; = $Au+ g in (0,00) x R4
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(2.1b) u is continuous at each point of {0} x R? and (0, z) = f(z).

We observed in Section 4.1 that (2.1b) cannot hold unless f is continuous. Here
g = us— +Au so the equation in (2.1a) cannot hold with « € C':? unless g(¢, z)
is continuous.

Our first step in treating the new equation is to observe that if u; is a
solution of the equation with f = fy and ¢ = 0 which we studied in the last
section, and us is a solution of the equation with f = 0 and g = gp then u; + u,
is a solution of the equation with f = f; and g = go so we can restrict our
attention to the case f = 0.

Having made this simplification, we will now study the equation above by
following' the procedure used in the last section. The first step is to find an
associated local martingale.

(2.2) Theorem. If u satisfies (2.1a), then
M, =u(t —s,Bs)+ / gt —r By)dr
o
is a local martingale on [0,¢).

Proof Applying Itd’s formula as in the proof of (1.2) gives
* 1
u(t =5, B) = ult, Bo) = [ (~u+ A= r, B)dr
0
+/ Vu(t—r,B.) -dB,
0

which proves (2.2), since —u; + %Au = —g and the second term on the right-
hand side is a local martingale. ]

Again the next step is a uniqueness result.

(2.3) Theorem. Suppose g is bounded. If there is a solution of (2.1) that is
bounded on [0, T] x R4 for any T < oo, it must be

o(t,z) = E, (/Otg(t—— s,B,)ds)

Proof Under the assumptions on g and u, M,,0 < s < ¢, defined in (2.2) is a
bounded martingale and u(0,z) = 0 so

1
M, = liglM, = / g(t — s, By)ds
3 0
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Since M, is uniformly integrable,
u(t,z) = E; Mo = E;M; = v(t, ) O
Again, it is easy to show that if v is smooth enough it is a solution.

(2.4) Theorem. Suppose g is bounded and continuous. If v € C*2, then it
satisfies (2.1a) in (0, 00) x R4.

Proof Using the Markov property, see Exercise 2.6 in Chapter 1, gives

t
E; (/ g(t — r,B.)dr .’F,)
0
3 t—-s
:/ g(t — r,By)dr + Ep, (/ g(t——s——u,Bu)du)
0 0

= / g(t —r,B.)ydr +v(t — s, By)
)

The left-hand side is a martingale, so the right-hand side is also. If v € C*2,
then repeating the calculation in the proof of (2.2) shows that

v(t —s,B,) — v(i, By) + / g(t — r,B,.)dr
- o

= / (= + %Av + g)(t —r, By )dr
0
+ alocal martingale

The left-hand side is a local martingale, so the integral on the right-hand side
is also. Since the integral is continuous and locally of bounded variation, (3.3)
in Chapter 2 implies it must be = 0 almost surely. Again this implies that
(—~vi+ %Av-}— g) = 0, for our assumptions imply that this quantity is continuous
and if it were # 0 at some point (¢,z) we would have a contradiction. O

The next step is to give a condition that guarantees that v satisfies (2.1b).
As in the last section, we will begin by considering what happens when every-
thing is bounded.
(2.5) Theorem. If g is bounded, then v satisfies (2.1b).

Proof If |g|< M, then ast —0

74
Io(t, 2)| < Ea / lg(t = 5, B)| ds < Mt — 0 o
1]
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The final step in showing that v is a solution is to check that v € C12
Since the calculations necessary to establish these properties are quite tedious,
we will content ourselves to state what the results are and do enough of the
proofs to indicate why they are true. If you get dazed and confused and bail
out before the end, the

Take home message is: it is not enough to assume g is continuous to have
v € CH2, We must assume g to be Holder continuous locally in ¢. That
is, for any N < co there are constants C,a € (0, c0), which may depend on N,
such that |g(¢, z) — g(t,y)| < C|z — y|* whenever t < N.

The reason for this assumption can be found in the proof of (2.6¢c) and again
in (2.6d).

The first step in showing v € C!"? is to assume g is bounded and use
Fubini’s theorem to conclude

v(t, z) = /0: ds /p,(x,y)y(t ~5,y)dy

where p,(z,y) = (27s)~% 2¢=ly==I"/2s | The expression we have just written for
v above is what Friedman (1964) would call a volume potential and would write
as

1
Ved= [ [ 2@ue e
To JD
To translate between notations, set Ty = 0, D = RY,

Z(:C,t;f, T) = pi—T(m: E)

and change variables s = t — 7,y = £&. Because of their importance for the
parametrix method, the differentiability properties of volume potentials are
well known. The results we will state are just Theorems 2 to 5 in Chapter 1
of.-Friedman (1964), so the reader who is interested in knowing the whole story
can find the missing details there.

(2.6a) Theorem. If g is a bounded measurable function, then v(¢,z) is contin-
uous on (0, 00) x RY.

Proof Use the bounded convergence theorem. O

(2.6b) Theorem. There is a constant C so that if |g| < M is measurable, then
the partial derivatives Dyv = 9v/dz; have |D;v| < CMt/2, are continuous,
and are given by

14
Dijv = / /Dipa(m:y)g(t - s,y)dyds
0
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Proof Using the formula for D;p, from (1.6), the right-hand side is

1
_/ /(2775)_4/2_______(2. y')e'lx'”lz/z’y(t —s,y)dyds
0

- ‘“E [(2: — Bi)g(t — s, B,)]

Although the last formula looks suspicious because we are integrating s~

0, everything is really all right. If |g| < M, then
Eg|(z; — Bi)g(t — s, By)| < MEz|z; — Bi| = CMs'/2

so we have

t
/ éfE’;c|(:t:,-—— Bi)g(t — 5, B,)| < 2CMtY? < o
[

1 hear

Using our result on differentiating under the integral sign, (1.7), it follows that
the partial derivatives D;v exist, are continuous, and have the indicated form.

O

Things get even worse when we take second derivatives.

(2.6¢) Theorem. Suppose that g is bounded and Hélder continuous locally in

t. Then the partial derivatives D;;v = 8%v/dz;0z; are continuous, and

1
Dijv = / / Dijpu(=, y)a(t — 5,y) dyds
1]

Proof Suppose for simplicity that i = j. Consulting (1.6) for the formula for

D;;p,, the right-hand side is

/ /(2“)-4/2 ((% y:) - 5) e~le=s/25 (1 5 ) dyds

This time, however, E;|(z; — B})? — s| = sEp|(B3)? — 1| so

(:c,-——Bj)z—— s|
z 2

t
/dE'
o

s
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We can overcome this problem if g is Holder continuous at z, because the fact
that Ez(z; — B})? = s allows us to write

E; [((m—'%)—{:—s-) g(t—s, Ba)]

= E; [((m_,%)_?____s_) {9(t — s, B;) — g(t — 5, r)}]

Using the Holder continuity of g one can show the above is < Cs~1+2/2 5o
its integral from s = 0 to ¢ converges absolutely, and with a little work (2.6¢)
follows. (See Friedman (1964), pages 10-12, for more details.) O

The last detail now is:

(2.6d) Theorem. Let g be as in (2.6c). Then dv/8t exists, and

0 t 0
5%(t,=v)=y(t,m)+/0 dr/EP:-r(m,y)y(r, y)dy

Proof To take the derivative w.r.t. t, we rewrite v as

v(t,z) = /0: /P:-r(z‘, ¥)g(r,y) dydr

Differentiating the right-hand side w.r.t. ¢ gives two terms. Differentiating the
upper limit of the integral gives g(Z, z). Differentiating the integrand and using
a formula from (1.6) gives

14
0
/0 / Ept—r(r,y)y(r,y) dydr

- /ot / (277)‘1/2(—15—(f_/i)(d+2)/2 exp (%l(‘:‘z‘{‘%)l_g) 9(r,y) dydr
+ /0‘ /(27T(t - T))_dlzzl:(ct—___il;z exp (;l(j — 1:;2) g(r,y)dydr

=d [t dr t dr )
= -—2—/0 i—n rEz:g(T, B;_;) +/0 ————z(t_ r)2E5(|:c- B |?¢(r, Bi—1))

In the second integral, we can use the fact that E;(|z — B;—,|?) = C(t — 1) to
cancel one of the ¢t — r’s and make the second expression like the first, but even

if we do this,
/' dr
1] t -7 -
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This is the difficulty that we experienced in the proof of (2.6c), and the remedy
is the same: We can save the day if g is Holder continuous locally in ¢. For
further details, see pages 12-13 of Friedman (1964). O

Unbounded g. To see what type of unbounded g¢’s can be allowed, we
will restrict our attention to the temporally homogeneous case g(t,z) = h(z).
At the bare minimum, we need

13
Ex/ h(B,)|ds < oo
0

and if we want (2.1b) to hold, we need to know that if ¢, | 0 and z,, — z, then
in
E;_ h(B,)ds — 0
0

If we put absolute values inside the integral and strengthen the last result to
uniform convergence for z € R4, then we get a definition that is essentially due
to Kato (1973). A function A is said to be in Ky if

1
ltllr(r)l sup E; (/0 |h(B,)|ds) =0

By Fubini’s theorem, we can write the above as

) lim sup / k(e 9)lh(y)|dy = 0

where ,
kt(m,y)z/(2775)—4/2e—lz:—-y|2/2,ds
o

By considering the asymptotic behavior of ky(z,y) ast — 0 and |z— y|%/t — ¢,
we can cast this condition in a more analytical form as

(4 timsup [ plle = sDl@)ldy =0
0z Jiomyl<a
where
7(@=2) d>3
o(r) = {——logr d=2
T d=1

The equivalence of (%) and (**) is Theorem 4.5 of Aizenman and Simon
(1982) or Theorem 3.6 of Chung and Zhao (1995). Section 3.1 of the latter
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source can be consulted for a wealth of information about these spaces. We will
content ourselves here with an

Example 2.1. Let h(z) = k(|z|) where k(r) =r~? forr < 1 and 0 for r > 1.
We will now show that

(2.7) Theorem. he K3 if p< 2.
The special case p = 1 is the Coulomb potential which is important in physics.

Proof If a < 1 then changing to polar coordinates and noticing the integral
is largest when z = 0 we have

= /Ir—ylsa (lz — yDIr()l dy < Ca /Oa e(r)k(r)r®~tdr

E

If we replace k(r) by =7 and ¢(r) by r~(4=2), which holds in d # 2, then the
above

:Cd/ P Pdr —0
0

when p < 2. In d = 2 when p < 2 we get

=Cd/ r"Plogrdr — 0 |
0

Remark. We will have more to say about these spaces at the end of the next
section. For the developments there, we will also need the space K}fc, which is
defined in the obvious way: f € K¢ if for every R < oo, the spatially truncated
function fl(;i<r) € Ka-

4.3. The Feynman-Kac Formula

In this section, we will consider what happens when we add cu to the right-hand
side of the heat equation. That is, we will study

(3.1a) v € CY? and u; = $Au+ cu in (0, 00) X R4,

(3.1b) u is continuous at each point of {0} x R4 and u(0,z) = f(z).

If ¢(t,z) < 0, then this equation describes heat flow with cooling. That is,

u(t, z) gives the temperature at the point z € RY at time ¢, when the heat at
z at time ¢ dissipates at the rate —c(¢, z).



138 Chapter 4 Partial Differential Equations
The first step, as usual, is to find a local martingale.
(3.2) Theorem. Let ¢}, = [ c(t — r, B,) dr. If u satisfies (3.1a), then
M, = u(t — s, By) exp(c’)
is a local martingale on [0, ).

Proof Applying Ité’s formula with X0 = ¢ —s, X! = B for 1 <i < d, and
X341 = ¢! gives that

u(t— s, B,) exp(ct) — u(t, Bo)
- / —uy(t — r, B, ) exp(ct)dr + / exp(ct)Vu(t — r, B;) - dB,
0 0

+ / u(t — r, B;) exp(ct) dct + % / Au(t —r, B, ) exp(ct) dr
0 0

since we have . ..
(xi, X7, = t fl<i=j<d
! ! 0 otherwise

Using dct = ¢(t — r, Br) dr and rearranging, the right-hand side is
3 1 :
= —uy +cu+ EAu (t—r, B, )exp(cl)dr
0

+/ exp(ct)Vu(t —r,B,) - dB,
0

which proves (3.2); since —u; + cu + %Au = 0 and the second term is a local
martingale. 0

The next step, again, is a uniqueness result.

(3.3) Theorem. Suppose that ¢ is bounded. If there is a solution of (3.1) that
is bounded on [0,7] x R4 for any T < oo, it must be

o(t, z) = E-{f(B:) exp(c)}

Proof Under our assumptions on ¢ and u, M,, 0 < s < ¢, is a bounded mar-
tingale and M; = lim,—., M, = f(B;)exp(c}). Since M, is uniformly integrable
it follows that

u(t,z) = E- My = E-M; = o(t,z) O
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As before, it is easy to show that if v is smooth enough it is a solution.

(3.4) Theorem. Suppose f is bounded and that c is bounded and continuous.
If v € CY2, then it satisfies (3.1a).

Proof The Markov property implies, see Exercise 2.7 in Chapter 1 and take
h(r,z) = ¢(t — r,z), that

E+(f(By) exp(ch)|Fs) = exp(c,) Ep,(£(Br-s) exp(ciZ3))
= exp(ct)u(t — s, By)

The left-hand side is a martingale, so the right-hand side is also. If v € C2,
then repeating the calculation in the proof of (3.2) shows that

v(t — s, Bs) exp(ct) — v(¢, Bo)
= / (vt +cev+ %Av)(t — 1, B.) exp(ct)dr
0
+ alocal martingale

The left-hand side is a local martingale, so the integral on the right-hand side
is also. Since the integral is continuous and locally of bounded variation, (3.3)
in Chapter 2 implies that it must be = 0 almost surely. Again this implies that
(—=ve+cv+ L Av)(t —r, B,) exp(ct) = 0 for our assumptions imply this quantity
is continuous and if it were # 0 at some point we would have a contradiction.
0

The next step is to give a condition that guarantees that v satisfies (3.1b).
As before, we begin by considering what happens when everything is bounded.

(3.5) Theorem. If ¢ is bounded and f is bounded and continuous, then v
satisfies (3.1b).

Proof If |c| < M, then e~M* < exp(cl) < eM?, so exp(cl) — 1 as t — 0.
Letting || fllc = sup, |f(z)| this result implies

|E= exp(ci) f(Bt) — Ez f(Bo)| < || flloo Ez|exp(ci) =1 —0

(1.5) implies that (¢,z) — E5f(B:) is continuous at each point of {0} x R¢ and
the desired result follows. O

This brings us to the problem of determining when v is smooth enough to
be a solution.
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(3.6) Theorem. Suppose that f is bounded and Hélder continuous. If ¢ is
bounded and Hdlder continuous locally in ¢, then v € C1'? and, hence, satisfies
(3.1a).

Proof To solve the problem in this case, we use a trick to reduce our result
to the previous case. We begin by observing that

cf,:/ c(t —r B.)dr
0

is continuous and locally of bounded variation. So Ité’s formula, (10.2) in
Chapter 2, implies that if A € C! then

14
B~ heh) = [ H(cl)det
0
Taking h(z) = e~* we have
14
exp(—ct)—1= ——/ exp(—ct)c(t — s, B,) ds
0

Multiplying by — exp(ct) gives

14
exp(cl) —1= / c(t — s, B,) exp(ch — ct)ds
0

Plugging in the definitions of ¢} and ¢! we have

exp (/Otc(t——r,B,)dr) =1+/Otc(t——s,B,)exp (/:c(t——r,B,)dr) ds

Multiplying by f(B;), taking expected values, and using Fubini’s theorem,
which is justified since everything is bounded, gives

o(t,z) = Eof(B:) + /0: E. {c(t —s,B,)exp (/t ot =1 B.) dr) f(B,)} ds

3

Conditioning on F;, noticing ¢(t — s, B,) € F;, and using the Markov property
as in Exercise 2.7 of Chapter 1,

E. (c(t — s, B,) exp (/t (t—r, B,)dr) £(By)

_‘Fa) = ¢(t — s, B;)v(t — s, B;)
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Taking the expected value of the last equation and plugging into the previous
one, we have

o(t,z) = Eo f(By) + /0: Eo{c(t — 5, Bs)o(t — 5, B ) }ds
= v, z) + va(t, z)

" The first term on the right, v, (¢, z), is C*?2 by (1.6). The second term,
vo(£, z), is of the form considered in the last section with g(r,z) = ¢(r,z)v(r, z).
If we start with the trivial observation that if ¢ and f are bounded, then v is
bounded on [0, N] x R¢, and apply (2.6b), we see that

(*)

|v2(t,2) — va(t,y)| < Cn|z —y| whenevert < N

To get a similar estimate for v; let B; be a Brownian motion starting at 0 and
observe .that since f is Holder continuous

lvi(t, 2) — w(t, 9)| = |E{f(z + B:) — f(y +_Bt)}|
< E|f(z+ B:) — fly+ B)| < Clz — y|

Combining the last two estimates we see that v(r, ) is H6lder continuous locally
in ¢. Since ¢ and v are bounded and we have supposed that ¢(r,z) is Holder
continuous locally in ¢ the triangle inequality implies g(r, z) is H6lder continuous
locally in ¢. Using (2.6c) and (2.6d) now, we have vy(¢,z) € C12. o

Unbounded c. As in the last section, we can generalize the results above
to unbounded c¢’s, but for simplicity we restrict our attention to the temporally
homogeneous case c(t,z) = h(z). Given the formula (+) above, which expresses
v as a volume potential, it is perhaps not too surprising that the appropriate
assumption is ¢ € K4. The key to working in this generality is what Simon
(1982) calls

(3.7) Khasminskii’s lemma. Let g > 0 be a function on R4 with
t
a=supE; (/ g(B,)ds) <1
= 0

sup E; exp (/Ot 9(Bs) ds) <(1-o)!

Then

Proof The Markov property and the nonnegativity of g imply that

supE'x/.../ dsy...dsn g(Bs,)...9(Bs.) < a”
= 0<s; < <3n<t
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Since the integrand is symmetric in (s1,...,5,) we have

// dsy...dsn g(Bs,)...g(Bs.)
03y < <3<t

1 1 1
:;_J/ 0.../ 0dsl...ds,,g(B,l)...g(B,“)
sy = S$n=

-3 ([ sore)

Summing on n now gives the desired formula. O

From the last result, it should be clear why assuming k € K is natural in
this context. This condition guarantees that

'3
sup B, (/ |h(B,)|ds) =0
T 0

t
sup E; exp (/ |h(B,)|ds) —1
z 0

With these two results in hand, we can proceed with developing the theory
much as we did in the case of bounded coefficients.

and, hence, that

B. Elliptic Equations

In the next three sections of this chapter, we show how Brownian motion can
be used to construct classical solutions of the following equations:

0=%Au
= -lz—Au-l—g
0= -12—Au+cu

in an open set G subject to the boundary condition: at each point of G, u is
continuous and u = f.

We will see that the solutions to these equations are (under suitable as-
sumptions) given by

E. £(B,)
B (r8)+ [ o(5.)as)

5. (#8) exe ([ c(Bas) )
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where 7 = inf{t > 0 : B; ¢ G}. To see the similarities to the solutions given
for the equations in Part A of this chapter think of those solutions in terms of
space-time Brownian motions B, = (¢ — 5, B, ) run until time 7 = inf{s: B, ¢
(0, 0) x R4}. Of course, # = t.

4.4. The Dirichlet Problem
In -this section, we will consider the Dirichlet problem. That is, we will study

(4.12) u€ C? and Au=0in G.
(4.1b) At each point of G, u is continuous and v = f.

To see what this means, note that if we let h(¢,z) = u(z), then h satisfies the
heat equation

Thus, u is an equilibrium temperature distribution when 9G is held at a fixed
temperature profile f.

As in the first three sections, the first step in solving (4.1) is to find a local
martingale.

(4.2) Theorem. Let 7 = inf{t > 0 : B; ¢ G}. If u satisfies (4.1a), then
M; = u(B;) is a local martingale on [0, 7).

Proof Applying Itd’s formula gives

u(B;) — u(By) = /0 Vu(B,) -dBs + % /0 Au(B,)ds

for ¢ < 7. This proves (4.2), since Au = 0 in G and the first term is a local
martingale on [0, 7). O

The second step is a uniqueness theorem. For this we introduce
(1) Po(r < c0) =1forall

which (4.7b) below will show is necessary for uniqueness. Note that (1.3) in
Chapter 3 implies bounded sets G satisfy ().

(4.3) Theorem. Suppose G satisfies (1). If there is a solution of (4.1) that is
bounded, it must be

w(z) = E;f(B;)
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Proof If u is bounded and satisfies (4.1) then M,,0 < 5 < 7, is a bounded
local martingale. Using (2.7) in Chapter 2, ({), and (4.1b), we have

M, = liTmM, = f(B,)
sTr
u(z) = E; My = E; M, = v(z) O

(1) is not needed for the existence of solutions, but to drop () we need to
modify the definition to take the possibility of 7 = co into account. Let

’L_I(:C) =E; (f(BT)]‘(T<OO))
As in the first three sections, it is easy to show:

(4.4) Theorem. Let G be any open set and suppose f is bounded. If ¥ € C?,
then it satisfies (4.1a).

Proof The Markov property implies that on {r > s}
Ez (£(B:r)l(r<e0)| F+) = 8(Bs)

The left-hand side is a local martingale on [0, 7), so #(B,) is also. If % € C?,
then repeating the calculation in the proof of (4.2) shows that, for s € [0, 7),

9(B,) — 9(By) = % /0 A%(B,)dr + a local martingale

The left-hand side is a local martingale on [0, 7), so the integral on the right-
hand side is also. However, the integral is continuous and locally of bounded
variation, so by (3.3) in Chapter 2 it niust be = 0. Since A% is continuous in
G, it follows that A7 =0 in G. For if A% # 0 at some point we would have a
contradiction. 0O

Up to this point, everything has been the same as in Section 4.1. Differences
appear when we consider the boundary condition (4.1b), since it is no longer
sufficient for f to be bounded and continuous. The open set G must satisfy a
regularity condition.

Definition. A point y € G is said to be a regular point if P,(r=0) = 1.

(4.5) Tlieorem. Let G be any open set. Suppose f is bounded and continuous
and y is a regular point of 8G. If z, € G and z, — y, then %(zn) — f(y).
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Proof The first step is to show

(4.5a) Lemma. If t > 0, then z — P.(7 < t) is lower semicontinuous. That is,
if z, — z, then
linminf P, (1<t)2 P (<)

Proof By the Markov property
Py(B; € G° for some s € (¢,1]) = /pe(m, YP(r<t—¢€)dy
Since y — P,(7 <t —¢) is bounded and measurable and
pe(z,y) = (2me)~ Y2 elemul /2
it follows from the dominated convergence theorem that

z — Pp(B, € G° for some s € (¢, 1])

is continuous for each ¢ > 0. Letting € | 0 shows that £ — P,(r < t) is an
increasing limit of continuous functions and, hence, lower semicontinuous. O

If y is regular for G and t > 0, then P,(7 < t) = 1, so it follows from (4.5a)
that if z,, — y, then

linmianxn(‘r <t)>1 foralt>0

With this established, it is easy to complete the proof. Since f is bounded and
continuous, it suffices to show that if D(y,8) = {z : |z — y| < 6}, then

(4.5b) Lemma. If y is regular for G and z,, — y, then for all § > 0
Py, (r < 00, B, € D(y,8)) — 1

Proof Let € > 0 and pick t so small that

)
P, ( sup |B,| > —) <e
0<s<t 2

Since P, (v <t) — 1 as z, — y, it follows from the choices above that
)
liminf P;_(r < o0, B, € D(y, §)) > liminf P, (‘r <t, sup |B;—zq| < —)

0<s<t 2

)
> liminf P, (1 <t)— P ( sup |By| > -—) >1—c¢
n—co p<s<t 2
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Since € was arbitrary, this proves (4.5b) and, hence, (4.5). O

(4.5) shows that if every point of G is regular, then o(z) will satisfy
the boundary condition (4.1b) for any bounded continuous f. The next two
exercises develop a converse to this result. The first identifies a trivial case.

Exercise 4.1. If G C R is open then each point of 8G is regular.

Exercise 4.2. Let G be an open set in R? with d > 2 and let y € G have
P,(tr =0) < 1. Let f be a continuous function with f(y) = 1 and f(z) < 1
for all z # y. Show that there is a sequence of points z, — y such that
liminf, s 9(z,) < 1.

From the discussion above, we see that for v to satisfy (4.1b) it is sufficient
(and almost necessary) that each point of G is a regular point. This situation
raises two questions:

Do irregular points exist?
What are sufficient conditions for a point to be regular?

In order to answer the first question we will give two examples.

Example 4.1. Punctured Disc. Let d > 2 and let G = D — {0}, where
D={z:|z|] < 1}. If welet Tp = inf{t > 0: B; = 0}, then Py(Tp = 0) =1
by (1.10) in Chapter 3, so 0 is not a regular point of 3D. One can get an
example with a bigger boundary in d > 3 by looking at G = D — K where
K ={z:z; =22 =0}. In d = 3 this is a ball minus a line through the origin.
Example 4.2. Lebesgue’s Thorn. Let d > 3 and let
G = (-1,1)* —Uicnceo{[27™, 27" x [—an, aa]* '}
where the n = co term is the single point {0}.

Claim. If a, | 0 sufficiently fast, then 0 is not a regular point of §G.

Proof Py((BZ, B}) = (0,0) for some t > 0) = 0, so with probability 1, a
Brownian motion B; starting at 0 will not hit

Li={z:z; €[2"",2""+1],mg=m3=...=:cd=0}

Since B; is transient in d > 3 it follows that for a.e. w the distance between
{B; : 0 < 5 < o} and I, is positive. From the last observation, it follows
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immediately that if we let 7,, = inf{t : B; € [27",27 "] x[an, @,]9"!} and pick
an small enough, then Py(T,, < 00) < 37". Now ) > 37" =371(3/2) = 1/2,
soif welet 7 =inf{t > 0: B, ¢ G} and o = inf{t > 0: B; ¢ (—1,1)4}, then
we have

— 1
< Tn <=
Pg(‘r<cr)_"2;ng( <oo)_2
Thus Po(7> 0) > Po(r = 0) > 1/2 and 0 is an irregular point. o

The last two examples show that if G° is too small near y, then y may be
irregular. The next result shows that if G° is not too small near y, then y is
regular.

(4.5¢c) Cone Condition. If there is a cone V having vertex y and an r > 0
such that V' N D(y,r) C G°, then y is a regular point.

Proof The first thing to do is to define a cone with vertex y, pointing
in direction v, with opening a as follows:

V(y,v,a) ={z:2 =y + 6(v+ z) where 8 € (0,00), z L v, and |z| < a}

Now that we have defined a cone, the rest is easy. Since the normal distribution
is spherically symmetric,

Py(B; € V(y,v,a)) =€, >0

where ¢, is a constant that depends only on the opening a. Let r > 0 be such
that V(y, v, a) N D(y,r) C G°. The continuity of Brownian paths implies

lim P, (sup |Bs —y| > r) =0
t—0 s<t
Combining the last two results with a trivial inequality we have
€ < lirtnlgany(B, €G) <L ltilr(r)x P(r<t)< Py(r=0)

and it follows from Blumenthal’s zero-one law that P,(t =0) = 1. O
+(4.5¢) is sufficient for most cases.

Exercise 4.3. Let G = {z : g(z) < 0} where g is a C! function with Vg(y) # 0
for each y € 8G. Show that each point of G is regular.
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However, in a pinch the following generalization can be useful.

Exercise 4.4. Define a flat cone V(y, v, a) to be the intersection of V(y, v, a)
with a d — 1 dimensional hyperplane that contains the line {y +6v : 8 € R}.
Show that (4.5¢) remains true if “cone” is replaced by “flat cone.”

When d = 2 this says that if we can find a line segment ending at z that lies in
the complement then z is regular. For example this implies that each point of
the boundary of the slit disc G= D — {z : z; > 0,2, = 0} is regular.

Having completed our discussion of the boundary condition, we now turn
our attention to determining when 7 is smooth. As in Section 4.1, this is true
under minimal assumptions on f.

(4.6) Theorem. Let G be any open set. If f is bounded, then ¥ € C* and,
hence, satisfies (4.1a).

Proof Let z € G and pick § > 0 so that D(z,8) C G. If welet o = inf{t:
B, ¢ D(z,6)}, then the strong Markov property implies that (for more details
see Example 3.2 in Chapter 1)

' 3(2) = Bz (F(Br )L <ony) = Ex(9(Bo)) = / #(y) n(dy)

D(z,5)

where 7 is surface measure on D(z, §) normalized to be a probability measure.
The last result is the “averaging property” of harmonic functions. Now a simple
analytical argument takes over to show o € C™.

(4.62) Lemma. Let G be an open set and h be a bounded function which has
the averaging property

h(z) = / ROLCY

6

when z € G and § < 6z where 6z > 0. Then h € C*® and Ah=01in G.

Proof Let 1 be a nonnegative infinitely differentiable function that vanishes
on [62,00) but is not = 0. By repeatedly applying (1.7) it is routine to show
that

o) = [ | wlly—ePhdy e

3
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Note that we use |y — z|?> = Y ;(y: — z;)? rather than |y — z| which is not
smooth at 0. Making a simple change of variables, then looking at things in
polar coordinates, and using the averaging property we have

o(z) = /D gy WG+ )z

H

= ' rrd=ly(r? z+z)n(dz

=c [ arrivty( )(/ap(o,,)h( +2)a(d ))
s

=C (/0 dr rd"ld)(rz)> h(z)

So h is a constant times ¢ and hence C*.
To conclude now that Ak = 0 we note that the multivariate version of
Taylor’s theorem implies that if |y — | < r then

h(®) = (@) + Y (o - 2)Di(a)

+ Z(yi —zi)(y; — z;)Dijh(z) + €(y, z)

ij

where |e(y, z)| < Csr3. Integrating over D(z,r) w.r.t. dy/|D(0,r)| and using
the averaging property we have

h(z) = h(z) + 0 + C2AR(z)r* 4+ O(r®)

Subtracting h(z) from each side, dividing by 7%, and letting r — 0 it follows
that Ah(z) = 0. O

Unbounded G. As in the previous three sections, our last topic is to
discuss what happens when something becomes unbounded. This time we will
focus on G and ignore f. Combining (4.3), (4.5), and (4.6) we have:

(4.72) Thieorem. Suppose that f is bounded and continuous and that each
point of dG is regular. If for all z € G, P;(7 < o0) =1, then v is the unique
bounded solution of (4.1).

To see that there might be other unbounded solutions consider G = (0, c0),
f(0) = 0, and note that u(z) = cz is a solution. Conversely, we have

(4.7b) Theorem. Suppose that f is bounded and continuous and that each
point of 3G is regular. If for some z € G, Px(7 < 00) < 1, then the solution of
(4.1) is not unique.
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Proof Since h(z) = P:(r = o) has the averaging property given in (4.6a),
it is C* and has Ah =0 in G. Since each point y € 8G is regular, a trivial
comparison and (4.5a) implies

limsup Pr(7 = 00) < limsup Pz(7> 1) < P (7> 1)=0
Ty Ty
The last two observations show that h is a solution of (4.1) with f = 0, which
completes the proof. O

By working a little harder, we can show that adding aP;(7 = o) to 9(z)
is the only way to produce new bounded solutions.

(4.7¢) Theorem. Suppose that f is bounded and continuous and that each
point of G is regular. If u is bounded and satisfies (4.1) in G, then there is a
constant « such that

u(z) = Ez(f(Br); 7 < 00) + aPr(T = 0)
We will warm up for this by proving the following special case in which G = R°.
(4.7d) Theorem. If u is bounded and harmonic in R¢ then u is constant.

Proof (4.2) above and (2.6) in Chapter 2 imply that u(B;) is a bounded
martingale. So the martingale convergence theorem implies that as ¢ — oo,
u(B;) — Ueo. Since Uy, is measurable with respect to the tail o-field, it follows
from (2.12) in Chapter 1 that Pr(a < U < b) is either = 0 or = 1 for any
a < b. The last result implies that there is a constant ¢ independent of z so that
P;(Us = c) = 1. Taking expected values it follows that u(z) = EzUx =c. O

Proof of (4.7¢) From the proof of (4.7d) we see that u(B;) is a bounded local
martingale on [0, 7) so Ur = limyy, u(B:). On {7 < o0}, we have U, = f(B-) so
what we need to show is that there is a constant « independent of the starting
point By so that U, = @ on {r = oo}. Intuitively, this is a consequence of the
triviality of the asymptotic o-field, but the fact that 0 < Pr(7 = c0) < 1 makes
it difficult to extract this from (2.12) in Chapter 1.

To get around the difficulty identified in the previous paragraph, we will
extend u to the whole space. The two steps in doing this are to

(a) Let h(z) = u(z) — Ez(f(B;);T < o). (4.6) and (4.5) imply that h is
bounded and satisfies (4.1) with boundary function f = 0.

(b) Let M = ||k||co and look at

)= (MR =) zeC
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To complete the proof now, we will show in four steps that w(z) = SP(7 = 00),
from which the desired result follows immediately.
(i) When restricted to G, w satisfies (4.1) with boundary function f = 0.

The proof of (4.7b) implies that M P:(7 < o) satisfies (4.1) with boundary
function f = 0. Combining this with (a) the desired result follows.

(ii) w> 0.

To do this we use the optional stopping theorem on the martingale h(B;) at
time 7 At and note h(B;) = 0 to get

hz) = Ba(h(Bo)im > 1) > —MPo(r > 1)
Letting t — oo proves h(z) > —M Py(1 = o©).
(iii) w(B;) is a submartingale.

Because of the Markov property it is enough to show that for all z and t we
have w(z) < E;w(B;). Since w > 0 this is trivial if z ¢ G. To prove this for
z € G, we note that (i) implies W; = w(B;) is a bounded local martingale on
[0,7) and W, = 0 on {r < o0}, so using the optional stopping theorem

w(:c) = E;;(Wr/u) = E’x(w(B,), T> t) S Ex(w(Bt))

(iv) There is a constant 8 so that w(z) = BP:(r = o).

Since w is a bounded submartingale it follows that as t — oo, w(B;) converges
to a limit We. The argunient in (4.7d) implies there is a constant 8 so that
Pr(We = ) =1 for all z. Letting t — oo in

w(z) = Ex(w(B); 7> t)

arid using the bounded convergence gives (iv). o

4.5. Poisson’s Equation

In this section, we will see what happens when we add a function of z to the
equation considered in the last section. That is, we will study:

(5.1a) u € C? and §Au=—g in G.
(5.1b) At each point of G, u is continuous and u = 0.

As in Section 4.2, we can add a solution of (4.1) to replace « = 0 in (5.1b) by
u = f. As always, the first step in solving (5.1) is to find a local martingale.
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(5.2) Theorem. Let 7 =inf{t > 0: B; ¢ G}. If u satisfies (5.1a), then

t
M, = u(B,)+/ o(B,)ds
0
is a local martingale on [0, 7).

Proof Applying Itd’s formula as we did in the last section gives
t 1
w(By) — u(Bo) = / Vu(B,)-dB, + / Au(B,)ds
0 0

for t < 7. This proves (5.2), since :}Au = —g and the first term on the right-
hand side is a local martingale on [0, 7). O

The next step is to prove a uniqueness result.

(5.3) Theorem. Suppose that G and g are bounded. If there is a solution of
(5.1) that is bounded, it must be

) = ( /0 ’ g(B,)dt)

Proof - If u satisfies (5.1a) then M, defined in (5.2) is a local martingale on
[0, 7). If G is bounded, then (1.3) in Chapter 3 implies Ez7 < oo for all z € G.
If u and g are bounded then for t < 7

|M:| < [|lloo + Tlglloo
Since the right-hand side is integrable, (2.7) in Chapter 2 and (5.1b) imply

,
fTT 0
u(z) = E; My = Ex(M;) = v(z) o
As usual, it is easy to show

(5.4) Theorem. Suppose that G is bounded and g is continuous. If v € Cc?,
then it satisfies (5.1a).

Proof The Markov property implies that on {7 > s},

E; (/OT g(B:) dt

f,) = /Oag(B,)dt+v(Ba)
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The left-hand side is a local martingale on [0, 7), so the right-hand side is also.
If v € C?, then repeating the calculation in the proof of (5.2) shows that for
s € [0,7),

3 3 1
WB)=o(B0) + [ a(Byar= [ (Gav+s) (B)ar
0 0
+ alocal martingale

The left-hand side is a local martingale on [0, 7), so the integral on the right-
hand side is also. However, the integral is continuous and locally of bounded
variation, so by (3.3) in Chapter 2 it must be = 0. Since ~.1_;Av + ¢ is continuous
in G, it follows that it is = 0 in G, for if it were # 0 at some point then we
would have a contradiction. o

After the extensive discussion in the last section, the conditions needed to
guarantee that the boundary conditions hold should come as no surprise.

(5.5) Theorem. Suppose that G and g are bounded. Let y be a regular point
of 8G. If z,, € G and z,, — y, then v(z,) — 0.

Proof We begin by observing:
(i) It follows from (4.5a) that if € > 0, then P;_(7>¢) — 0.

(ii) If G is bounded, then (1.3) in Chapter 3 implies C = sup, E.T < oo and,
hence, ||t]|lco < Clg]loe < 0.

Let € > 0. Beginning with some elementary inequalities then using the

Markov property we have
TAE T
el < Be, ([ lotB)lds) + e, (| [ a(B)ds]i7 > )
0 €

< €llglleo + Bz (|v(Be)l; 7 > €) < ellglleo + [[v]loo Prn(T > €)

Letting n — oo, and using (i) and (ii) proves (5.5) since € is arbitrary. O

Last, but not least, we come to the question of smoothness. For these
developments we will assume that g is defined on R not just in G and has
compact support. Recall we are supposing G is bounded and notice that the
values of ¢ on G*¢ are irrelevant for (5.1), so there will be no loss of generality
if we later want to suppose that [g(z)dz = 0. We begin with the case d > 3,
because in this case (2.2) in Chapter 3 implies

#(z) = E. /Om lo(B)| dt < oo
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and, moreover, is a bounded function of . This means we can define

w(z) = E; /000 g(By)dt

use the strong Markov property to conclude

r
w(z) = E; / g(B:) dt + E;w(B;)
0
and change notation to get
(*) ) v(z) = w(z) — Ezw(B,)

(4.6) tells us that the second term is C* in G, so to verify that v € C? we
need only prove that w is, a task that is made simple by the fact that (2.4) and
(2.3) in Chapter 3 gives the following explicit formula

w(z) = Ca [ o= 1" 49(0) dy
The first derivative is easy.

(5.62) Theorem. If ¢ is bounded and has compact support, then w is C* and
there is a constant C which only depends on d so that

dy
I&MMSCMMA

T L 00
9#0} |:C - yld.‘l

Proof We will content ourselves to show that the expression we get by differ-
entiating under the integral sign converges and leave it to the reader to apply
(1.7) to make the argument rigorous. Now

Dilz —y|*¢ = (-2—%-4) (Z(rj - yj)z)ud/gz(mi — %)

So differentiating under the integral sign

Diu(i) = Cu(2— o) [ L2 ) (2i = 1) 2 ) o(y)dy

The integral on the right—hand side is convergent since

/

(zi — ‘ / dy
mg y)| dy < ||glleo e < 0 o
T (v) llgll [ P
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As in Section 4.2, trouble starts when we consider second derivatives. If
i # j, then

Dijlz — y|*~% = (2 — d)(=d)|z — y|7* (2 — w)(=; — v3)
In this case, the estimate used above leads to
|Dijlz — y|*~? < Clz — y|~¢

which is (just barely) not locally integrable. As in Section 4.2, if g is Hélder
continuous of order «, we can get an extra |z — y|* to save the day. The details
are tedious, so we will content ourselves to state the result.

(5.6b) Theorem. If g is Holder continuous, then w is C2.

The reader can find a proof either in Port and Stone (1978), pages 116-117, or
in Gilbarg and Trudinger (1977), pages 53-55. Combining (x) with (5.6b) gives

(5.6) Theorem. Suppose that G is bounded. If g is Holder continuous, then
v € C? and hence satisfies (5.1a).

The last result settles the question of smoothness in d > 3. To extend the
result to d < 2, we need to find a substitute for (x). To do this, we let

w(z) = / G(z,y)g(y) dy
where G is the potential kernel defined in (2.7) of Chapter 3, that is,
_ [—2loglz—yl) d=2

G was defined as

| @) - aye

where the a; were chosen to make the integral converge. So if [gdz = 0, we
see that

T
/ G(z,y)g(y)dy = lim E; /0 g(By)dt

Using this interpretation of w, we can easily show that (%) holds, so again our
problem is reduced to proving that w is C?, which is a problem in calculus.
Once all the computations are done, we find that (5.6) holds in d < 2 and that
in d = 1, it is sufficient to assume that g is continuous. The reader can find
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details for d = 1 in (4.5) of Chapter 6, and for d > 2 in either of the sources
cited above.

4.6. The Schrodinger Equation

In this section, we will consider what happens when we add cu to the left-hand
side of the equation considered in Section 4.4. That is, we will study

(6.1a) u€ C* and $Au+cu=0inG.
(6.1b) At each point of G, u is continuous and u = f.

As always‘, the first step in solving (6.1) is to find a local martingale.

(6.2) Theorem. Let 7 =inf{t > 0: B; ¢ G}. If u satisfies (6.1a) then

M = u(B:)exp ( /0 t c(B,)ds)

is a local martingale on [0, 7).

Proof Letc = f; c(Bs)ds. Applying Ité's formula gives
- : :
u(B;) exp(c:) — u(Bo) = / exp(cs)Vu(B,) - dBs + / u(B,) exp(cs) dcs
0 0

t
+ —12— / Au(B,)exp(cs)ds
o

for ¢ < 7. This proves (6.2), since dc, = ¢(B,)ds, $Au+ cu = 0, and the first
term on the right-hand side is a local martingale on [0, 7). O

At this point, the reader might expect that the next step, as it has been
five times before, is to assume that everything is bounded and conclude that if
there is a solution of (6.1) that is bounded, it must be

v(z) = EL(f(Br) exp(cr))

We will not do this, however, because the following simple example shows that
this result is false.

Example 6.1. Let d =1, G = (—a,a), c = v, and f = 1. The equation we are
considering is

—éu” +yu=0  ufa)=u(—-a)=1
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The general solution is A cos bz + B sin bz, where b = \/2y. So if we want the
boundary condition to be satisfied we must have

1= Acosba+ Bsinba
1 = A cos(—ba) + Bsin(—ba) = A cosba — Bsinba

Adding the two equations and then subtracting them it follows that
2 = 2A cos ba 0 = 2Bsinba

From this we see that B = 0 always works and we may or may not be able to
solve for A.

If cosba = 0 then there is no solution.
If cosba # 0 then u(z) = cos bz/ cos ba is a solution.

We will see later (in Example 9.1) that if ab < w/2 then
v(z) = cos bz / cos ba

However this cannot possibly hold for ab > /2 since v(z) > 0 while the right-
hand side is < 0 for some values of z. O

We will see below (again in Example 9.1) that the trouble with the last
example is that if ab > 7 /2 then ¢ = v is too large, or to be precise, if we let

w(z) = Eyexp ( /0 ’ c(B,)ds)

then w = oo in (—a,a). The rest of this section is devoted to showing that if
w % 00, then “everything is fine.” The development will require several stages.
The first step is to show

(6.32) Lemma. Let 8 > 0. There is a g > 0 so that if H is an open set with
Lebesgue measure |H| < g and 7 = inf{t > 0: B, ¢ H} then

sup E (exp(07H)) < 2

Proof Pick v > 0 so that %7 < 4/3. Clearly,

|H|

1 2 1
2 < | el 2 g« I 2
Felrwr >7) < /H @72 Y=
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if we pick g so that p/(2wy)¥? < 1/4. Using the Markov property as in the
proof of (1.2) in Chapter 3 we can conclude that

Pr(te > ky) = Ex(Pp,(ta > (k — 1)7); 750 > )
1
< Youp By (i > (k= 1))
y

So it follows by induction that for all integers k > 0 we have
1
sgp Pty > ky) < =

Since € is increasing, and %7 < 4/3 by assumption, we have

Egexp(07ar) < D exp(07k) Po((k — 1)y < 7 < k)
k=1

2 74\ 4 & 4 1
< - — = - =
<2 () m-i Remi

Careful readers may have noticed that we left 75 = 0 out of the expected value.
However, by the Blumenthal 0-1 law either P;(7f = 0} = 0 in which case our
computation is valid, or P(rg = 0) = 1 in which case E; exp(67g) = 1. O

Let ¢* = sup, |c(z)|. By (6.3a), we can pick rg so small that if T}, = inf{¢ :
|B: — By| > r} and r < rq, then E; exp(c*Tr) < 2 for all z.

(6.3b) Lemma. Let 26 < rq. If D(2,26) C G and y € D(z,6), then
w(y) < 24+2uw(z)
The reason for our interest in this is that it shows w(z) < oo implies w(y) < oo
for y € D(z,$).
Proof If D(y,r) C G, and r < rg then the strong Markov property implies
w(y) = Eylexp(er,)w(B(T:))] < Eylexp(c" T )w(B(T:))]
=BlepET) [ w@mE)<2 [ )
aD(y ,T) e

D(y,r)

where  is surface measure on 8 D(y, r) normalized to be a probability measure,
since the exit time, Ty, and exit location, B(T}), are independent.
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If § < ro and D(y,6) C G, multiplying the last inequality by r*! and
integrating from 0 to & gives

5¢ 1
() <2 — / w(z) dz
D(y,8)

04

where g, is the surface area of {z : |z| = 1}. Rearranging we have

d
* Ly o w227 )

where C, = d/o4 is a constant that depends only on d.
Repeating the first argument in the proof with y = £ and using the fact
that cp, > —c*T, gives

w(z) = Eglexp(er, Jw(B(T:))] 2 Ex[exp(—c" T, )w(B(T;))]

= E:[exp(—c"T})] /aD(:c N w(z)n(dz)

Since 1/z is convex, Jensen’s inequality implies
Elexp(—c'T;)] > 1/Eg[exp(c*T;)] > 1/2

Combining the last two displays, multiplying by r9~!, and integrating from 0
to 26 we get the lower bound

(25)d -1 1 /
e w(z) > 27— w(z)dz

Rearranging and using D(z,28) O D(y, §), w > 0 we have
5 )

12 w(z)dz

(28)% Jp(y,8) (=)

where again C, = d/o4. Combining (*x) and () it follows that

-1 C,
w(z) > 2 THE /D(y,6) w(z)dz

> 2—1__6.'9__.2—1.‘21,1,( )= 9—(d+2) (v) O
- (26)d Co y)= w\y

(4) w(z) > 2°

(6.3b) and a simple covering argument lead to
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(6.3c) Theorem. Let G be a connected open set. If w % co then

w(z) <oo forallze G

Proof From (6.3b), we see that if w(z) < o0, 26 < rg, and D(z,26) C G, then
w < 00 on D(z,6). From this result, it follows that Gy = {z : w(z) < oo} is
an open subset of G. To argue now that Gy is also closed (when considered as
a subset of G) we observe that if 26 < ro, D(y, 36) C G, and we have z, € Go
with z, — y € G then for n sufficiently large, v € D(zy,, §) and D(z,,28) C G,
so w(y) < co. o

Before we proceed to the uniqueness result, we want to strengthen the last
conclusion.

(6.3d) Theorem. Let G be a connected open set with finite Lebesgue measure,
|G| < o0. If w # oo then
sup w(z) < oo
E

Proof Let K C G be compact so that |G— K| < u the constant in (6.3a) for
6 = c*. For each z € K we can pick a é; so that 26; < rp and D(z,26;) C G.
The open sets D(z, §;) cover K so there is a finite subcover D(z;, 6:,),1 <i < I
Clearly,

sup w(z;) < oo

1<i<T

(6.3b) implies w(y) < 29+%w(z;) for y € D(z, 6z,), s0

M = sup w(y) < oo
yeK

If y e H= G- K, then E,(exp(c*t#)) < 2 by (6.32) so using the strong
Markov property

w(y) E, (eXp(CTH) TH = T) + Ey (exp(cTH)w(BTH) B, € I&)
<2+ ME, (exp(csy, ); Bryy € K) < 24+2M O

With (6.3d) established, we are now more than ready to prove our unique-
ness result. To simplify the statements of the results that follow we will now
list the assumptions that we will make for the rest of the section.

(Al) G is a bounded connected open set.

(A2) f and c are bounded and continuous.
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(A3) w # co.
(6.3) Theorem. If there is a solution of (6.1) that is bounded, it must be

’U(:t:) = E,,(f(BT)eXp(CT))

Proof (6.2) implies that M, = u(B,)exp(c;s) is a local martingale on [0, 7).
Since f, ¢, and u are bounded, letting s T 7 At and using the bounded conver-
gence theorem gives

w(z) = Ex(f(Br) exp(cr); 7 < t) + Ex(u(Br) exp(ce); 7> 1)

Since f is bounded and w(z) = E, exp(c;) < oo, the dominated convergence
theorem implies that as t — oo, the first term converges to E.(f(B.)exp(c,)).
To show that the second term — 0, we begin with the observation that since
{r. > t} € F, the definition of conditional expectation and the Markov property
imply

Ez(u(By)exp(cr); 7 > t) = Ex(Ex(u(Bi)exp(c, )| Fr); 7 > t)
= Ez(u(B:) exp(c)w(B:); T > t)

Now we claim that forally € G
w(y) > exp(—c")P(t<1)>e>0
The first inequality is trivial. The last two follow easily from (A1). See the first
display in the proof of (1.2) in Chapter 3.
Replacing w(B;) by ¢,

E-(|u(B:)| exp(ce); 7 > t) < € 1Ez(|u(By)| expler); T > t)
< €YUl Bz (exp(cs); T > ) — 0
ast — 00, by the dominated convergence theorem since w(z) = E; exp(c;) < o0

and P;(r < o) = 1. Going back to the first equation in the proof, we have
shown u(z) = v(z) and the proof is complete. O

This completes our consideration of uniqueness. The next stage in our
program, fortunately, is as easy as it always has been. Recall that here and in

what follows we are assuming (A1)-(A3).

(6.4) Theorem. If v € C?, then it satisfies (6.1a) in G.
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Proof The Markov property implies that on {r > s},

Eg(exp(c;)f (B:)|Fs) = exp(cs) E, (exp(cr) f(Br))
= exp(c,)v(B;)

The left-hand side is a local martingale on [0, 7), so the right-hand side is also.
If v € C?, then repeating the calculation in the proof of (6.2) shows that for
s €[0,7),

.v(B,) exp(cs) — v(Bp) = /0J (%Av + cv) (B:) exp(cy )dr

+ a local martingale

The left-hand side is a local martingale on [0, 7), so the integral on the right-
hand side is also. However, the integral is continuous and locally of bounded
variation, so by (3.3) in Chapter 2 it must be = 0. Since v € C? and c is
continuous, it follows that %Av + cv =0, for if it were # 0 at some point then
we would have a contradiction. |

Having proved (6.4), the next step is to consider the boundary condition.
As in the last two sections, we need the boundary to be regular.

(6.5) Theorein. v satisfies (6.1b) at each regular point of G.

Proof Let y be a regular point of G. We showed in (4.5a) and (4.5b) that
if £, — y, then P; (t < §) — 1 and P, (B, € D(y,8)) — 1for all § > 0.
Since c is bounded and f is bounded and continuous, the bounded convergence
theorem implies that

Bz (exp(c;)f(Br);T < 1) — f(y)

To control the contribution from the rest of the space, we observe that if || < M
then using the Markov property and the boundedness of w established in (6.3d)
we have

Ez (exp(c;)f(Br); 7 > 1) < €M |flloo Bz, (w(B1); 7 > 1)
< e flloollllco P, (7 > 1) — 0 o

This brings us finally to the problem of determining when v is smooth
enough to be a solution. We use the same trick used in Section 4.3 to reduce
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to the previous case. We begin with the identity established there, which holds
for all ¢ and Brownian paths w and, hence, holds when ¢ = 7(w)

exp ( /0 ’ c(B,)ds) =14 /0 " o(B.) exp ( / ’ c(B,)dr) ds

Multiplying by f(B.) and taking expected values gives

o) = Bf B+ [ Be (e(Beww ( [ elBar) 1B e ds

Conditioning on F; and using the Markov property, we can write the above as

v(z) = E-f(B:) + /000 Ez(c(Bs)v(Bs); 7> s)ds
= v1(z) + vo(z)

The first term, v;(z), is C* by (4.6). The second term is

va(z) = Bx ( /0 " o(B)w(B,) ds)

so if we let g(z) = c(z)v(z) then we can apply results from the last section. If ¢
and f are bounded and w % oo, then v is bounded by (6.3d), so it follows from
results in the last section that v, is C! and has a bounded derivative.

Since v; € C™ and G is bounded, it follows that v is C* and has a bounded
derivative. If ¢ is H6lder continuous, then g(z) = c¢(z)v(z) is Holder continuous,
and we can use (5.6b) from the last section to conclude v, € C? and hence

(6.6) Theorem. If in addition to (A1)-(A3), c is Holder continuous, then
v € C? and, hence, satisfies (6.1a).

C. Applications to Brownian Motion

In the next three sections we will use the p.d.e. results proved in the last
three to derive some formulas for Brownian motion. The first two sections are
closely related but the third can be read independently.
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4.7. Exit Distributions for the Ball

In this section, we will use results for the Dirichlet problem proved in Section
4.4 to find the exit distributions for D = {z : |z| < 1}. Our main result is

(7.1) Theorem. If f is bounded and measurable, then

) Bs= [ =L s)ma)
where 7 is surface measure on 8D normalized to be a probability measure.

Proof An application of the monotone class theorem shows that if (x) holds
for f € C* it is valid for bounded measurable f. In view of (4.3), we can prove
(¥) for f € C* by showing that if k,(z) = (1 — |z|?)/|z — y|¢ and

v(z) = { Jop ky(2)f(y)m(dy) ze€ D
(z) z€dD

then v solves the Dirichlet problem (4.1):

(7.2a) In D, ve C? and Av=0.
(7.2b) At each point of 8D, v is continuous and v(z) = f(z).

The first, somewhat painful, step in doing this is to show
(7.3) Lemma. If y € 8D then Ak, = 0in D.

Proof To warm up for this, we observe
» 2\P/2 p—2
Dilz -yl = Di(} (e; — 3)?) =plo—yP (e — )
J

so taking p = —d we have

—d(z; — y;)

1
D;iky(z) = (—2z;) - E:_yl—d +(1- |2’|2) : |z — yld+2

Differentiating again and using our fact with p = —(d 4 2) gives

1 —d(zi — ¥
Diiky(z) = (-2) - [E3E] +2-(-2z;) - Te (_ y|d+2)

+ (- oy { SRl

lo—yl#tt T e —y|*+?
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Summing the last expression on i gives

-2d |z —z -y
oy T e
[ d24+ 2 d2
1—|z|? -
0 (i -
_=2dz—y*  4d(jzfP—z-y) (1—|z[*)-2d
|z — yl|d+2 |z — y|a+2 |z — y|d+2

Aky (:[:) =

If we replace the 1 by |y|?, the expression collapses

2d

Aky(z) = m(—

|z — yl* +2|z]* — 22 -y + |y|* - |2*) = 0

since [z —y|* = (z—y) - (z—y) = |z — 2z -y + [y*.

Inside the open set D, v is a linear combination of the k,. So bringing the
differentiation under the integral (and leaving it to the reader to justify this
using (1.7)) gives

Ay(z) = /aD w(dy) f(y) Aky(z) =0

Thus, v satisfies (7.2a). To check (7.2b), the first step is to show

2P
I(:c):/aDl 2l =1

|z — y|

This is just “calculus,” but we prefer to use a soft noncomputational approach
instead. We begin by observing that I(0) = 1, I is invariant under rotations,
and AI =0in D. (For the last conclusion apply the result for Av with f =1.)
To conclude I = 1 now, let z € D with |z| = r < 1, and let 7 = inf{¢ : |B;| > r}.
Applying (1.2) of Chapter 3 with G = D(0, r) now shows

I(0) = EoI(B,) = I(z)

where the second equality follows from invariance under rotations.
To show that v(z) — f(y) as z — y € 8D, we observe that if z # y,
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From the last calculation it is clear that if § > 0, then the convergence is uniform
for z € By(6) = 8D — D(y, ). Thus, if we let B,(8) = D — By(6), then

/ k:(z)n(dz) - 0 and / k(z)n(dz) <1
Ba(9) B1(8)
since I(z) = 1. To prove that v(z)} — f(y) now we observe
o) = 16 = | [ 1@ @r(e) - 16) [ k@)nta)
<MWl [ k@n(d) + sup |£(2) = £
By (5) 2€B,(8)

The first term — 0 as £ — y, while the sup in the second is small if § is. This
shows that (7.2b) holds and completes the proof of (7.1). O

The derivation given above is a little unsatisfying, since it starts with the
answer and then verifies it, but it is simpler than messing around with Kelvin’s
transformations (see pages 100-103 in Port and Stone (1978)). It also has the
merit of explaining why k,(z) is the probability density of exiting at y: k,
is a nonnegative harmonic function that has k,(0) = 1 and k,(z) — 0 when
z—z€0Dand z #y.

Exercise 7.1. The point of this exercise is to apply the reasoning of this section
to 7 =inf{t: B, ¢ H} where H = {(z,y) : 2 € R4 !,y > 0}. For § e R¥ ! let

Cay

he(z, y) = (Jz — 6|2 + y2)d/2

where Cj is chosen so that [dfhg(0,1) =1 and let

waw=/wm@wv&m

where f is bounded and continuous.

(2) Show that Ahy =0 in H and use (1.7) to conclude Au =0 in H.
(b) Show I(z,y) = [df he(z,y) = 1.

(c) Show that if z, — z, yn — 0 then u(zn,yn) — f(z,0).

(d) Conclude that E(zy)f(B;) = [ d6he(z,y)f(6,0).
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4.8. Occupation Times for the Ball

In the last section we considered how B; leaves D = {z : |z| < 1}. In this section
we will investigate how it spends its time before it leaves. Let 7 = inf{t: B; ¢
D} and let G(z,y) be the potential kernel defined in (2.7) of Chapter 3. That
is,

—|z -yl d=1

G(z,y)={ —Ltloglz—y| d=2

Calz—y>~¢ d>3

where Cg = T'(d/2 — 1)/2x%/2.

(8.1) Theorem. If g is bounded and measurable then

E. / " g(Boydt = [en@ sy

where

Go(a,1) = 6le,) — [ L Glavynten)

Proof Combine (%) in Section 4.5 with (7.1). O

We think of Gp(z,y) as the expected amount of time a Brownian motion
starting at z spends at y before exiting G. To be precise, if A C G then the
expected amount of time B; spends in A before exiting G is [ 4 Gp(z,y)dy.
Our task in this section is to compute Gp(z,y). In d = 1, where D = (—1,1),
(8.1) tells us that

z+1 l—2z
GD(m:y)zG(m:y)_——z_—G(lxy)_ 9 G(_lxy)
z+1 l—2z
=—le—yl+—5—(1-9)+—5-@+1)
=—|z—y|l+1-zy
Considering the two cases z > y and z < y leads to
_J(Q-z)(1+y) -1<y<z<1
(8.2) GD(”’y)‘{(l—y)(Hx) —1<z<y<1

Geometrically, if we fix y then z — Gp(z,y) is determined by the conditions
that it is linear on [0,y] and on [y,1] with Gp(0,y) = Gp(1l,y) = 0, and
Gp(y,y) = 1—y>
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In d > 2, (8.1) works well when y = 0 for then G(z,0) is constant on
{]z] = 1} and the expression in (8.1) reduces to

69 Galan =G Gy = { SN 423

To get an explicit formula for Gp(z,y) in d > 2 for y # 0 we will cheat and
look up the answer. This weakness of character has the advantage of making
the point that Gp(z,y) is nothing more than the Green’s function for D with
Dirichlet boundary conditions. Folland (1976), page 109, defines the Green’s
function for D to be the function K(z,y) on D x D determined by the following
properties:

(A) For each y € D, K(-,y) — G(-,y) is C? and harmonic in D.
(B) For eachy € D, if z, — £ € 8D, K(zn,y) — 0.

Remark. For convenience, we have changed Folland’s notation to conform
to ours and interchanged the roles of z and y. This interchange makes no
difference, since the Green’s function is symmetric, that is, K(z,y) = K(y, z).
(See Folland (1976), page 110.)

(8.4) Lemma. The occupation time density Gp is equal to the Green’s function
K defined above.

Proof Using (8.1) and (7.1) we have

1—|z?
z —y|d

Go(e, )= Gla2) == [ =50 2)aldy) = ~F:G(B,,v)

This is harmonic in D by (4.6). (4.5) implies if z,, — z € 8D, then
E..G(B;,y) — G(=,y) o

Having made the connection in (8.4), we can now find Gp by “guessing
and verifying” functions with properties (A) and (B). To “guess,” we turn to
page 123 in Folland (1976) and find

(8.5) Theorem. Ind > 3,if 0 < |y| < 1 then

Gp(z,y) = G(z,y) — lyI*"*G(z, y/IyI*)
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Proof To check (A) and (B), we observe that if we let A denote the Laplacian
acting in the z variable for fixed y then

() AzG(z,y)=0 forz#y

(2) Since y/|yl> ¢ D, () implies that the second term is harmonic for z € D.

(b) Let £ € 3D. Clearly, the right-hand side is continuous at z. To see that it
vanishes, we note

9. Ca Ca y —(d-2)
G(z,y) - |yl dG(m:y/lylz) = |z — yld-z - |y|d—2 T — W
_ Cd Cd -0 -

T lz—yl4? |zlyl — yly|7e-2

The last equality follows from a fact useful for the next proof:
(8.6) Lemma. If |z| = 1 then |z|y| — yly|~!| = |z — y|.
Proof Using |z|*> = z -z and then |z|* = 1 we have

lzlyl = vly|~ % = |=Ply|> — 2z -y + 1
=yl =2z -y + |z = |z —y/* o
Again turning to page 123 of Folland (1976) we “guess”

(8.7) Theorem. In d =2 if 0 < |y| < 1 then

_]_ _
Gp(z,y) = — (In|z — y| — In|z|y| — ylyl™*[)

Proof Again we need to check (A) and (B).

Y
|yI?

Again the first term is harmonic by (%) since y/|y|> ¢ D. The second term does
not depend on z and hence is trivially harmonic. (b) Let £ € 8D. Clearly, the
right-hand side is continuous at z. The fact that it vanishes follows immediately
from (8.6). |

(2) Go(z,) ~ G(aa) = + (e = 2| +1n 1)
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4.9. Laplace Transforms, Arcsine Law

In this section we will apply results from Section 4.6 to do three things:
(a) Complete the discussion of Example 6.1.

(b) Prove a remarkable observation of Ciesielski and Taylor (1962) that for
Brownian motion starting at 0, the distribution of the exit time from D = {z :
|z] < 1} in dimension d is the same as that of the total occupation time of D
in dimension d + 2.

(c¢) Prove Lévy’s arcsine law for the occupation time of [0, c0).

The third topic is independent of the first two.

Example 9.1. Taked =1, G = (—a,a), ¢(z) = v > 0, and f = 1 in the
problem considered in Section 4.6.

(9.1) Theorem. Let 7 =inf{t: B; & (—a,a)}. If 0 < v < #?/8a?, then

Eoet = cos(z+/27)
‘ cos(ay/27)

If v > #%/8a? then Eze? = co.
Proof By Example 6.1,

u(z) = cos(z+/27)/ cos(ar/27)

is a nonnegative solution of
-;-u” +yu=0 uy(—-a)=u(a)=1

To check that w # oo, we observe that (6.2) implies that M; = u(B;)e”* is a
local martingale on [0,7). If we let T;, be a sequence of stopping times that
reduces M, then

u(z) = E; (u(BTnAn)e'Y(T“A"))
Letting n — oo and noting T, An T 7, it follows from Fatou’s lemma that

u(z) > Eze"”

The last equation implies w # 0, so (6.3) implies the result for v < 2 /8a®.
To see that w(z) = co when v > #*/8a?, suppose not. In this case (6.3)
implies v(z) = E;(f(B-)exp(cr)) is the unique solution of our equation but
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computations in Example 6.1 imply that in this case there is no nonnegative
solution. O

Exercise 9.1. Show that if 8 > 0 then

_ cosh(z+/28)
Bz exp(-F7) = cosh(a\/2_ﬂ—5

Since cos(z) = (%% + e~%%)/2 this is what we get if we set v = — in (9.1).

Example 9.2. Our second topic is the observation of Ciesielski and Taylor
(1962). The proof of the general result, see Getoor and Sharpe (1979), sections
5 and 8, or Knight (1981), pages 88-89, requires more than a little familiarity
with Bessel {unctions, so we will only show that the distribution of the exit
time from (—1,1) in one dimension starting from 0 is the same as that of the
total occupation time of D = {z : |z| < 1} in three dimensions starting from
the origin.

Exercise 9.1 gives the Laplace transform of the exit time from (—1,1) so
we need only compute

o(z) = By exp (—ﬂ /0 ” 19(3,)&)

Of course, we only have to compute »(0) but as in Example 9.1, and Exercise
9.1, we will do this by using a differential equation to compute v(z) for all z.
Several properties of v are immediately obvious (in any dimension d > 3):

(i) Spherical symmetry implies v(z) = f(|z|).

(i1) Using the strong Markov property at the hitting time of D and (1.12) from
Chapter 3 gives forr > 1

() F) = f()+ (A=) 1= 140270 (f(1) - 1)

(iii) The strong Markov property and (6.3) imply that v is the unique solution
of

-;—Av—ﬂvzo forz €D
v(z)=f(1) forze€dD
To express the last equation in terms of f we note that if v(z) = f(|z[) then

Div(z) = f'(I=l)

z
||

1 2
Diiv(z) = f'(|=]) {Ei - ﬁ]s} + f”(lﬂ)f%ﬁ
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Summing over 7 gives

—Av—-f”(l |)+ %z |f’(|1‘|)

Multiplying by 2 we see that f satisfies
11 d—1 1
(b) f (7‘)+‘T'f (r)—=2Bf(r)=0 forr<1

To tie equations (a) and (b) together, we note that by applying the reasoning
in (iii) to D(0,q) with ¢ > 1 and using the proof of (6.6) (which refers us to
(5.6a)) we can conclude

(iv) v is C! and hence f/(r) is continuous at r = 1.

Facts (ii)—(iv) give us the information we need to solve for f at least in
principle: (b) is a second order ordinary differential equation, so if we specify
F(0) = C and f'(0) = 0, the latter from (i), there is a unique solution fc on
[0,1]. Given fc(1), (ii) gives us the solution on [1,00). We then pick C so that
(iv) holds.

To carry out our plan, we begin with the “well known” fact that the only so-
lutions to, (b) which stay bounded near 0 have the form cr*=(¢/ 2)1(4/2)_1(7'\/2_5)
where

SO
L(z) = 2___:0 mil(v+m+ 1)

is one of the happy families of Bessel functions. Letting a = /28 and recalling
I'(z) = (z — 1)T'(z — 1), we see that when d = 3 and hence v = 1/2 the solution
has a simiple form

2. (ar)?™ C(a) .

Having “found” the solution we want, we can now forget about its origins
and simply check that it works. Differentiating we have

fir)y = e )COSh( r)— ( )smh(ar)
f(r)y = ( ) ——sinh(ar) — ( ) osh(ar) + —=* C( ) sinh(ar)
'y + ;f’(r) = ——--(r) sinh(ar) = a*f(r)
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which shows that (b) holds.

To complete the solution, we have to pick C(a) to make f € C*. Using
formulas for f'(r) for r < 1 from the previous display, for r > 1 from (a), and
recalling d = 3, we have

f'(1-) = C(a) cosh(a) — C(a)a~!sinh(a)
f'(14) = ={f(1) = 1} = 1 — C(a)a"" sinh(a)

Solving gives C(a) = 1/cosh(a). Since a = /28 this matches the result in
Exercise 9.1 when z = 0. O

Example 9.3. Our third and final topic is Kac’s (1951) derivation of

(9.2) Lévy’s arcsine law. Let H; = |{s € [0,¢] : B, > 0}|. If 0 < § < 1 then

Po( H, < 6t) = = 2 arcsin(v)

S

Remark. The reader should note that by scaling the distribution of H;/t does
not depend on t, so the fraction of time in [0,¢] that a Brownian gambler is
ahead does not converge to 1/2 in probability as ¢t — co. Indeed r = 1/2 is the
value for which the probability density 1/7\/7(1 —r) is smallest.

Proof For the last equality see the other arcsine law, (4.2) in Chapter 1. To
prove the first we start with

(9-3) Lemma. Let ¢(z) = —a — Bljp,c0)(z) with o, > 0. Suppose v is
bounded, C?, and satisfies

1
§Av+cv =-1

for all z # 0. Then
(o}
v(z) =/ dt e" B e~ PH:
0

Proof Our assumptions about v imply that v"(z) = —2(1 + c¢(z)v(z)) dz in
the sense of distribution. So two results from Chapter 2, the Meyer-Tanaka
formula, (11.4), and (11.7) imply

v(B,)_v(BO)=/0 v’(B,)dB,—/O (1+ ¢(B.)o(B.)) ds
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Letting ¢; = f(; ¢(B;)ds and using the integration by parts formula, (10.1) in

Chapter 2, with X, = v(B;) and Y; = exp(c;), which is locally of bounded
variation, we have

o(Be) exple) = o(Bo) = [ exp(ea)(B) a5,
- [ e+ 4B} i
+ /Ot v( B;s) exp(c,)dc,
So M; = v(B,) exp(c:) + fot exp(c,) ds is a local martingale. Since v is bounded

and ¢; < 0, M; is bounded. As t — oo, exp(c;) < e~ — 0, so using the
martingale and bounded convergence theorems gives

{o v}
v(z) = E- Mo = E;: My = Ex/ exp(cs) ds
0

Plugging in the definition of ¢(z) now and using Fubini's theorem leads to the
formula given above. O

(9.3) tells us that we want to find a bounded C! function » with
’ 1
(a+ﬁ)v=-2-v"+1 z>0

av:-;—v"-l—]. z<0

To solve the equation yv = —v "+ 1 we write v = vgp 4+ v; where vy(z) = 1/v
and note that 1

yu = -vl +1

TV = '2‘1’0

5o we have vo(z) = Ce*=V27 Picking the signs to keep » bounded, we have

oz) = Ae™VAeHA) 4 e 2> 0
BemV2a 4 1 z <0

To find A and B we note that we want v to be C! so

1 1
A+ ——=B+=
+o35-Bte

—AV2(a+pB) =
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It is a little tedious to solve these equations but it is easy to check that

_VatB-va o Je—VetP
(a+B)a oo+ B

gives a solution. What we are interested in is

1 1
+8 Jo(a+B)

To go backwards from here to the answer written in (9.2), we warm up by

changing variables z = 1/27v¢, dz = (1/2)/2v/t dt to get
X =7t bt 2
dt =/ e~ 122y dz
L= a
2 1
v V2 = /=/y

This identity and Fubini’s theorem imply

-(Of+ﬁ)~* e—a(t—3) itd
T - / s t—s bas
_ﬁs
= e—‘"—/ S dsdt
/0 T Jo /s(t—s)

From (9.3), (94), and the uniqueness of Laplace transforms it follows that

(9-4) v(0)=A

Ey exp(—BHy) = ds dt

/\/_t—_s—

and invoking the uniqueness again we have the desired result. O






5 Stochastic Differential Equations

5.1. Examples

In this chapter we will be interested in solving stochastic differential equations
(or SDE’s) that are written informally as

dX, = b(X,)ds + o(X,) dB,

or more formally, as an integral equation:

) Xi=Xo+ /0 b)Y ds + /0 " o(X,).dB;

We will give a precise formulation of (x) at the beginning of Section 5.2.

In (%), B; is an m dimensional Brownian motion, ¢ is a d X m matrix,
and to make the matrix operations work out right we will think of X, b and B
as column vectors. That is, they are matrices of size d x 1, d x 1, and m x 1
respectively. Writing out the coordinates (%) says that for 1 <i<d

1 m 1
X{=X3+/ b;(X,)ds+Z/ 0:;(X,) dBI
0 = Jo

Note that the number m of Brownian motions used to “drive” the equation
may be more or less than d. This generalization does not cause any additional
difficulty, is useful in some situations (see Example 1.5), and will help us dis-
tinguish between o7 which is d x d and 67 ¢ which is m x m. Here o7 denotes
the transpose. of the matrix o.

To explain what we have in mind when we write down (x) and why we want
to solve it, we will now consider some examples. In some of the later examples
we will use the term diffusion process. This is customarily defined to be
a “strong Markov process with continuous paths.” Ilowever, in this section,



178 Chapter 5 Stochastic Differential Equations

the term will be used to mean “a family of solutions of the SDE, one for each
starting point.” (4.6) will show that under suitable conditions the family of
solutions defines a diffusion process.

Example 1.1. Exponential Brownian Motion. Let X; = X exp(ut+0B;)
where X is a real number and B; is a standard one dimensional Brownian
motion. Using It&’s formula

1 1 1
(1.1) X=X, +/ pXsds+ / cX,dB; + -;— / o*X,ds
0 0 0

so X; solves (x) with b(z) = (g + (6%/2))z and o(z) = oz. Exponential
Brownian motion is often used as a simple model for stock prices because it

stays nonnegative and fluctuations in the price are proportional to the price of
the stock.

To explain the last phrase, we return to the general equation (%) and sup-
pose that b and o are continuous. If Xy = z then stopping at ¢t AT, for suitable
stopping times T, T oo, taking expected values in (%) and letting n — oo we
have

1
EX{:m‘+E/ bi(X,) ds
0

So if b; is continuous p
) E EX;'!:O = bi(m)

Because of the last equation, b is called the infinitesimal drift.
To give the meaning of the other coefficient we note that if

a(z) = o(z)o T (z)

then the formula for the covariance of two stochastic integrals, (8.7) in Chapter
2, implies

(¢, X9, Z/ oix(Xs )cr,k(X)ds_/ aij (X2 ds
Using the integration by parts formula

Xixi =:ci:cj+/otX{ dX§+/0th dXi 4+ (X%, XY,
Substituting

dX¥ = b (X,)ds+ ) ouj(X,) dB]
i
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using the associative law, and taking expected values
'y 2 - . t K]
EX;X])y=2'z" + E'/ X1bi(X,)ds
0
t t
+E [ Xiby(Xo) s + B [ aii(X,) ds
0 0

If a;; is also continuous, differentiating gives

d

= E(x;‘xg)L:O = oib(z) + 2'bj(2) + as;(z)

Using EX} = z° + E’f(; bi(X;) ds and differentiating again we get

% (EX,‘EX{) L:o = oiby(z) + 2b;()

Subtracting the last two equations gives

d - .
= (Bxix)) - Ex{EX])| = aij(a)
justifying the name infinitesimal covariance.

When d = 1, we call a(z) the infinitesimal variance and o(z) = y/a(z)
the infinitesimal standard deviation. In Example 1.1, o(z) = oz is pro-
portional to the stock price z. The infinitesimal drift b(z) = (¢ + (62/2))z is
also proportional to z. Note, however, that in addition to the drift g built in to
the exponential there is a drift o%z/2 that comes from the Brownian motion.
More precisely it comes from the fact that e® is convex and hence exp(cB;) is
a submartingale.

Example 1.2. The Bessel Processes. Let W; be a d-dimensional Brownian
motion with d > 1, and X; = |W,|. Differentiating gives

1 f_;i All_d—l
ERREE 1= T

2z;

_|=_L‘T‘ Djilz| =

1
Di|2|=-2—'

So using Ité’s formula

14 { 14
w? | d—1
_ = § : s AW st - —-d
Xt XO H /0 |Ws| d ¢ + 2 /0 |Ws| °
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We will use B; to denote the first term on the right-hand side, since B; is a
local martingale and {B); = ¢, i.e., B; is a Brownian motion by Lévy’s theorem,
(4.1) in Chapter 3. Changing notation now we have

d—1

29X, ds

so (*) holds with b(z) = (d — 1)/2|z| and o(z) = 1.

3
(12) Xt - X() = Bt +/
0

Example 1.3. The Ornstein Uhlenbeck Process. Let B; be a one dimen-
sional Brownian motion and consider

(13) - dXt = —&Xt dt + UdBt

which describes one component of the velocity of a Brownian particle which is
slowed by friction (i.e., experiences an acceleration —« times its velocity X;).
This is one case where we can find the solution explicitly.

t
(1.4) X;=e ™ (Xg +/ e*q dB,)
0

To check this informally, we note that differentiating the first term in the prod-
uct gives —aX; dt and differentiating the second gives odB;. To check this
formally, we use Itd’s formula with

1
fu,v)y = e U=t Vi=Xo+ / e*odB;
0
to conclude , ,
Xi—Xp = / —aX,ds +/ e~ **(e** o) dB;
0 0

which is (1.3) in integral form.
From the representation in (1.4) we get the following useful fact

(1.5) Theorem. When X = z, the distribution of X; is normal with mean
ze~*! and variance o2 fj e~2%" dr.

Proof To see that the integral has a normal distribution with mean 0 and the
indicated variance we use Exercise 6.7 in Chapter 2. Adding e=**X, = e~ *'z
now we have the desired result. |

Example 1.4. The Kalman-Bucy Filter. Consider

dY; = Vidt+ adW;

1.6
(16) dV; = —cV;dt + 0 dB;
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Here V; is an Ornstein-Uhlenbeck velocity process, and Y; is an observation
of the position process subject to observation error described by o dW;, where
W is a Brownian motion independent of B. The fundamental problem here
is: how does one best estimate the present velocity V; from the observation
{Y; : s < #}? This is a problem of important practical significance but not
one that we will treat here. See for example, Rogers and Williams (1987),
p. 327-329, or @ksendal (1992), Chapter VI.

Example 1.5. Brownian Motion on the Circle. Let B; be a one dimen-
sional Brownian motion, let X; = cos B; and Y; =';sin B;. Since X? + Y,Z =1,
(X1, Y2) always stays on the unit circle. Itd’s formula implies that

dXt = —Yt dBt el ';-Xt dt
(1.7) ]

To write this in the form (x) we take

wn=(3f) won=(2)

Note that o is always a unit vector tangent to the circle but we need the drift
b(z,y), which is perpendicular to the circle and points inward, to keep (X3, Y:)
from flying off.

Example 1.6. Feller’s Branching Diffusion. This X; > 0 and satisfies
(18) dXt = ﬁXt dt-i—U\/Xt dBt

To explain where this equation comes from, we recall that in a branching
process, each individual in generation m has an independent and identically
distributed number of offspring in generation m + 1. Consider a sequence of
branching processes {Z%,m > 0} in which the probability of k children is p}
and suppose

' (A1) the mean of p} is 1 4+ (Bn/n) with g, — 8
(A2) the variance of p? is 02 with 02 — o2 > 0
(A3) for any 6 >0, Y1y 5, k2PE — 0.

Since the individuals in generation 0 have an independent and identically dis-
tributed number of children

E(Z7 |2y =nz)=nc- (1-}—5)

var (27|28 =nz) =nz- o2
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So if we let X7 = Z7,,/n then

E(Xf)—2z|X"(0)=2) = 2, %
var (Xfy,| X(0) = 2) = 202 - %

The last two equations say that the infinitesimal mean and variance of the
rescaled process X7 are =8, and zo2. These quantities obviously converge to
those of the process X; in (1.8). In Example 8.2 of Chapter 8, we will show that
under (A1)-(A3) the processes {X}',t > 0} converge weakly to {X;,t > 0}.

Example 1.7. Wright-Fisher Diffusion. This X; € [0,1] and satisfies

(19) dXt = (—CYX: +ﬂ(1—Xt)) dt+\/Xt(].—Xt) dBt

The motivation for this model comes from genetics, but to avoid the details
of that subject we will suppose instead we have an urn with n balls in it that
may be labelled A or a. To build up the urn at time m + 1 we sample with
replacement from the urn at time m. However, with probability «/n we ignore
the draw and place an a in, and with probability #/n we ignore the draw and
place an A in. In genetics terms the last two events correspond to mutations.
Let Z" -be the number of A’s in the urn at time m. Now when the fraction of
A’s in the urn at time 0 is z, the probability of drawing an A on a given trial is

«
Pn=2=2- (1——)-}—(1—::)-2
n n
Since we are sampling with replacement,

(7} 123 = nz) = np
var (Z7 |Z§ = nz) = npa(1 — pn)

If we let X3 = Zf, /n then
n n 1
E(Xl/n—:c‘X (0) = =) = {—az+p(1-2)}- =

X™0) = :c) = pa(l —pn) - %

n
var ( 1/n

Now p, — = as n — o0 so again the infinitesimal mean and variance of X}
converge to those of X; in (1.9) but the rigorous connection has to wait until
Example 8.3 of Chapter 8. This is just one of many of the diffusions that can
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arise from genetics. See Karlin and Taylor (1981), vol. II, pages 176-191 for
some of the others.

5.2. Itoé’s Approach

We begin this section by giving some essential definitions and introducing a
counterexample that will explain the need for some of the formalities. We will
then proceed to our main business: the first existence and uniqueness result for
SDE, which was proved by K. It long before the subject became entangled in
the complications of the general theory of processes.

To finally become precise, a solution to our SDE (%) is a triple (X3, By, Ff)
where X; and B; are continuous processes adapted to a filtration F} so that

(i) B: is a Brownian motion with respect to F¥, i.e., for each s and ¢, By, — By
is independent of F} and is normally distributed with mean 0 and variance s.

(i) X; satisfies

%) X, = X, +/Otb(X,)ds+/Ot o(X.) dB,

We will always assume that o and b are measurable and locally bounded so the
integral exists.

It is easy to see that if the SDE holds for some F} it will hold for .‘F,X’B
the filtration generated by (X;, B:). When X; is adapted to F the filtration
generated by the Brownian motion, then we can take F} = FP and X, is called
a strong solution. It is difficult to imagine how X; could satisfy (x) without
being adapted to F2 but there is a famous example due to H. Tanaka showing
that this can happen.

Eiample 2.1. Let W; be a one dimensional Brownian motion with Wy = 0
and let .
B, = / sgn(W,) dW,
0
where sgn(z) = 1if z > 0, sgn(z) = —1 if £ < 0. Since B; is a local martingale
with (B); =, (4.2) in Chapter 3 implies that B; is a Brownian motion with re-

spect to F}V, the filtration generated by W;. Since sgn(z)? = 1, the associative
law implies that

t t
/ sgn(W,) dB, = / dW, = W,
o o

So W is a solution of (x) with b = 0, o(z) = sgn(z), and Ff¥ = F}¥ = FE.
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To see that W is a not a strong solution we apply the Meyer-Tanaka for-
mula, (11.4) in Chapter 2, with X; = W; and f(z) = |z| to get

4
|W,|—L2=/ sgn(W,) dW, = B,
0

where LY is the local time of |W;| at 0. The occupation time density formula in
(11.7) of Chapter 2, and the continuity of the local time established in (11.8)
of Chapter 2, imply that

13

1
- 26 ]'{IW |<E}d5—-2-z L“da-—rL, ase—0
So L? and hence B; = |W;| — LY is measurable with respect to the filtration
generated by |Wy|, t > 0. However, W; is clearly not adapted to the filtration
generated by |W|. ‘ o

As usual when we have an equation, we are interested in having a unique
solution. For SDE there are several notions of uniqueness. Our first, pathwise
uniqueness holds if whenever X; and X are solutions of (x) with Xpo = Xj =«
driven by the same Brownian motion B;, then with probability one X; = X}
for all ¢ >-0. Here, the filtrations F; and F] are allowed to be different.

(2.1) Theorem. Pathwise uniqueness does not hold in Example 2.1

Proof We observed in Example 2.1 that W was a solution. To show that
—W is also a solution, we note that sgn(—z) = —sgn(z) except when z =0, in
which case the left side is 1 and the right side is —1. So

1 t 1
/ sgn(—W,)dB, = —/ sgn(W,)dB, + 2/ 1w, =0} dB,
0 0 0

To prove that the second integral is 0 (and hence the right-hand side is = —W})
recall that W, is a Brownian motion. Example 3.1 in Chapter 2 1rnphes that
{s : W, = 0} has measure 0, and hence

1 1
E (/ Liw,=0} dB,) = E'/ Liw,=0} ds = E{s<t:W,=0}=0 O
0 0

Turning to positive results:
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(2.2) Theorem. If for all 7, j, =, and y we have |o;;(z) — 0¢;(y)| < K|z — 3|
and |b;(z) — b;(y)| < K|z — y|, then the stochastic differential equation

1 1

) X,=z+ / o(X,)dB, + / b(X,) ds
0 0

has a strong solution and pathwise uniqueness holds.

Proof We construct the solution by a successive approximation scheme that
reduces to the classical Picard iteration method for solving ordinary differential
equations in the special case o = 0. We begin by introducing the notation

14 14
X =Xo+ / o(X,)dB, + / b(X,)ds

to describe one iteration. In words, we use the process {X,,t > 0} as input for
the coefficients o and b, and the output is the process {X;,t > 0} To solve
(%) we begin with the 1n1t1al guess X? = z and define the successive guess by
iteration:

Xrtl =X forn>0

The rest of this section is devoted to proving that this procedure constructs a
strong solution and that pathwise uniqueness holds. To help the reader digest
the argument we have divided it into sections. One of the claims is easy. It is
clear by induction that X} is adapted to FZ.

The basic estimate which is the key to the proof is:
(2.3) Lemma. Let 7 be a stopping time with respect to 7}, let T' < co and let
= (4Td + 16d%)K?. Then
TAL

E ( sup |V — 2,|2) < 2E|Yy — Zo|* + BE Y, — Z,|%ds
0<t<TAT (i}

Proof The inequality is trivial if the right-hand side is infinite so we can
suppose that each term on the right is finite. To begin we recall that (a+5)% <
2a? 4 2b2. Using this twice

(a4+b4¢)? <2a% 4+ 2(b+c)? < 2a% +4b% 4+ 42
So the left-hand side of (2.3) is

tAT 2
< 2E|Yy — Zp|* +4E sup l/ o(Y;) — o0(Z,) dB,
0<t<T | Jo

(a) 2
+4FE sup
0<t<T

/ N MYy = b(2,) ds
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To bound the third term in (a), we observe that the Cauchy-Schwarz inequality
implies that

( /0 T h(Y) — b(22) ds)

Taking supg<;< and using

2 TAT

< /0 T i) — bi(Z))? ds /0 1ds

d
(b) sup [o(t)]* <D sup of(2)
0<t<T o3 0<t<T
with the Lipschitz continuity assumption gives
‘ TAT 2
4E sup / W(Ys)—b(Z,)ds
0<t<T |Jo
d tAT 2
<4EY sup (/ bi(Y) — b,-(z,)ds)
=7 o<t<T \Jo

(© :
TAT
<4T-EY / (Bi(Y,) — bi(2,)) ds
i=1Y0
TAT
<ATdK? E/ Y, — Z,|%ds
0
To bound the second term in (a), let o; be the ith row of o, let
tAT
Mi= [ (@) - a(2)) B,
0

and let 7, = inf{t : |M}| > n} Ar. The L? maximal inequality and the formula
for the variance of a stochastic integral imply that

TAT
E sup (M})*<A4E (M}Arn)z <4FE lo:(Ys) — 0:(Z,)|% ds
0<t<TAT, 0
Letting n — oo, then using (b) and Lipschitz continuity we have
tAT 2
4E sup / (o(Y,) — o(2.)) dB,
0<t<T | Jo
d tAT 2
<4EY sup / (0:(Y:) — 0i(Z,)) - dB,
i=1 0<t<T 1Jo

(d) d TAT
<16EY / |o:(Y,) — 0:(Z.) | ds
i=1 70

TAr
< 16d2K2E / Y, — Z,|2 ds
0
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Combining inequalities (a), (c), and (d) proves (2.3). O

Convergence of the sequence of approximations. Let
At)=FE ( sup |X]' — X;"llz)
0<s<t

and observe that since X2 = X?_,, (2.3) implies that for n > 1

T
(24) Anir(T) < B / An(s)ds

To get started we have to estimate |A1(s)|. Our earlier inequality for squares
implies that for norms |a 4 5% < 2|a|? 4 2|8|2. So we have

X3 = X7 < 2(|o(2)Bs > + [b(=)s[?)
Using the fact that

sup |o(z)B; |—t1/2 e |a'(x)B |
0<s<t

and that the right-hand side has finite expected value we have
Ai(t) < C(t+1%)

Combining this with (2.4) and using induction we have

n+41
(2.5) Aq(t) < B™IC ( + (? _:1),)

From (2.5) we easily get the existence of a limit. Chebyshev’s inequality
shows that

P ( sup |XP — XY > 2-") < 22°AL(T)
0<t<T

(2.5) implies the right-hand side is summable, so the Borel-Cantelli gives

P ( sup |XP —XP7Y>27" i.o.) =0
0<t<T

Since ), 27" < oo it follows that with probability 1, X — a limit X
uniformly on [0, T7.



188 Chapter 5 Stochastic Differential Equations

The limit is a solution. We begin by showing that convergence also
occurs uniformly in L2,

(2.6) Lemma. For all0 <m < n < oo,
n 2
E( sup |X™ —X;‘|2) <| DD A2
0<s<T k=m+1

Proof Let ||Z||2 = (EZ?)Y/2. If n < o0, then it follows from monotonicity of
expected value and the triangle inequality for the norm || - ||» that

| sup_1x —xzi
0<s<T

<
2

0<s<T 2

sup | X§ — X7
k=m+-1 ‘

n n
< ” sup |X* — xk-1 “ = AL(T)V2
—k_z 0<.-;I<)T| : s 2 _zj {T)
=m+1l "="= k=m-+1

Letting n — oo and using Fatou’s lemma proves the result for n = 0. O

To see that X° is a solution, we let ¥; = X and Z, = X° in (2.3) to get

' T
E ( sup |Xxrt! —X,°°|2) < BE/ |XP — X |%ds
0<t<T 0

< BT-E( sup |X;‘—Xf°|2) -0
0<s<T

by (2.6), so X =lim X+ = X¢°.
Uniqueness. The key to the proof is

(2.7) Gronwall’s Inequality. Suppose p(t) < A + Bf; w(s)ds for all t > 0
and ¢(t) is continuous. Then () < AeBt.

Proof If we let (t) = (A + €)eP? then ¢/(t) = B(t) so
t
¥(t) =A+e+B/ P(s) ds
0

Let 7 = inf{t : ©(t) > ¥(t)}. Since ¢ and ¢ are continuous, it follows that if
7 < oo then ¢(7) = 9(7), but this is impossible since

w(r>=A+e+B/OT¢(s>ds>A+B/OT¢(s>dszso(t)
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The last contradiction implies that ¢(t) < (A + €)eB?, but € > 0 is arbitrary, so
the desired result follows. O

To prove pathwise uniqueness now, let (Y, By, F+) and (Z:, B;, F2) be two
solutions of (x). Replacing the F} by F; = F} V F? we can suppose F} = F7.
To prepare for developments in the next section, we will use a more general
formulation than we need now.

(2.8) Lemma. Let ¥; and Z; be continuous processes adapted to F; with
Ys = Zp = z and let 7(R) = inf{t : |Y;| or |Z;] > R}. Suppose that B; is
Brownian motion w.r.t. 7 and that ¥; and Z; satisfy (%) on [0,7(R)]. Then
Y, = Z; on [0, 7(R)].

Proof Let
p(t)y=E ( sup |Y,— 2, I2>

0<s<tAT(R)
Since ¥; and Z; are solutions, (2.3) implies

tAT(R)
sO(t)SBE/ Y, — Z,|?ds
0 R

1 14
< BE/ |Yinr — Zyar|2ds < B/ o(s)ds
0 0
so (2.7) holds with A = 0 and it follows that ¢ = 0. O

The last result implies that two solutions must agree until the first time
one of them leaves the ball of radius R. (Of course this implies that the two
solutions must exit at the same time.) Since solutions are by definition contin-
uous functions from [0,00) — R?, we must have 7(R) T 00 as R | co and the
desired result follows. O

Temporal Inhomogeneity. In some applications it is important to allow the
coefficients b and o to depend on time, that is, to consider

t t
(**) X,=Xg+/ b(s,X,)ds-l—/ o(s,X;)dB;
0 0

In many cases it is straightforward to generalize proofs from (%) to (xx). For
example, by repeating the argument above with some minor modifications one
can show
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(2.9) Theorem. If for all ¢, j, z, y, and T' < co there is a constant Kt so that
for t < T, |oy;(t,0)| < Kr, |b:i(t,0)| < K,

loij(t,z) — 03j(t, )| < Krlz —y| and  [bi(t, z) — bi(t, y)| < K7lz — g

then the stochastic differential equation (**) has a strong solution and pathwise
uniqueness holds.

Comparing with (2.2) one sees that the new result simply assumes Lipschitz
continuity locally uniformly in ¢ but needs new conditions: |oy;(t,0)| < Kt
and |b;(t,0)] < Kr that are automatic in the temporally homogeneous case.
The dependence of the coefficients on ¢ usually does not introduce any new
difficulties but it does make the statements and proofs uglier. (Here it would
be impolite to point to Karatzas and Shreve (1991) and Stroock and Varadhan
(1979).) So with the exception of (5.1) below, where we need to prove the result
for time-dependent coefficients, we will restrict our attention to the temporally
homogeneous case.

5.3. Extensions
In this section we will (a) extend 1t&’s result to coefficients that are only locally
Lipschitz, (b) prove a result for one dimensional SDE due to Yamada and
Watanabe, and (c) introduce examples to show that the results in (2.2) and
(3.3) are fairly sharp.
a. Locally Lipschitz Coefficients

In this subsection we will extend (2.2) in the following way.
(8.1) Theorem. Suppose (i) for any n < co we have

loij(z) — o5 (y)| < Knlz — 3yl |bi(2) — bi(y)| < Knl|z — 9]

when |z|,|y| < n and (ii) there is a constant A < oo and a function ¢(z) > 0 so
that if X is a solution of (%) then e~4*¢(X,) is a local supermartingale. Then

(%) has a strong solution and pathwise uniqueness holds.

(3.2) Theorem. Let a = o007 and suppose

d
Z {2z;b;(z) + ais(z)} < B(1 + |z]?)
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then (ii) in (3.1) holds with A = B and ¢(z) = 1+ |z|%
We begin with the easier proof.

Proof of (3.2) Using Ité’s formula with X? = ¢ and

—BIQ

f(zo,...,zda) =€ o(z1,...,24)

we have

A (X) — p(X0) = =B [ ¢ Pp(X)ds

d 3 d t
. ;01 i
_Bs2xz dXxi - / _B’2d Xt s
+;/0 € s s + 9 ; b € ( )
= local martingale

: d

+/ e Bs (—B‘P(Xa) + Z{ziji(xa) + a;,{X,)}) ds
0

i=1

Our assumption implies that the last term is < 0 so e~ 4*p(X;) is a local
supermartingale. O

Proof of (3.1) Let R < oo, and introduce ¢ and b® with

(2) 0R(z) = o(z) and b%(z) = b(z) for |z| < R

(b) oR(z) = 0 and bR(z) = 0 for || > 2R

(¢) lofi(z) — of W) < K’z — yl, |6 (=) — b ()| < K'|z — o]
For an explicit construction do

Exercise 3.1. Suppose |h(z) — h(y)| < C|z — y| when |z| < R. Let
9R —
h(z) = j—R—lml -h(Rz/|z|) for R<|z|<2R

and h(z) = 0 for |z| > 2R. Show that h is Lipschitz continuous on R? with
constant C = 2Cy + R™!|Rh(0)|.
Fix a Brownian motion and let X;* be the unique strong solution of

3

4
(*n) X = Xo+ / b™(X,) ds + / o™(X,)dB,
0 0
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Let T, = inf{t : |X:| > n}. (2.8) implies that if m < n then X* = X for
t < T;,. From this it follows that we can define a process X so that

X® =XP fort< T,

and X7° will be a solution of (%) fort < Teo = limuteo Tn. To complete the proof
now it suffices to show that T, = oo a.s. If Xy = z then using the optional
stopping theorem at time t ATy, which is valid since the local supermartingale
is bounded before that time, we have

o) > E (e_A(MT")(p(X:AT,, )) > e MP(Ty < 1) dnf (1)

Rearranging gives

P(T, <) < eoa) [ int ()

Since we have supposed ¢(y) — oo as y — oo it follows that P(T, <t) — 0 as
n — oo which proves the desired result. O

In words, what we have shown is that for locally Lipschitz coefficients the
solution is unique up to Ty the exit time from the ball of radius n. If T, T co
we get a-solution defined for all time. If not then the solution reaches infinity
in finite time and we say that an explosion has occurred.

Intuitively (3.2) says there is no explosion if, when |z| is large, the part of
the drift that points out, b(z) - z/|z|, is smaller than C|z| and the variance of
each component is smaller than C|z|2. We do not need conditions on the off
diagonal elements of a;; since the Kunita-Watanabe inequality implies

(X7, X7)l? < (X ) elXT)e

Note that since our condition concerns a sum, a drift toward the origin can
compensate for a larger variance.

Example 3.1. Consider d = 1 and suppose b(z) = —z>. Then (3.2) holds if
a(z) < B(1+ z?%) + 2z*.

The next two examples show that when considered separately the conditions
on b and a are close to the best possible.

Example 3.2, Consider d = 1 and let

o(z) =0, b(z)=(1+|z)® withs>1
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Suppose Xo = 0. b > 0 so t — X is strictly increasing. Let T, = inf{t : X; =
n}. While X, € (n — 1,n) its velocity b(X;) > n so T,, — T, < n~%. Letting
Teo = limT,, and summing we have Ty, < E:’:l n i< oif§>1.

We like the last proof since it only depends on the asymptotic behavior
of the coefficients. One can also solve the equation explicitly, which has the
advantage of giving the exact explosion time. Let ¥; = 1 4+ X;. dY; = Y/ dt so
if we guess ¥; = (1 — at)™? then

ap
dYi/dt = s
Y./ (1— at)pt!

Setting a = 1/p and then p = 1/(6§ — 1) to have p+ 1 = ép we get a solution
that explodes at time 1/a=p=1/(6 —1).

Example 3.3. Suppose b = 0, and ¢ = (1 + |z|)°I. (2.2) implies there is no
explosion when é < 1. Later we will show (see Example 6.2 and (6.3)) that

ind>3 explosion occurs for § > 1
ind <2 no explosionfor any § < co

b. Yamada and Watanabeind =1
In one dimension one can get by with less smoothness in .

(3.3) Theorem. Suppose that (i) there is a strictly increasing continuous func-
tion p with |o(z) — o(y)| < p(|z — y|) where p(0) = 0 and for all € > 0

/Oep'z(u) du = oo

(ii) there is a strictly increasing and concave function £ with |b(z) — b(y)| <
£(|z — y|) where £(0) = 0 and for all e > 0

/ k™ (u) du = 0
0
Then pathwise uniqueness holds.

Remark. Note that there is no mention here of existence of solutions. That is
taken care of by a result in Section 8.4.

Proof The first step is to define a sequence ¢, of smooth approximations of
|z|- Let ay, | 0 be defined by ag = 1 and

Qnal
/ p (u)du=n

n
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Let 0 < 9n(u) < 2p~2(u)/n be a continuous function with support in (as, an-1)
and

[M nl(u)du =1

Since the upper bound in the definition of ¢, integrates to 2 over (an, an_1)
such a function exists. Let

n(z) = /lel dy/oy dz YPn(2)

By definition ¢n(z) = @n(—z), and @} (z) = [7 ¥n(u) du, for £ > 0, so
=0 for|z|<La,
lpn(z)|is { <1 for ap < |z| < ap-1
=1 forap_1<|z|

and it follows that pn(z) T |z| as n T co.
Suppose now that X} and X? are two solutions with X} = XZ = z driven
by the same Brownian motion, and let A; = X} — X2,

13 13
Ac= [{o(xhy—o(xD}dB. + [ (X} - b0t} ds
1] . 1]
so Ité’s formula gives
13 1 13
on(d) = [ ehdyan +3 [ iaaa),
0 0

-/ oL (AN o(XY) = o(X2)} dB,

© + /0 t o (A{b(X)) — b(X2)} ds
+ % /0 (AN o(X7) = o(XD)Y ds
= I(t) + L(t) + L2(t)

Ip(t) is a local martingale so there are stopping times T}, T co with
(b) EL(tATm)=0
To deal with I, in (a) we note that ¢”(z) = ¥a(|z|) < 2p~%(|z[)/n when

|| € (an; an-1) and is 0 otherwise. So using (i)

© <3 [ 20D pgands<t
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For I in (a) we observe |¢}(z)| < 1, so using (ii) and the concavity of x we
have

Bl < | " Blb(x?) — (X2 ds
(d) . '
5/0 En(|A,|)ds§/0 K(E|A,|)ds

Combining (a)~(d) we have

t 1
Epa(Aiat,) < - +/ k(E|A,|) ds
0

Letting m — oo and using Fatou’s lemma, then letting n — co and using the
monotone convergence theorem (recall ¢,(z) > 0 and pn(z) T |z|) we have

t
Blad < [ w(BIA) ds
0
To finish the proof now we prove a slight improvement of Gronwall’s inequality.

(3.4) Lemma. Suppose f(t) < f(; &(f(s)) ds where f is continuous, x(z) > 0 is
increasing for z > 0, and has [ k~*(z)dz = oo for any € > 0. Then f(t) = 0.

Proof Let g(t) be the solution of ¢'(t) = k(g(t)) with g(0) = e. It follows
from the proof of (2.7) that f(t) < g(t). To show that g is small when e is small
note that g is strictly increasing and let h be its inverse. Since g(h(z)) = z, we
have h'(z) = 1/¢'(h(z)) = 1/k(g(h(z)) = 1/&(z) and hence if a < b

b
h(b) — h(a) = / 1/k(z)dz
In words the right-hand side gives the amount time it takes g to climb from
a to b. Taking a = € and b = § > 0, the assumed divergence of the integral
implies that the amount of time to climb to § approaches co as € — 0 and the
desired result follows. O

c. Examples
We will now give examples to show that for bounded coefficients the com-

bination of (2.2) and (3.3) is fairly sharp. In the first case the counterexamples
will have to wait until Section 5.6.
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Example 3.4. Consider b(z) = 0 and o(z) = |z|* A1. (2.2) and (3.3) imply
that
§>1/2 ind=1

pathwise uniqueness holds for { 551 nd>1

Example 6.1 will show

§<1/2 ind=1

thwise uni fails 'f{
pa wise unlqueness alis 1 6 < 1 iIl d > 1

Example 3.5. Consider o(z) = 0, b(z) = |z|° A1, and Xp = 0. If § > 1 then
(2.2) implies that there is a unique solution: X, = 0. However, if § < 1 there
are others. To find one, we guess X; = Ct?. Then

dX,=CpsP™'ds  b(X,)=C%s*®
so to make dX, = b(X,) ds we set

(p—1)=pb ie,p=1/(1-26)
Cp=C’ ie,C=p (-9

If § < 1 then p > 0 and we have created a second solution starting at 0. Once
we have two solutions we can construct infinitely many. Let a > 0 and let

0 t<a
X‘:{C(t—a)?’ t>a

Exercise 3.2. The main reason for interest in (3.3) is the weakening of Lips-
chitz continuity of ¢. However, the condition on b is also an improvement, and
further sharpens the line between theorems and counterexamples. (a) Show
that (ii) in (3.3) holds when C > 0 and

. _ [ Czlog(l/z) forz < e~?
w(z) = {C(e'2 +z) forz>e?

(b) Consider g(t) = exp(—1/t?) with p > 0 and show that ¢'(z) = ¥p(g(t))
where wp(y) = py{log(]_/y)}(?'f‘”/?_

5.4. Weak Solutions

Intuitively, a strong solution corresponds to solving the SDE for a given Brow-
nian motion, while in producing a weak solution we are allowed to construct
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the Brownian motion and the solution at the same time. In signal processing
applications one must deal with the noisy signal that one is given, so strong
solutions are required. However, if the aim is to construct diffusion processes
then there is nothing wrong with a weak solution.

Now if we do not insist on staying on the original space (2, F, P) then we
can use the map w — (Xy(w), Bi(w)) to move from the original space (2, F)
to (C x C,C x C) where we can use the filtration generated by the coordinates
wi(s), wa(s), s < t. Thus a weak solution is completely specified by giving the
joint distribution (X3, B).

Reflecting our interest in constructing the process X; and sneaking in some
notation we will need in a minute, we say that there is uniqueness in distri-
bution if whenever (X, B) and (X', B') are solutions of SDE(b, o) with X, =
X4 = z then X and X’ have the same distribution, i.e., P(X € A) = P(X’ € A)
for all A € C. Here a solution of SDE(b, o) is somethmg that satisfies (x) in the
sense defined in Section 5.2.

Example 4.1. Since sgn(z)? = 1, any solution to the equation in Example
2.1 is a local martingale with (X);.= t. So Lévy’s theorem, (4.1) in Chapter
3, implies that X; is a Brownian motion. The last result asserts that unique-
ness in distribution holds, but (2.1) shows that pathwise uniqueness fails. The
next result, also due to Yamada and Watanabe (1971), shows that the other
implication is true.

(4.1) Theorem. If pathwise uniqueness holds then there is uniqueness in dis-
tribution.

Remark. Pathwise uniqueness also implies that every solution is a strong
solution. However that proof is more complicated and the conclusion is not
important for our purposes so we refer the reader to Revuz and Yor (1991),
p. 340-341.

Proof Suppose (X', B') and (X2, B?) are two solutions with X} = X% = z.
(As remarked above the solutions are specified by giving the joint distributions
(X?, B%).) Since (C,C) is a complete separable metric space, we can find regular
conditional distributions Q*(w, A) defined for w € C and A € C (see Section 4.1
in Durrett (1995)) so that

P(X' € A|BY) = Q'(B, A)

Let Py be the measure on (C,C) for the standard Brownian motion and define
a measure 7 on (C3,C?) by

m(Ao X AL X Az) = / d Po(wo)Q1(wo, A1) Q2(wo, A2)
Ag
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If we let Yy (wp, w1, ws) = wi(t) then it is clear that
(x',BY) £ (Y',Y% and (X2,B%)2(v?,YY)

Take Ay = C or A1 = C respectively in the definition. Thus, we have two solu-
tions of the equation driven by the same Brownian motion. Pathwise uniqueness
implies Y! = Y2 with probability one. (i) follows since

xtiyl_y24 x? o

Let a(z) = 007 (z) and recall from Section 5.1 that

(x4, x7), = /0‘ a;;(X,) ds

We say that X is a solution to the martingale problem for b and a, or
simply X solves MP(b, a), if for each i and j,

14 14
X;—/ bi(X,)ds and X;'X{—/ aij(X,)ds
0 0

are local martingales. The second condition is, of course, equivalent to

14
(X‘,XJ‘),:/ a;;(X,) ds
0

To be precise in the definition above we need to specify a filtration F; for the
local martingales. In posing the martingale problem we are only interested in
the process X3, so we can assume without loss of generality that the underlying
space is (C,C) with X;(w) = w; and the filtration is the one generated by X;.
In the formulation above b and @ = ooT are the basic data for the mar-
tingale problem. This presents us with the problem of obtaining ¢ from a.
To solve this problem we begin by introducing some properties of a. Since
(X%, X7), = (X!,X%);, ais symmetric, that is, a;; = aj;. Also, if z € R? then

2
E z;a;5z; = E Zi0; k0 k2 = E (E Ziff;k) >0
i ik PEANE

So a is nonnegative definite and linear algebra provides us with the following
useful information.

(4.2) Lemma. For any symmetric nonnegative definite matrix a, we can find
an orthogonal matrix U (i.e., its rows are perpendicular vectors of length 1)
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and a diagonal matrix A with diagonal entries Ay > Az... > Ag > 0 so that
a = UTAU. ais invertible if and only if Ay > 0.

(4.2) tells us a = UTAU, so if we want a = ool we can take o = UTVA,
where VA is the diagonal matrix with entries v/2;. (4.2) tells us how to find
the square root of a given a. The usual algorithms for finding U are such that
if we apply them to a measurable a(z) then the resulting square root o(z) will
also. be measurable. It takes more sophistication to start with a smooth a(z)
and construct a smooth o(z). As in the case of (4.2), we will content ourselves
to just state the result. For detailed proofs of (4.3) and (4.4) see Stroock and
Varadhan (1979), Section 5.2.

(4.3) Theorem. If 67 a(z)8 > «|6]? and ||a(z) — a(y)|| < Clz — y| for all z,y
then ||at/%(z) — a'/?(y)|| < (C/2a/?)|z — y| for all z,y.

When a can degenerate we need to suppose more smoothness to get a Lipschitz
continuous square root. -

(4.4) Theorem. Suppose a;; € C? and

T . 2
. <
1n2{<a}(¢1 [0 D" a(:c)@l C|0|

then ||a'/2(z) — a'/?(y)|| < d(2C)*/?|z — y| for all z,y.

To see why we need a € C2 to get a Lipschitz a/2, consider d = 1 and a(z) =
|z|*. In this case o(z) = |z|*/? is Lipschitz continuous at 0 if and only if A > 2.

Returning to probability theory, our first step is to make the connection
between solutions to the martingale problem and solutions of the SDE.

(4.5) Theorem. Let X be a solution to MP(b,a) and ¢ a measurable square
root of a. Then there is a Brownian motion B;, possibly defined on an enlarge-
ment of the original probability space, so that (X, B) solves SDE(b, ).

Proof If ¢ is invertible at each X this is easy. Let ¥ = X} — f; bi(X,)ds
and let

1
(2) Bi=Y [ o7t (x)av]
7 Jo
From the last two definitions and the associative law it is immediate that

14 4
(b) / o(X;)dB, = Yi = Yo = X; — Xo — / b(X,)ds
0 0
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so () holds. The B! are local martingales with (B*, BY); = &;t so Exercise 4.1
in Chapter 3 implies that B is a Brownian motion.
To deal with the general case in one dimension, we let

.={1 ifo(X:)#0
: 0 otherwise

let J, =1—1,, let W, be an independent Brownian motion (to define this we
may need to enlarge the probability space) and let

(@) | B,—/ta(l;:,)dY+/JdW

The two integrals are well defined since their variance processes are < t. B,
is a local martingale with (B); =t so (4.1) in Chapter 3 implies that B; is a
Brownian motion.

To extract the SDE now, we observe that the associative law and the fact
that J,0(X,) = 0 imply

74 74
/ o(X,)dB, = / 1, dv,
0 . 0
14
=Y:—Y(J—/J,dy,
1]

In view of (b) the proof will be complete when we show fot JsdY, = 0. To do

this we note that
t 2 t
E (/ J,dY,) =E’/ de(Y),
0 0
t
= E/ Jio(X,)ds =0
0

To handle higher dimensions we let U(z) be the orthogonal matrices con-
structed in (4.2) and let

13
Z = / U7 (X,)dY,
0

Introducing Kronecker’s 6;; = 1 if ¢ = j and 0 otherwise, we have

4 T
(7,20 = [ T Uha(KoaneXJUE (X ds = [ 6i0()ds
0 ke 0
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Our result for one dimension implies that the Z; may be realized as stochastic
integrals with respect to independent Brownian motions. Tracing back through
the definitions gives the desired representation. For more details see Tkeda and
Watanabe (1981), p. 89-91, Revuz and Yor (1991), p. 190-191, or Karatzas and
Shreve (1991), p. 315-317. o

(4.5) shows that there is a 1-1 correspondence between distributions of so-
lutions of the SDE and solutions of the martingale problem, which by definition
are distributions on (C, C). Thus there is uniqueness in distribution for the SDE
if and only if the martingale problem has a unique solution. Our final
topic is an important reason to be interested in uniqueness.

(4.6) Theorem. Suppose a and b are locally bounded functions and MP(b, a)
has a unique solution. Then the strong Markov property holds.

Proof For each z € R? let P, be the probability measure on (C,C) that gives
the distribution of the unique solution starting from Xy = z. If you talk fast
the proof is easy. If T' is a stopping time then the conditional distribution of
{XT+s,5 > 0} given Fr is a solution of the martingale problem starting from
Xr and so by uniqueness it must be Px(r). Thus, if we let 67 be the random
shift defined in Section 1.3, then for any bounded measurable Y : C — R we
have the strong Markov property

(4.7)  E(Yobr|Fr) = Exn)Y

To begin to turn the last paragraph into a proof, fix a starting point X =
zg. To simplify this rather complicated argument, we will follow the standard
practice (see Stroock and Varadhan (1979), p. 145-146, Karatzas and Shreve
(1991), p. 321-322, or Rogers and Williams (1987), p. 162-163) of giving the
details only for the case in which the coefficients are bounded and hence

M = xi— /b(X)ds
. - . t
My = Xixi - / a;j(X,)ds
0

are martingales. We have added an extra index in the first case so we can refer
to all the martingales at once by saying “the M’ ”

Consider a bounded stopping time 7' and let Q(w, A) be a regular condi-
tional distribution for {Xr4:,t > 0} given Fr. We want to claim that

(4.8) Lemma. For P, a.e. w, all the

MY, — M =M obr
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are martingales under Q(w,-).

To prove this we consider rational s < ¢ and B € F, and note that the optional
stopping theorem implies that if A € Fr then

Es, ({(M;’f — Mi)15) o0 } 14) =0

Letting B run through a countable collection that is closed under intersection
and generates F, it follows that P;, a.s., the expected value of (M;? — M)1p
is 0, which implies (4.8). Using uniqueness now gives (4.7) and completes the
proof. 0

5.5. Change of Measure

Our next step is to use Girsanov’s formula from Section 2.12 to solve martingale
problems or more precisely to change the drift in an existing solution. To
accomodate Example 5.2 below we must consider the case in which the added
drift & depends on time as well as space.

(5.1) Theorem. Suppose X; is a solution of MP(3, a), which, for concreteness
and without loss of generality, we suppose is defined on the canonical probability
space (C,C, P) with 7, the filtration generated by X,(w) = w;. Suppose a~(z)
exists for all z, and that b(s, z) is measurable and has [bTa~1b(s,z)| < M. We
can define a probability measure @ locally equivalent to P, so that under @,
X is a solution to MP(8 + b,a).

Proof Let X, =X, — f; B(X,)ds, let ¢(s,z) = a~}(z)b(s,z) and let

t
Y. =/ c(s, Xs) - dX,
0

which exists since

t

W)= [ S eils, Kodesls, X)X, K,
o 5
t t
=/ cTac(s,X,)dsz/ bTa=1b(s, X,)ds < Mt
0 0

by our assumption that [bTa=b(s,z)| < M. Letting @; and P, be the restric-
tions of Q and P to F; we define our Radon-Nikodym derivative to be

d 1
‘&‘%1 = oy = eXp (Yt - E(Y)t)
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Since (Y); < Mt, (3.7) in Chapter 3 implies that oy is a martingale, and
invoking (12.3) in Chapter 2 we have defined Q.

~To apply Girsanov’s formula ((12.4) from Chapter 2), we have to compute
Al = [J a7  d{a, X7),. 18’ formula and the associative law imply that

. t
a,—l:/ a,dY,:/ a,c(s,X,)-dX,
0 0

So by the formula for the covariance of stochastic integrals
~ t - - .
(o, X?): = Z/ o, ci(s, X, ) d(X*, X?),
T Jo

" t
=/ a,(cTa)j(s,X,)dsz/ a,bj(s, X,)ds
0 0

since ¢(s,z) = a~!(z)b(s, ). It follows that

. 1 . 13
Al =/0 a;ld(a,XJ),z/O bj(s, X, )ds

Using Girsanov’s formula now, it follows that

. t 3 t
%= [t x)ds= X — [ ,00) + by, X,)ds

is a local martingale/Q.
This is half of the desired conclusion but the other half is easy. We note
that under P

(xi,x7y, = /Ot ai;(X,) ds

and (12.6) in Chapter 2 implies that the covariance of X* and X7 is the same
under Q. O

Exercise 5.1. To check your understanding of the formulas, consider the case
in which b does not depend on s, start with the @ constructed above, change
to a measure R to remove the added drift b, and show that dR,/d@; = 1/a; so
R=P.

Example 5.1. Suppose X; is a solution of MP(0, I), i.e., a standard Brownian
motion and consider the special situation in which b(z) = VU(z). In this case
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recalling the definition of ¥; in the proof of (5.1) and applying It6’s formula to
U(X:) we have

Y= /t VU(X,)- X, = U(X,) — U(Xo) - % /t AU(X,)ds

Thus, we can get rid of the stochastic integral in the definition of the Radon-
Nikodym derivative:

Qs

5 =P (U(X,) U(Xo) — = / AU(X,) + |VU(X, )|2ds)

In the special case of the Ornstein-Uhlenbeck process, b(z)
is a positive real number, we have U(z) = —a|z|? AU(z)
expression above simplifies to

—2az, where «
—2da, and the

t
~— = exp (—a|Xt|2 + | Xo|* + dot — / 203 X, |2 ds)
0

In the trivial case of constant drift, i.e., b(z) = p = VU(z) we have U(z) = p-z
and AU(z) = 0so

Q.

: 1
= X, — e X — =|ul?t
5, = P (u = pXo— 5lul )

It is comforting to note that when Xy = z, the one dimensional density functions
satisfy

1 9
QX =) =exp (4w y=peo— Flut?) PXe =)
= (2m1) =% exp(—ly — = — pt]*/22)
as it should be since under @, X; has the same distribution as B; + ut. O

(5.1) deals with existence of solutions, our next result with uniqueness.

(5.2) Theorem. Under the hypotheses of (5.1) there is a 1-1 correspondence
between solutions of MP(f3, a) and MP(f + b, a).

Proof Let P, and P, be solutions of MP(f3,a). By change of measure we can
produce solutions @, and Q2 of MP(8 + b,a). We claim that if P, # P> then
@1 # Q2. To prove this we consider two cases:

CASE 1. Suppose P, and P, are not locally equivalent measures. Then since
Q; is locally equivalent to P;, @, and @2 are not locally equivalent and cannot
be equal.



Section 5.5 Change of Measure 205

Case 2. Suppose P and P, are locally equivalent. In the definition of ay, (Y),
and Y; are independent of P; by (12 6) and (12.7) in Chapter 2, so d@,/dP, =

dQ2/dP, and Q; # Q. O

One can considerably relax the boundedness condition in (5.1). The next
result will cover many examples. If it does not cover yours, note that the main
ingredients of the proof are that the conditions of (5.1) hold locally, and we
know that solutions of MP(b, a) do not explode.

(5.3) Theorem. Suppose X is a solution of MP(0,a) constructed on (C,C).
Suppose that a=!(z) exists, b¥a~'b(z) is locally bounded and measurable, and
the quadratic growth condltlon from (3.2) holds. That is,

d

D {2zbi(z) + aii(2)} < AL+ =)

i=1
Then there is a 1-1 correpondence between solutions to MP(b, a) and MP(0, a).

Remark. Combining (5.3) with (3.1) and (4.1) we see that if in addition to the
conditions in (5.3) we have a = 60T where o is locally Lipschitz, then MP(b, a)
has a unique solution. By using (3.3) instead of (3.1) in the previous sentence

we can get a better result in one dimension.

Proof Let Z and « be as in the proof of (5.1) and let T, = inf{t : |X:| > n}.
From the proof of (5.1) it follows that a(t A Ty,) is a martingale. So if we let
P} be the restriction of P to Fiar, and let dQ}/dP* = a(t A Ty,) then under
Q", X, is a solution of MP(b, a) up to time T;,.

The quadratic growth condition implies that solutions of MP(b, a) do not
explode. We will now show that in the absence of explosions, «; is a martingale.
First, to show a; is integrable, we note that Fatou’s lemma implies

(a) Ea; <liminf E(a(t AT,)) =1
n— 03
where E denotes expected value with respect to P. Next we note that

Eloy — agpr, | = E(|ar — o(TR)|; Tn < 1)

(®) S E(a(Tn);Tn £ty + Fay — E(ay; T > t)

The absence of explosions implies that as n — oo

(©) E((T,); T < 1) = Q™(Ta < t) — 0
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This and the fact that a(t A T,) is a martingale implies
(d) ElaTa>t)=1— E(a(Ty); Tn <t) — 1

as n — oo. (b), (¢}, and (d) imply that a(t ATn) — a; in L. Tt follows (see
e.g., (5.6) in Chapter 4 of Durrett (1995)) that

a(t ATy) = E(ar|Fiat,)

and from this that a,, 0 < s <t is a martingale. The rest of the proof is the
same as that of (5.1) and (5.2). o

Our last chore in this section is to complete the proof of (2.10) in Chapter
1 by showing

(5.4) Theorem. Let B, be a Brownian motion starting at 0, let g be a contin-
uous function with g(0) = 0, and let € > 0. Then

P ( sup |B; —g(t)| < 6) >0
0<t<1

Proof We can find a C! function h with A(0) = 0 and |A(s) — g(s)| < €/2
for s < t, so we can suppose without loss of generality that ¢ € C! and let
b,=g (s) Ifwelet Y; = fo b, dB, and define Q; by

dQ, t 1/‘ 2
- s s T = ba s
ap, = &P (/0 bs dB 5, |bs|* dB

then it follows from (5.1) that under @, B;—g(t) is a standard Brownian motion.
Let G = {|B; — g(s)| < efor s < t}. Exercise 2.11 in Chapter 1 implies that
Q:(G) > 0. It follows from the Cauchy-Schwarz inequality that

Q:(G) = / 99 1gdp < ( / (%%)2 dP,)l/zlo,(G)l/2

To complete the proof now we let E denote expectation with respect to P, and
observe that if |b,| < M for s <t then

/(591) dP, = Eex (/tzb dB /tlb |2ds)
dPt 1= P o 3 3 A 3
:
= exp (/ (8,2 ds) < Mt
0
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since exp (f(; 2b, dB, — (1/2) j; [284]2 ds) is a martingale and hence has ex-

pected value 1. For this step it is important to remember that b, = ¢'(s) is a
non-random vector. 0O

5.6. Change of Time

In the last section we learned that we could alter the b in the SDE by changing
the measure. However, we could not alter o with this technique because the
quadratic variation is not affected by absolutely continuous change of measure.
In this section we will introduce a new technique, change of time, that will allow
us to alter the diffusion coefficient. To prepare for developments in Section 6.1
we will allow for the possibility that our processes are defined on a random time
interval.

(6.1) Theorem. Let X; be a solution of MP(b, a) for t < {. That is, for each ¢
and j,

t :
Xi —/ bi(X,)ds and XiX] —/ a;j(X,)ds
0 0
are local martingales on [0,(). Let g be a positive function and suppose that

1
cr,:/g(X,)ds<oo forallt <(
0

Define the inverse of o by 7, = inf{t : ¢ > s or t > (} and let Y; = X(,) for
s <&=o;. ThenY, is a solution of MP(b/g,a/g) for s <¢§.

Proof We begin by noting.that X; = Y(o:), then in the second step change
variables r = o,, dr = g(X,)ds, X; = X () = Y, to get

14 14
X:—/ b,-(X,)ds:in—/ bi(Y,,) ds
0 ‘ oa‘
=Yi - / b(Y,)/o(Ys) dr
Changing variables t = «, gives
. 174 . Yu
Yi- / bi(Ye)/9(Y,) dr = X, — / bi(X,) ds
1] 1]

Since the v, arestopping times, the right-hand side is a local martingale on [0, §)
and we have checked one of the two conditions to be a solution of MP(b/g, a/g).
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Then MP(0,a) is well posed, i.e., uniqueness in distribution holds and there
is no explosion.

Proof Westart with X; = B;, a Brownian motion, which solves MP(0, I') and
take g(z) = h(z)~!. Since g(B;) < €g' fort < Tr = inf{t : |B:| > R} we have
j;; g(B;s)ds < oo for any t. On the other hand

[ oByas> it 18 < 1} =0
0

since Brownian motion is recurrent, so applying (6.1) we have a solution of
MP(0, a). Uniqueness follows from (6.2) so the proof is complete. O

Combining (6.3) with (5.2) we can construct solutions of MP(b,a) in one
dimension for very general b and a.
(6.4) Theorem. Consider dimension d = 1 and suppose

(i) 0<er<a(y) <Cr <ocowhen |y <R

(ii) b(z) is locally bounded

(iii) = - b(z) + a(z) K A(1 + :cz)
Then MP(b, a) is well posed.
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6.1. Construction

In this section we will take an approach to constructing solutions of
(*) dXt = b(Xt) dt +>U(Xt) dBt

that is special to one dimension, but that will allow us to obtain a very detailed
understanding of this case. To obtain results with a minimum of fuss and in a
generality that encompasses most applications we will assume:

(1D) b and o are continuous and a(z) = ¢?(z) > 0 for all z

The purpose of this section is to answer the following questions: Does a
solution exist when (1D) holds? Is it unique? Does it explode? Our approach
may be outlined as follows:

(i) We define a function ¢ so that if X; is a solution of the SDE on [0,£) then
Y; = ¢(X:) is a local martingale on [0, €).

(i) Our Y; has (Y), = j;) h(Y;) ds so construct ¥; to be a solution of MP(0, )
by time changmg a Brownian motion.

(iii) We define X; = (p‘l(Y,) and check that X; is a solution of the SDE.

To begin to carry out our plan, suppose that X, is a solution of MP(b, a)
fort < &. If f € C?, 1té’s formula implies that for t < &

(11) FX) = F(Xo) = / FX,)dXs + & / FUX)A(X)s

= local mart.+/ Lf(X,)ds
0
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where
(12) Lf(2) = 3a(e)f"(z) +b(z)"(2)

and a(z) = o%(z). From this we see that f(X;) is a local martingale on [0,¢)
if and only if Lf(z) = 0. Setting Lf = 0 and noticing (1D) implies a(z) > 0
gives a first order differential equation for f’

(1.3) (Fy =2

a

Solving this equation we find,

N _ 2b(z) )
o =se ([ 355
and it follows that

s [ ([ 200)

Any of these functions can be called the natural scale. We will usually take
A=0and B=1to get

(1.4) | ¢(m)=/:exp (/Oy 26((2)) )dy

However, in some situations it will be convenient to replace the 0’s at the lower
limits by some other point. Note that our assumption (1D) implies ¢ is C? so
our use of Ité’s formula in (1.1) is justified.

Since ¥; = ¢(X;) is a local martingale, results in Section 3.4 imply that it
is a time change of Brownian motion. To find the time change function we note
that (1.1) and the formula for the variance of a stochastic integral imply

(W)= [ S ),
(1.5) % ’
= /0 ©'(X5)? a(X,)ds = /0 h(Y,) ds
where

h(y) = {¢' (¢~ (¥))a(¢~(y)) > 0 is continuous

So if we let 7z = inf{s : (Y), > t} then W; = Y5, is a Brownian motion run for
an amount of time (Y),.
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To construct solutions of MP(b, a) we will reverse the calculations above:
we will use a time change of Brownian motion to construct a ¥; which solves
MP(0, h) and then let X; = ¢~1(¥;). With Examples 1.6 and 1.7 of Chapter 5
in mind we generalize our set-up to allow the coefficients b and ¢ to be defined
on an open interval (a, 8) with « < 0 < 8. Since ¢'(z) > 0 for all z, the image
of (o, B) under ¢ is an open interval (£,7) with —co < £ <0< r < 0.

Letting W; be a Brownian motion, { = inf{t : W; ¢ ({,7)}, g = 1/h,

t
a',:/g(W,)dsfort<C and v, =inf{t:0;>so0rt>(}
0

Using (6.1) in Chapter 5, we see that Y, = W(,) is a solution of MP(0, ) for
s<E= o¢.

To define X; now, we let 3 be the inverse of ¢ and let X; = (¥;). To
check that X solves MP(b, a) until it exits from («, 3) at time £, we differentiate
©(9(z)) = = and rearrange, then differentiate again to get

/ z) = ]‘
)
P(z) = W¢"(¢(2))¢'(2)
Using the first equality and ¢"(y) = —(2b(y)/a(y))¢'(y), which follows from
(1.3), we have
$(z) = 1 2b(y(z))

(=) a(¥(=)

These calculations show ¥ € C? so Ité’s formula, (1.1), and (1.5) imply that
fort <&

14 1 14
YY) - w) = [ W)Y+ [ I ds
0 0
For the second term we note that combining the formulas for ¢/’ and h gives
(recall ¥ = 1)
1
¥ ()h() = b((v))

To deal with the first term observe that Y; is a solution of MP(0, 1) up to time £
so by (4.5) in Chapter 5 there is a Brownian motion B, with dY, = \/h(Y,) dB,.

Since ¥'(y)\/h(y) = o(¥(y)), letting X; = ¢(Y:) we have for t < ¢

14 4
X,—ng/ cr(X,)dB,-i-/ b(X,)ds
0 0
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The last computation shows that if ¥; is a solution of MP(0, k) then X; =
¥(Y;) is a solution of MP(b, a), while (1.1) shows that if X, is a solution of
MP(b, a) then ¥; = ¢(X:) is a solution of MP(0, h). This establishes there is a
1-1 correspondence between solutions of MP(0, k) and MP(b, a). Using (6.2) of
Chapter 5 now, we see that

(1.6) Theorem. Consider (C,C) and let X;(w) = w;. Let a < B and 74 5) =
inf{X¢(w) ¢ (, 8)}. Under (1D), uniqueness in distribution holds for MP(b, a)
on [O,T(a’ﬁ)).

Using the uniqueness result with (4.6) of Chapter 5 we get

(1.7) Theorem. For each z € («, 8) let P; be the law of X, t < 7(q,p) from
(1.6). If we set X; = A for t > 7(4,5), where A is the cemetery state of Section
1.3, then the resulting process has the strong Markov property.

6.2. Feller’s Test

In the previous section we showed that under (1D) there were unique solutions
to MP(b,a) on [0, 7(a,p)) where 7(q gy = inf{t : X; ¢ (o, 5)}. The next result
gives necessary and sufficient conditions for no explosions, i.e., 74,5y = o0 a.s.
Let

T, =inf{t: Xy =y} forye€(a,p)

T, =limT, and Tp=limT,
ylfl‘;'l y o k y{rﬁl y

In stating (2.1) we have without loss of generality supposed 0 € (o, f).
If you are confronted by an («,8) that does not have this property pick your
favorite v in the interval and translate the system by —y. Changing variables
in the integrals we see that (2.1) holds when all of the 0’s are replaced by 7’s.

(2.1) Feller’s test. Let @(z) be the natural scale defined by (1.4) and let
m(z) = 1/(¢'(z)a(z))-
(a) Px(Tp < To) is positive for some (all) z € (0, 8) if and only if

5
[ dzmia) (016) - (o) < o0
(b) Po(To < Tp) is positive for some (all) z € («, 0) if and only if

| dom(@) (pl) - o)) < o0

o
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(¢} If both integrals are infinite then Py(7(4,5) = 00) =1 for all z € (o, B).

Remarks. If ¢(f8) = co then the first integrand is = co and the integral is co.
Similarly the second integral is co if ¢(a) = —co. The statement in (a) means
that the following are equivalent

(al) Px(Tp < Tp) > 0 for some z € (0, B)
- (22) [P dzm(z)(p(B) — p(z)) < oo
(a3) Po(Tp < Tp) > 0 for all z € (0, B)

Proof The key to the proof of our sufficient condition for no explosions given
in (3.1) and (3.2) of Chapter 5 was the fact that if A is sufficiently large

S, = (1+|X[*)e=** is a supermartingale

To get the optimal result on explosions we have to replace 14 |z|2 by a function
that is tailor-made for the process. A natural choice that gives up nothing is a
function g > 0 so that

e 'g(X:) is a local martingale

To find such a g it is convenient to look at things on the natural scale, i.e., let
Y: = o(X:). Let £ = limg o (z) and let r = limgyg p(z). We will find a C?
function f(z) so that f is decreasing on (£, 0), f is increasing on (0, r) and

e 'f(Y:) is alocal martingale

Denouement. Once we have f the conclusion of the argument is easy, so to
explain our motivations we begin with the end. Let

F@) =limf(y)  f(r) =limf(y)
yit ylr
(2.6) and the calculations at the end of the proof will show that

(2.22) The integral in (a) is finite if and only if f(r) < co.
(2.2b) The integral in (b) is finite if and only if f(£) < co.
Once these are established the conclusions of (2.1) follow easily. Let
T,=inf{t: Y, =y} forye(4r)
T, = limTy and T, = limTy

yIr yit

Ty =Te AT,
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Proof of (¢) Suppose f(£) = f(r) = oo. Let ap <0 < b, be chosen so that

f(ay) = f(bn) = n and let 7, = T,, ATy, . Since e~* f(Y,) is bounded before
time 1, At we can apply the optlonal stopping theorem at that time to conclude
that if y € (an,by), then

‘f(y)

Py <t) < —* =0 asn—0

Letting t — co we conclude 0 = y(r(t r) < 00) = Pymi(y)(T(a,8) < 0)-

Proof of (a) Let 0 <y<r, letb, Trwithbd; >y, andlet m, =To AT}, .
If f(r) = oo, applying the optional stopping theorem at time 7, A ¢, we
conclude that

P(Ty. <T0/\t)<f{b(j’l)) —+0 asn—o

Letting ¢ — co we conclude 0 = P,(T; < Tb) = Pp-1(¢y)(Ts < Tb). This shows
that if (a2) is false then (al) is false, i.e., (al) implies (a2).

If f(r) < oo, applying the optional stopping theorem at time 7, (which is
justified since e~ f(¥;) < f(bn) for t < 1) we conclude that

1<f(y)=E, (e_T"f(YTn))
<1+ f(PE, (e_ﬁn;Tbn < To)

Rearraﬂgin g gives

E, (e_ﬁ";ﬁn < To) 2 ———"f(;lzr; L >0

Noting T, = Tp < oo is impossible, and letting n — co we have
E (e Tn; Ty, <To) L Ey(e™ T T < Th)

which is a contradiction, unless 0 < P,(Ty < Tp) = Py-104)(Tp < Tp). This
shows that (a2) implies (a3) (a3) implies (al) is trivial so the proof of (a) is
complete.

Proof of (b) is identical to that of (a).
The search for f. To find a function f so that e~*f(¥;) is a local mar-

tingale, we apply Itd’s formula to f(z, z2) = e~ f(z2) with X} =t, X? =Y;,
and recall Y7 is a local martingale with variance process given by (1.5), so

)= S() = [ e )+ Ge PR} ds

+ local mart.
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so we want
(2.3) %h(m)f"(m) —f(z)=0

To solve this equation we let fy = 1 and define forn > 1

@ = [ [ s

1.8) in Chapter 4 implies that if we set f(z) = ¥ oo, fa(z) and
n=0

o
(2.5) Z sup |fn(z)] < oo for any R < o0

n=01% <R

then f"(z) = Z;;.oz() fil(z). Using fi(z) = 2fa_1(z)/h(z) for n > 1 and
+/(z) = 0 it follows that

1" — " — 2 n—-1\T 2f(z
e =Y s =3 e = 0

i.e., f satisfies (2.3).
To prove (2.5), we begin with some simple properties of the f,.

(262) fn>0

(2.6b) fn is convex with f}(0) =0

(2.6¢) fn is increasing on (0,7) and decreasing on (£, 0)

Proof Since h(z) > 0 (2.6a) follows easily by induction from the definition

in (2.4). Using (2.6a) in the definition, (2.6b) follows. (2.6c) is an immediate

consequence of (2.6b). O
Our next step is to use induction to show

(2.7) Lemma. f,(z) < (fi(z))"/n!, (2.5) holds, and

1+ fi < f < exp(fi)

Proof Using(2.6¢)and (2.6a) the second and third conclusions are immediate
consquences of the first one. The inequality fn(z) < (fi(z))"/n! is obvious if
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n = 1. Using (i) the definition of f, in (2.4), (ii) (2.6¢), (iii) the definition of
f1 and fp, (iv) the result for n — 1, and (v) doing a little calculus, we have

< [[avrua [
= [ i)

fl n-—1 (z n
< [ sty - ()

To complete the proof now we only have to prove (2.2a) and (2.2b). In
view of (2.7) it suffices to prove these results with f replaced by f;. Changing
variables z = ¢(v), dz = ¢'(v) dv then y = p(u), dy = ¢'(u) du we have

z y 9
fiw= [ ay [ o OENRI0)

ﬁ/xdy /¢(y)dv;—(—;§m
- (x)‘“‘“")/ i )

Letting z T r and using Fubini’s theorem

h) = /ﬁ P o) (v)/ du'()
) / dvm(v) (¢(8) — ¢ (v))

A similar argument shows that the second expression in (2.1) is (except for a
factor of 2) f; (£} and the proof is complete. O

To see what (2.1) says in a concrete case we consider

Example 2.1. Let o(z) = 1, b(z) = (14 |z[)®/2 where § > 0. When 6§ < 1 the
coefficients are Lipschitz continuous, so there is no explosion. We will now use
(2.1) to reprove that result and show that explosion occurs when 6 > 1. When
y<0,¢'(y) > 1, s0 p(—o0) = —co and the second integral in (2.1) is oco.
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To evaluate the first integral we note that if y > 0

¢'(y) = exp ( /0 (42 dz) = exp (:(I—Jril%giii)

s0 p(00) < oo. To use (2.1) now, we note that a(y) = 1 so m(y) = 1/¢'(y) so
there is no explosion if and only if

Q4+v)*+—1 / —(14u)* 41
oo = / dvexp( 113 ; du exp T35
(14 )8 — (1 4 u)!t?
= d d
/ v / U exp ( T

yl+s _ g1+8
/ dy/ d:cexp( Y )

where in the last step we have changed variables 2 = u+1, y = v+ 1 to get rid
of the 1’s. The next lemma estimates the last expression and shows that it is

<oo if 6>1
=00 if 0<6<L1

(2.8) Lemma. If § > 0,

o 146 _ 146
y‘s/ d:cexp(—l’—l——-——i———)—»l as y — 00
y

(14 6)
Proof Changing variables z = y 4 2y~ we have
‘ oo 146 146 o0 y+zy =t
y —z - s
dz exp (-—-——-————-—) =y / dz exp (—/ w’ dw
'/y 1+6 0 y
-
Since z < fyy+2y w dw < zy~8(y + 2y~ %)® — z as y — oo, the desired result
follows from the dominated convergence theorem. 0O

6.3. Recurrence and Transience

The natural scale, which was used in Section 6.1 to construct one dimensional
diffusions, can also be used to study their recurrence and transience. Let X; be
a solution of MP(b, a) and suppose
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(1D) b and o are continuous with o(z) > 0 for all z

Let a(z) = 0%(z), and let ¢ be the natural scale defined by

Let Ty = inf{t > 0: X: = y} and let 7 = Tq A T;. The first detail is to show

(3.1) Lemma. If a < z < b then P;(r < 00) = 1.

Proof We saw in Section 6.1 that ¥; = ¢(X}) is a solution of MP(0, h) where
h given by (1.5) is positive and continuous. Thus (6.1) in Chapter 5 implies
that Y can be constructed as a time change of Brownian motion, B;:

1
Y, = B(y,) where v, = inf{t: 0¢ > s} and oy = / ds/h(B;)
0

Since Brownian motion will exit (p(a), (b)) with probability one, Y; will exit
(¢(a), ¢(b)) with probability one, and X; will exit (a, b) with probability one.
o ,

With (8.1) established we can study the recurrence and transience as we
did for Brownian motion. ¢(X;a;) is a uniformly bounded martingale, so the
optional stopping theorem implies

0(z) = Ez0(X:) = ¢(a)Po(Ta < Tp) + ¢(8){1 — Po(Tu < T3)}

and solving we have

_ 20 = ¢(=) _ 2(z) = o(a)
6D PE<D=onmv@ P 0w

Letting ¢(o0) = limp—oo ¢(b) and @(—o0) = lims— o (a) (the limits exist
since ¢ is strictly increasing) we have

(8.3) Theorem. Suppose a < z < b.
Pr(Ta < 00) =1 if and only if ¢(c0) = 0.
P:(Ty < oo0) =1 if and only if ¢(—00) = —c0.

In one dimension we say that X is recurrent if P(Ty < co) = 1 for all y. From
(3.3) it follows that
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(3.4) Corollary. X is recurrent if and only if o(R) = R.

This conclusion should not be surprising. Y; = ¢(X;) is a local martingale so
it is a time change of a Brownian motion run for a random amount of time and
if p(R) # R that random amount of time must be finite.

To understand the dividing line between recurrence and transience we con-
sider some examples. We begin by noting that the natural scale only depends
on b and o through the ratio 2b/a.

Exercise 3.1. (i) Show that if b(y) < 0 for y > yo then Pp(Tp < o0) = 1 for

all z > 0. (ii) Show that if b(y)/a(y) > € > 0 for y > yo then P (To < o0) < 1
for all z > 0.

Example 3.1. The exercise identifies the interesting case as being b(y) > 0
with b(y)/a(y) — 0 as y — co. Suppose that for z > 0

2b(z)/a(z) = C(1 4+ z)~" where C,r >0

If r > 1 then o
/ —C(l+2z) Tdz2=-K > -0
0

50 ¢'(y) > e~X for all y > 0 and p(c0) = c0. If r < 1

/(;y —C(14+2)"Tdz= —l-f—; {A+y)t-r-1}

and it follows that
e C
p(00) = / exp (—~—-1 - {Q+y) - 1}) dy < oo
o _

In the borderline case r = 1 the outcome depends on the value of C.

Y
/ —C(142)'dz=-Cln(l +y)
0

sO
_ [z —-c <oo fC>1

=00

To check the last calculation note that Example 1.2 in Chapter 5 shows that
the radial part of d dimensional Brownian motion has b(r)/a(r) = (d — 1)/2r,
while Section 3.1 shows that Brownian motion is recurrent in d < 2 and transient
in d > 2, which corresponds to C <1 and to C > 1 respectively. Sticklers for
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detail may complain that we do not have any Brownian motions defined for
dimensions 2 < d < 3. However, this analysis suggests that if we did then they
would be transient.

Exercise 3.2. Suppose a and b satisfy (1D) and are periodic with period 1,
i.e., a(y+1) = a(y) and b(y+1) = b(y) for all y. Find a necessary and sufficient
condition for X; to be recurrent.

6.4. Green’s Functions

Suppose X; is a solution of MP(b,a), where b and a satisfy (1D). Let a < b
be real numbers, which you should not confuse with the coefficients, let D =
(a,b), and let 7 = inf{t : X; ¢ (a,b)}. Our goals in this section, which are
accomplished in (4.5) and (4.4) below, are to show that (i) if ¢ is bounded and
measurable then

. | “ax)ds = [ Gole ety

and (ii) to give a formula for the Green’s function Gp(z,y). As in the discussion
of (8.1) of Chapter 4, we think of Gp(z, y) as the expected amount of time spent
at y before the process exits D when it starts at . The rigorous meaning of
the last sentence is given by (i).

The analysis here is similar to that in Section 4.5 but instead of the Lapla-
cian, A, we are concerned with

1
Lf(z) = 3a(z)f" @) + b=)f (2)
The first step is to generalize (1.3) from Chapter 3.
(4.1) Lemma. sup;¢(q,p) Ex7 < 0.

Proof Let ¢ be the natural scale defined in (1.4) and consider Y; = ¢(X;).
By (1.5) Y; is a local martingale with (Y); = f(; h(Y,) ds where h(y) is positive
and continuous. To estimate 7 = inf{t : Y; & (p(a), p(b))} we let

v = (p(a) + ¢(b))/2 be the midpoint of the interval,
€= (p(b) — v(a))/2 be half the length of the interval,
p=inf{h(y) : y € (p(a), p(b))} > 0,

f@)= (£ = (z=v)")/p,
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and note that f > 0 in (¢(a), ¢(b)) with f"(z) = —2/p. 1td’s formula implies

f(Y2) — f(Yb) = local mart. — /t ﬁ—(-;i’l ds
0

Our choice of p implies h(y) > p, so f(¥z) + t is a local supermartingale on
[0,7). Using the optional stopping theorem at time 7, A n where 7, = inf {t:
Yi € (pla) + 1/n, p(8) — 1/n)} we have

f(z) 2 Ezf (Yroan) + Ez(1a An)

Since 0 < f(z) < £2/p for = € [p(a), p(b)] we have £2/p > E.(rn An). Now, let
n — oo and use the monotone convergence theorem. O

(4.2) Theorem. Suppose g is bounded. If there is a function v with

() v€ C?, Lv=—gin (a,b)
(ii) v is continuous at a and b with v(a) = v(b) = 0 then

-
v(z) = Ex/ 9(X,)ds
0
Proof Let M;=v(X:)+ f(; g(X,)ds. (i) and (1.1) imply that fort < =

t
v(X1) — v(Xo) = local mart. —/ g(Xs)ds
0

so M; is a local martingale on [0, 7). If v and g are bounded then for ¢t < 7

|M:| < [[olloo + Tlglleo

(4.1) implies that the right-hand side is an integrable random variable so (2.7)
in Chapter 2 and (ii) imply

T
MT = llth = / g(Bt)dt
fTT 0

,
’U(:[:) = E::MO = E:DMT = E:c/ g(Bi) dt ]
0

Solving (4 2). The next two pages will be devoted to deriving the solution
to the equation in (4.2). Readers who are content to guess and verify the answer
can skip to (4.4) now. To solve the equation it is convenient to introduce

m(z) =

1
¢'(z)a(z)
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where ¢(z) is the natural scale and note that

(4.3) zml(m)zd;,-' ( ’t:c) d:c) = a(;) 32{ + a(;) ( (S)) = Lf(=)

since the definition of the natural scale implies ¢"(z)/¢'(z) = —2b(z)/a(z). m
is called the (density function of the) speed measure, though as we will see in
Example 4.1 the rate of movement of the process near z is inversely proportional
to m(z)! To simplify notation and to facilitate comparison with our source for
this material, Karlin and Taylor (1981), Vol. II, we let s(z) = ¢'(z) be the
derivative of the natural scale.

To solve equation Lf = —g now, we use (4.3) to write

(5 %) =@

and integrate to conclude that for some constant 8

1 dv y
;—(;5@ = ﬁ—2/a dzm(z)g(z)

Multiplying by s(y) on each side, integrating y from a to z, and recalling that
v(a) = ( and s = ¢’ we have

@ (@) =B e =2 [ dys) [ dem(e(a)

a

In order to have »(b) = 0 we must have

b y
B= ml dys(!l)/ﬂ dzm(z)g(z)

Plugging the formula for 8 into (a) and writing

we have
b y
o) = 2u(z) [ dys) [ dzm(2)at2)

(b) . .
—2 [ dysty) [ dzm2)ata)
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Breaking the first [ : dy into an integral over [a, z] and one over [z, b] we have

v(z) = 2(u(z) — 1) /x dy s(y) /y dzm(z)g(z)
(C) ba ya
+2u(2) [ dysty) [ dzml2)e(2)

Recalling s(y) = ¢'(y) we have

b T
ue) [ dyst) = SETEED - (60) - ple)) = (1= u(a)) [ dysto)

Multiplying the last identity by 2 [ dz m(z)g(z), we have

2u(z) | " dy s(w) [ dem@ae) =20~ uta) [ dysta) [ dem)atz)

Using this in (c) we can break off part of the second term and cancel with the
first one to end up with

v(z) = 2(1 — u(z)) /x dy s(y) /m dzm(z)g(z)
(d) ba yy
+2uz) [ dys) [ dsm(e)o(s)

Using Fubini’s theorem now gives

v@) =201~ u(@) [ dem(a)o) [ dys)
(e) ba ba
' +2u(a) [ dem(@a(a) [ dys()

If we define G(z, z) to be

2(_.22:_?.@ . - zZ))m(z when z T
(4.4) 200) —pla) PO —#()m(z)  whenz>

o £b) = () hen s < 4
(p(b) o(a) - (p(z) — p(a)) m(z) hen z <

then we have

b
9] v(m):/ G(z,2)g(2)dz
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Combining the calculations above with (4.2) shows

(4.5) Theorem. If g is bounded and measurable then
T b
Ex/ 9(X.)ds =/ G(z,z)g(z) dz
0 a

Proof By the monotone class theorem it suffices to prove the result when g is
continuous. To do this it suffices to show that the v defined in (f) satisfies the
hypotheses of (4.2). To check (ii), we note that as z — a or z — b, G(z,z) — 0,
and G is bounded so the bounded convergence theorem implies v(z) — 0. To
check that v € C? we note that

=2 4(2) = (p18) — (o)) [ (1) — ola) m(2)g() dz

b
+ (@)~ 9l@) [ (90) = pl) ml)g(2) ds

Differentiating and noting that the terms from the limits of the integrals cancel
we have

L2 o) = /(@) [ (6le) - la)) miz)ste) s
b
/(@) [ (o)~ (@) mle(a) ds

Differentiating again we have
A8 y1(a) = —p(2) [ (002) - pl@Imla)e(e) dz

b
+0'@) [ (00) - o) m()a(2) dz
— (@)(p(b) — pla))m(2)a(z)

This shows v € C2. Multiplying the last two equations by b(z) and a(z)/2,
adding, then using Ly = 0 and the definition of m(z) we have

‘P(b);‘P(a)L (z) = ( ) ' () () — v(a)) == 9(z)

¢'(= )a(m)

so Lv = —g. This shows that v satisfies (i) in (4.2) and the result follows. 0O
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Example 4.1. Speed measure? If X has no drift (e.g., Brownian motion or
any diffusion on its natural scale) then ¢(z) = z and (4.4) becomes

r 2) = 2m(z)(b— z)(z — a)/(b—a) whenz>=z
Glz,2) = {Zm(z)(b— z)(z—a)/(b—a) whenz<z

Taking g =1, a =2 — h, and b = = + h the last expression becomes

_Jm)(zc+h—2) whenz>z
Glz,2) = { m(z)(z—z+h) whenz<z

Letting 7(43) = inf{t : X; ¢ (a,b)}, and using (4.5) with ¢ = 1 we have
z+-h

ExTio—nztn) = / (z+h—2z)ym(z)dz
(4.6) z

+ L_h(z — z 4+ h)m(z) dz ~ m(z)h®

as h — 0. Thus m(z) gives us the time that X, takes to exit a small interval
centered at z, or to be precise, the ratio of the time for X; to that for Brownian
motion.

For another interpretation of m note that (11.7) in Chapter 2 implies that
if L7 is the local time at z up to time ¢ then for a bounded measurable g

[ sy = [ gxyaxe= [ gxgeceas

When X; has no drift ¢’(z) = 1 so m(z) = 1/a(z) and taking g(z) = f(z)m(z)
we have

'/m(:t:)L‘,c f(z)dz = /; f(X,)ds

Thus multiplying the local times by m(z) converts them into occupation times.
This and the previous interpretation suggest that it would be natural to call
m(z)dz the occupation measure. However, it is too late to try to change
the original name, speed measure. O

Example 4.2. Second Proof of Feller’s test. Let T, = inf{t : X, = =},
To = limg o Tz and 7 ap) = Ta ATy. We content ourselves to establish a variant
of (b) in (2.1). The first of two steps is

(4.7) Lemma. Let 0 < b < 5. Then

[ 0t~ st m(z)az < o
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if and only if infaca<co Po(Ta < T3) > 0 and supycqco Fo(Ta ATh) < 0.

Proof (3.2) implies

iz, <1 = EO=20

50 infacaco Po(Ta < T3) > 0 if and only if p(a) > —co. Taking g = 1 in (4.5)
and using (4.4) we have

o = o(z) — p(a) [° N () s

(4.8) _ E; (a,b) = 2 (p(b) (p(a) / ((p(b) (p( )) ( )d
M ’ z)—p(a)) m{z) dz

T2 00) — la) / (¢(2) — (a)) m(2) d

The first integral always stays bounded as a | a. So Eqg7(, ) stays bounded as
a — « if and only if ¢(a) > —co and

0
| (o) = pladm(e) ds < oo o

The two conditions in (4.7) are equivalent to Po(To < T3) > 0 and Eo(Ta A
Ty) < 0. To complete the proof now we will show
(4.9) Lemma. If Py(Ty <T3) > 0 then Eo(To ATh) < c0.
Proof Po(T, < T3) > 0 implies Py(To < o0) > 0. Pick M large enough so
that Po(To < M) > € > 0 and that Py(Ty < M) > € > 0. By considering
the first time the process starting from 0 hits z and using the strong Markov

property, it follows that if 0 < z < b then

Py(Ty 1) = Eo(Po(Ty <t —T3);T: < 1)
SPx(n St)PO(T:c St) SP::(Tb St)

A similar argument shows
P(Ta<t)> Py(Ta <t) fora<z<0
Combining the last two results shows that

Po(Ta ATy < M)>e>0 foralla<z <b
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Letting 7 = To AT} and repeating the proof of (1.2) in Chapter 3 now, we have

Po(1> kM) = Ex(Px, (7> (k= 1)M);7 > M)
<( _e)aiu}ibp”(” (k — 1)M)

It follows by induction that for all integers & > 1

sup P(r> kM) < (1-efF
z€(a,b)

Using (5.7) in Chapter 1 of Durrett (1995) now, we get an upper bound on all
the moments of the exit time 7. O

6.5. Boundary Behavior

In Section 6.1 when we constructed a diffusion on a half line or 2 bounded
interval, we gave up when the process reached the boundary and we said that
it had exploded. In this section, we will identify situations in which we can
extend the life of the process. To explain how we might continue we begin with
a trivial example.

Example 5.1. Reflecting boundary at 0. Suppose b(z) = 0, and o(z) is
positive and continuous on [0,00). To define a solution to dX; = o(X;)dB;
with a “reflecting boundary at 0,” we extend o to R by setting o(—z) = o(z),
let Y; be a solution of dY; = o(Y;) dB; on R and then let X; = |Y3].

To use the last recipe in general we start with X, a solution of MP(b, a)
and let ¢ be its natural scale. ¥; = ¢(X;) solves MP(0, ) where

hy) = {£' ™ @) ale™ ()

To see if we can start the process Y; at 0 we extend h to the negative half-line
by setting h(—y) = h(y) and let Z; be a solution of MP(0,h) on R. If we let
m(y) = 1/h(|y|} be the speed measure for Z;, which is on its natural scale, we
can use (4.6) and the symmetry m(—y) = m(y) to conclude

1 ¢ _
‘2‘EOT(— €e) = / (e — y)m(y) dy
0

Changing variables y = ¢(z), dy = ¢'(z) dz, € = p(8) the above

é 1
=/0 (90(5)—90(2))md2
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Now, (i) recalling that the speed measure for X; is m(z) = 1/¢'(z)a(z), and
changing notation ¢’(z) = s(z), and (ii) using Fubini’s theorem, the above

= /: ([;.;@)dz) m(z)dz = ‘/06‘/02 m(z)dzs(z)dz

Introducing M as the antiderivative of m to bring out the analogy with the
condition in Feller’s test (2.1), we have

§
(56.1) EyT_e,e) = 2/0 (M(z) — M(0))s(z) dz

To see that this means that the process cannot escape from 0, we note that
repeating the proof of (4.9) shows

(5.2) Lemma. If Po(r(_¢,) < 00) > 0 then Epr_) < 0.

Proof Pick M so that Py(m(_y < M) = 6 > 0. Using the strong Markov
property as in the proof of (4.9) we first get

sup Pr(r_e> M) <146
T€(—¢€,€)

and then conclude that for each integer £ > 1

sup Pr(m_e)> kM) < (1- 85)F
ze(—¢,€)

from which the desired result follows. [}

Consider a diffusion on (0,r) where r < oo, let g € (0,7), and let

I= / (6(2) — p(0)) m(z) dz
J= /:(M(z) — M(0)) s(z)d=

Feller’s test implies that
when I < oo we can get IN to the boundary point.
The analysis above shows that

when J < 0o we can get OUT from the boundary point.
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This leads to four possible combinations, which were named by Feller as follows

I J name
<o <o regular
<o =oo absorbing
=0 < entrance
=0 =00 natural

The second case is called absorbing because we can get in to 0 but cannot get
out. The third is called an entrance boundary because we cannot get to 0 but we
can start the process there. Finally, in the fourth case the process can neither
get to nor start at 0, so it is reasonable to exclude 0 from the state space. We
will now give examples of the various possibilities.

Example 5.2. Feller’s branching diffusion. Let
dXt = ﬁXt dt + o/ XtdBt

Of course we want to suppose o > 0 but we will also suppose # > 0 since the
calculations are somewhat different in the cases # = 0 and 8 < 0. See Exercise
5.1 below. Using the formula in (1.4), the natural scale is

T y _
o(z) =/0 exp (/0 :,f: dz) dy

T 9
— -2pyfa® 3. — 91 _ ,~2b=/d”
_A e dy = 2ﬁ(1 e )

which maps [0, o) onto [0, 0®/28). The speed measure is

m(z) = = ezﬁ‘c/”z/(azm)

1
¢'(z)a(z)
To investigate the boundary at 0, we note that

I_/l () ) (0)) d —/l_}”(Zﬁx/az 1)d<
—Omm(go(:c @ m_ozﬁme z < o0

since the integrand converges to 1/0° as £ — 0. To calculate J we note that
m(z) ~ 1/(0%z) as z — 0 so M(0) = —oco and J = oo. The combination I < oo
and J = oo says that the process can get into 0 but not get out, so

0 is an absorbing boundary.
To investigate the boundary at co, we note that

/:o m(z)(p(00) — p(z)) dz = '/10o 5%2 e = oo
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To calculate J we note that when 8 > 0, m(z) > 1/(¢z) so M(c0) = oo and
J = oo. The combination I = co and J = oo says that the process cannot get
into or out of oo, so

oo is a natural boundary.

Exercise 5.1. Show that 0 is an absorbing boundary and oo is a natural
boundary when (a) 8 =0, (b) 8 < 0.

Example 5.3. Bessel process. Consider

S
dX; = 5X, dt 4 dB;

Here v > —1 is the index of the Bessel process. To explain the restriction
on v and to prepare for the results we will derive, note that Example 1.2 in
Chapter 5 shows that the radial part of d dimensional Brownian motion is a
Bessel process with ¥ = (d — 1). The natural scale is

p(z) = [exp (—/ly 7/de) dy

_[F , _[Inz ify=1
‘/1 Y dy‘{(ml-v—n/u—v) ify# 1

From the last computation we see that if ¥ > 1 then ¢(0) = —o0 and I = co.
To handle —1 < 4 < 1 we observe that the speed measure

1 Y
™) = @ae =

So taking ¢ = 1 in the definition of I

lzl—’y
I=/ 27dz < o0
o 1—7

To compute J we observe that for any v > —1, M(2) = 27! /(v + 1) and

L2as
J=/ z77dz < o0
o Y+1

Combining the last two conclusions we see that 0 is an

entrance boundary if v €[1,00)
regular boundary if ye€(-1,1)



Section 6.5 Boundary Behavior 233

The first conclusion is reasonable since in d > 2 we can start Brownian motion
at 0 but then it does not hit 0 at positive times. The second conclusion can be
thought of as saying that in dimensions d < 2 Brownian motion will hit 0.

Exercise 5.2. Show that 0 is an absorbing boundary if y < —1. We leave it
to the reader to ponder the meaning of Brownian motion in dimension d < 0.

Example 5.4. Power noise. Consider
dX; = X{ dB;

on (0,00). The natural scale is ¢(z) = z and the speed measure is m(z) =
1/(¢'(z)a(z)) = 272° s0

1 .
_ 1-26 5. _ J <oo ifé<1
I‘/O” d”‘{zoo if 6> 1

When 6 > 1/2, M(0) = —co and hence J = co. When 6 < 1/2

1 ,1-26
= d
J /0 T2 z < 00

Combining the last two conclusions we see that the boundary point 0 is

natural if 6€[l,00)
absorbing if ~ § € [1/2,1)
regular if 6§€(0,1/2)

The fact that we can start at 0 if and only if § < 1/2 is suggested by (3.3)
and Example 6.1 in Chapter 5. The new information here is that the solution
can reach 0 if and only if § < 1. For another proof of that result, recall the
time change recipe in Example 6.1 of Chapter 5 for constructing solutions of
the equation above and do

Exercise 5.3. Consider

To TU
H6=/ B;*1p,<1yds and H{,:/ B7¥1g,51yds
1] 1]

Show that (a) for any § > 0, Pi(Hj < 00) = 1. (b) E1Hs < co when § < 1.
(c) Pi(Hs = 00) =1 when 6§ > 1.

Exercise 5.4. Show that the boundary at co in Example 5.4 is natural if 6§ < 1
and entrance if § > 1.
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Remark. The fact that we cannot reach oo is expected. (5.3) in Chapter 5
implies that these processes do not explode for any §. The second conclusion
is surprising at first glance since the process starting at oo is a time change of
a Brownian motion starting from co. However the function we use in (5.1) of
Chapter 5 is g(z) = 724 so (2.9) in Chapter 3 implies

T1 M
EM/ g(B.;)]-(B_SM) ds = / z=2 . 92zdz
0 1

which stays bounded as M — oo if and only if § > 1.

Exercise 5.5. Wright-Fisher diffusion. Recall the definition given in Ex-
ample 1.7 in Chapter 5. Show that the boundary point 0 is

absorbing if B=0
regular if pe€(0,1/2)
entrance if #>1/2

Hint: simplify calculations by first considering the case @ = 0 and then arguing
that the value of « is not important.

6.6. Applications to Higher Dimensions

In this section we will use the technique of comparing a multidimensional dif-
fusion with a one dimensional one to obtain sufficient conditions (a) for no
explosion, (b) for recurrence and transience, and (c) for diffusions to hit points
or not. Let S, = inf{t : |Xy| = r} and S = lim,_.c Sy. Throughout this
section we will suppose that X; is a solution to MP(&,a) on [0, S ), and that
the coefficients satisfy

(i) b is measurable and locally bounded
(ii) a is continuous and nondegenerate for each z, i.e.,
Zyia;j(m)yi >0 wheny#0
i
The first detail is to show that X; will eventually exit from any ball.

(6.1) Theorem. Let S, = inf{t : |X;| = r}. Then there is a constant C < oo
so that E;S, < C for all z with |z| < r. :

Proof Assumptions (i) and (ii) imply that we can pick an « large so that if
lz| <7

(@) 2 1+ ()|
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for all z with |z| < r. Let h(z) = Z 1 cosh(az;). Using Itd’s formula we have
h(X:) — h(Xo) = / Zasmh(aX')b (X:)ds + local mart.

/ Za cosh(aX?)ai(X,) ds

Noting that cosh(y) > 1 and

: e?
cosh(y) > max (-5 %—) > | sinh(y)|
our choice of & implies

—;— cosh(aX?)a:(X,) + asinh(aXi)b:(X,)

> a cosh(aX?) ( a;: (X, ) — |0:(Xs )|) > acosh(aX?) > o

so h(X;) —tad is a local submartingale on [0, S,). Using the optional stopping
theorem at time S, At we have

0 < h(z) < Ex{h(Xs,ar) — 0d(S: At)}
Since h(X g, at) < dcosh(ar) it follows that
Ez(Sr At) < cosh(ar)/a
Letting t — oo gives the desired result. 0
Remark. Tracing back through the proof shows C = cos“h(ar) /o where « is
chosen so that o
5ai(z) 2 1+ |bi(z)|

To see that the last estimate is fairly sharp consider a special case

Example 6.1. Suppose d = 1, a(z) = 1, and b(z) = —Psgn(z) with g > 0.
The natural scale has

()0(2:) — '/0‘ eEﬁy dy = _2}5 (eEﬁ:c _ 1)
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for £ > 0 and ¢(—=z) = —¢(z), so the speed measure

m(z) = 1 = ¢~ 2lel
(=) ¢'(z)

Using (4.8) now with b = r, a = —r, z = 0 and noting that

p(r) =9(0) _ ,p(0) = (=) _
sO(T) o(-r) sO(T) p(=r) ~

we have .
E()T(_.,.',.) = A .2_ﬂ_ (eZﬁr _ ezﬁz) e=267 g,
0
-—1— 28z} 28r) _—2B)z}
+/_r2ﬁ(—e +e%r) 2Pk d

The two integrals are equal so

Eot(—rry = %/{;" (ezﬁ(r_z) - 1) dz

— 28(r—z) _ £ 1‘= 1 28r _1
(w- ﬁ)o‘ A

To compare with (6.1) now, note that when a(z) = 1 and #(z) = —fBsgn(z), the
remark after the proof says we can pick a = 28 4 2 so the inequality in (6.1) is

cosh((28 + 2)r)
28+ 2

EOT(—r,r) <. 0

a. Explosions

With the little detail of the finiteness of E.S, out of the way we now intro-
duce a comparison between a multidimensional diffusion and a one dimensional
one, which is due to Khasminskii (1960). We begin by introducing three pairs
of definitions that may look strange but are tailor made for computations in
(d), (e), and (a) of the proof of (6.2).

d
a(z) =227 a(z)z and B(z) = Z2m,~b,~(m) + aj;(z)

1/(7‘) =sup {ﬂE g | | = 7‘} and p(r) = sup {a(m) : |:[:|2 - 7-}

p(r) = p(rp(r) and 6(r) = v/2p(r)
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Our plan is to compare R; = | X;|? with
dZ; = p(Z,)dt +0(Z;)dB; on (0, 00)

So we introduce the natural scale p(z) and speed measure m(z) for Z;:

e[ )
o@) = [ sy
m(z) = 17(s(2)6%(2))

In view of Feller’s test, (2.1), the next result says that if Z;, can’t reach oo in
finite time then X; does not explode.

(6.2) Theorem. There is no explosion if

/ " 4z m(z)(p(00) — p(a)) = o0

Proof To prove the result we will let R; = |X;|? and find a function g with
g(r) — oo as r — oo so that e~*g(R;) is a supermartingale while R; > 1. To
see that this is enough, let S, = inf{t : R; = r} and use the optional stopping
theorem at time S; A S, At to conclude that for |z|> 1

9(|zI*) 2 e g(n*) Po(Sn < S1 At)
Letting Seo = limy 1o Sy, then n — co and t — oo we have Pr(Se < 51) = 0.
To define the function g, we follow the proof of (2.1). Let Y; = ¢(Z;),
use the construction there to produce a function f so that e~*f(¥;) is a local
martingale, then take ¢ = f o ¢ where ¢ is the natural scale of Z;. It follows

from our assumption and (2.2a) that g(r) — oo as r — co.
Since g € C? it follows from Itd’s formula that

1
t9(2) ~9(70) = - [ e o(z)ds
0
t
+/ e™*¢'(Z,)i(Zs) ds + local mart.
0

1
+3 [ @)z s
0
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Since e~*g(Z:) is a local martingale it follows that

1

30 (2)8"(2) + w(2)g'(2) = 9(2)
Using the definition of § and g now we can rewrite this as
(a) p(2)g"(2) + v(z)p(2)d'(2) = g(2)

Before plunging into the proof we need one more property which follows from
(2.6¢) and the fact that our natural scale is an increasing function with ¢(1) = 0:

(b) g'(r)>0 forr>1
A little calculus gives

Dig(|z) = ¢'(|z|*) 2z
(c) Dijg(|2l) = ¢"(|e|)aziz; i
Diig(|2l*) = ¢"(|z[*)42F + o' (|=I")2

Using Itd’s formula now we have
t
HoR) — 9(Re) = [ —cg(R.)ds
0

t
+E /e_’g'(R,)Zij;(X,)ds+local mart.
i 0
1 t _—
—s ! 3
+-2- iEj /0 e g"(RAX; X1 a;;(X,) ds

]' ¢ -8 I
+3 2;/0 e *g'(Rs)2a;:(X,) ds

Using the functions a(r) and B(r) introduced above we can write the last equa-
tion compactly as

e *g(R;) — g(Ro) = local mart.

+ /0 e=* {—g(R,) + B(X)g'(R,) + &(X,)g" (R,)} ds

To bound the integral when R, > 1 we use (i) the definition of v and (b), then
(ii) the equation in (a), the fact that g > 0, and the definition of p

(d)

—9(R,) + {g%%g’(&) + 9"(Ra)} a(X,)

(e) < —g(Rs) + {v(Rs)g'(Rs) + ¢"(Rs) } e(X5)
9(R,)

< —g(R)+ {ZZEJ}”(R‘) <0
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Combining (d) and (e) shows that e~*g(R:) is a local supermartingale while
R; > 1 and completes the proof. o

b. Recurrence and Transience

The next two results give sufficient conditions for transience and recurrence
in d > 1. In this part we use the formulation of Meyers and Serrin (1960). Let
z z

dy(z) = 2z - b(:cziz—c;r (a(z))

where tr(a(z)) = 3;a;i(z) is the trace of a. We call d.(z) the effective
dimension at z because (6.3) and (6.4) will show that there will be recurrence
or transience if the dimension is < 2 or > 2 in a neighborhood of infinity.
To formulate a result that allows d.(z) to approach 2 as |z| — oo we need a
definition: 6(t) is said to be a Dini function if and only if

oo
/ —(s—(tldt<oo
l t

In the next two results we will apply the definition to

=m0

To see what the conditions say note that 6(t) = (logt)~? is a Dini function if
p> 1 but not if p < 1 and this corresponds to e(s) = p/logs.

&(2) =

-a(z)

|z |z

(6.3) Theorem. Suppose de(z) > 2(1 + ¢(|z|)) for |z| > R and §(t) is 2 Dini
function, then X, is transient. To be precise, if || > R then Pr(Sg < 0) < 1.

Here S, = inf{t : |X:| = 7}, and being transient includes the possibility of
explosion.

(6.4) Theorem. Suppose d.(z) < 2(1+€(|z|)) for || > R and é(t) is not a Dini
function, then X; is recurrent. To be precise, if |z| > R then P;(Sg < o0) = 1.

Proof of (6.3) The first step is to let

(p(r):/rmexp (—[sf—gzdt) Ei;s-



240 Chapter 6 One Dimensional Diffusions

#() = —exp (-/lr-‘-(tt—)dt> <0

o"(r) = +(r) p(—/lr-e—(—tzdt

which has

t

and hence satisfies
' (r) + (L +e(m)e'(r) =0

Letting R; = |X¢|*> and using Itd’s formula we get the following which we will
use four times below:

(6.5) Lemma. If rg"(r) + v(r)g'(r) = 0 for r € (u?,v?) and ¢'(|z|?) - (de(z) —
27(|z[*)) < 0 when |z| € (u,v), then g(R;) is a local supermartingale while
u< | X <.

Proof Using Itd’s formula with (c) from the proof of (6.2)
t
9(R:) — 9(Ro) = Z/ ¢'(Rs)2Xb:(X,) ds + local mart.

+3 Z "(Ry)4X:X7a;;(X,) ds

ij

+3 ;gl(Ra)zaii(Xa) ds

¢
= local mart. + / 2a(X,) (ng”(R") + gl(R’)de(g{a)) 4
0

Using our two assumptions on g, we get for u < | Xi| < v

R (R) +9'(R) G = ¢ () (S - 0] <0

which proves the result. 0

(6.5) implies that ¢(R:) is a local supermartingale while R, > R?. If
R < r <5 < co then using the optional stopping theorem at time r = S, A S;
((6.1) implies that P;(7 < co) = 1) we see that

o(|2*) > Ezp(R:) 2 ¢(r*)Pa(Sr < S5)
Rearranging gives

Po(S: <S)<(’0(“))
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The upper bound is independent of s and (6.3) follows. O

Proof of (6.4) This time we let

1/)(r)='/lrexp (—'/lsfgt—tzdt) %s-

Since 9'(r) = —¢'(r) we again have
() + (L ) (7) = 0

but this time 9’(r) > 0. Since we have assumed d.(z) < 2(1+¢(|z|)) for |z| > R
it follows from (6.5) that ¥(R:) is a local supermartingale while R; > R2. If
R < r < s < oo using the optional stopping theorem at time 7 = S, A S, ((6.1)
implies that Pr(7 < co) = 1) we see that

¥(12*) 2 E-$(Rr) = $(r*)Po(Sr < 5,) + 9(s*){1 - P(S: < S:)}
Rearranging gives

P(S- < S,) > B(s2) — 9(r2)

Letting s — oo and noting that 1(s?) — oo since §(t) is not a Dini function
gives the desired result. O

¢. Hitting Points

The proofs of (6.3) and (6.4) generalize easily to investigate whether mul-
tidimensional diffusions hit 0. Let Tp = inf{t > 0 : X; = 0}.

(6.6) Theorem. If d.(z) > 2(1 — ¢(|z|)) for |z| < 7 and

1 1
/ exp (—/ E-(-de) iy:oo
0 y z )
(6.7) Theorem. If d.(z) < 2(1 — €(|z|)) for |z| < 7 and

Alexp(—Ll%de) éy‘y<oo

then Pp(Th < o0) =0.

then Pr(To < 00) > 0.
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We have changed the sign of € to make the proofs more closely parallel the
previous pair. Another explanation of the change is that Brownian motion

is recurrent in d < 2 hits points in d < 2
is transient in d > 2 doesn’t hit points in d > 2

so the boundary is now a little below 2 dimensions rather than a little above.

Proof of (6.6) Let

go(r):/jexp (—[lf—gzdt) %s-
(p'(r)z:;—l—exp (-/rlf—(:—)dt>go
(p"(r):l—_r—;(dexp (—[lf—gzdt)

rg!(r) + (1= ()’ () = 0

Letting R; = | X:|* and using (6.5) shows ¢(R;) is a local supermartingale while
R; € (0,7%). If0 < r < s < 7 using the optional stopping theorem at time
=25 AS, wesee that

which has

and hence satisfies

o(|z]?) > Ezp(R;) > 0(r*)P:(Sr < S)

Rearranging gives , ,
Po(Sr < Ss) < @(|2[7) /(r”)

Letting  — 0 and noting ¢(r?) — oo gives
P(To<Sy)=0 for0<|z|<7
To replace S, by oo in the last equation let oo = 0 and for n > 1 let

T = Inf{t > op_1 1 | Xe| =7}

on =inf{t > 7 ¢ | Xe| = 1/2}
The strong Markov property implies that the o, — 7, are i.i.d. so o — 00 as
n — oo. It is impossible for the process to hit 0 in [r,, ¢,] and hitting 0 in

[on, Tn+1] has probability 0 so we have

P(To<o0)=0 for0<|z|<7p



Section 6.6 Applications to Higher Dimensions 243

Using (3.2) and the Markov property now extends the conclusion to |z| > 7. O

Proof of (6.7) This time we let

vr= [ (- [ L) &

Since ¥'(r) = —¢'(r) we have ¥'(r) > 0 and
m"(r) + (1 —e(r))¥'(r) = 0

Letting R; = |X:|* and using (6.5) shows ¥(R;) is a local supermartingale while
R, € (0,7%). If0 < r < s < 7 using the optional stopping theorem at time
T=3S5,AS, wesee that

W(zl’) 2 Ex$(R,) = %(r*)Po(Sr < S) +9(s°){1 = Po(Sr < S)}

Rearranging gives
¥(s?) — b=l
Pr(Sr < S5) > B2 = B(2)

Letting 7 — 0 and noting ¥(r2) — 0 gives
P (To<0)>0 for|z|< 7
Using (3.2) and the Markov property now extends the conclusion to |z| > 7. O

(6.8) Corollary. If (i) d > 3 or (ii) d = 2 and a is Holder continuous then
Pr(Ty < 00) =0 for all z.

Proof Referring to (4.2) in Chapter 5, we can write a(0) = UTAU where A
is a diagonal matrix with entries A;. Let T’ be the diagonal matrix with entries
1/+/X; and let V= UTT. The formula for the covariance of stochastic integrals
implies that X; = VX, has

a0y =vTa(O)v =1

So we can without loss of generality suppose that a(0) = I. In d > 3, the
continuity of a implies d¢(z) — d as £ — 0 so we can take ¢(r) = 0 and the
desired result follows from (6.6). If d = 2 and a is Hélder continuous with
exponent § we can take (r) = Cr®. To extract the desired result from (6.6) we
note that

1 1 1
/ exp (—/ Ccz*! dz) &y = / exp (——C—(l —y‘s)) &y =00
0 v y 0 6 y
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since the exponential in the integrand converges to a positive limit as y — 0. O
It follows from (6.7) that a two dimensional diffusion can hit 0.

Example 6.1. Suppose b(z) = 0, a(0) = I, and for 0 < |z| < 1/e let a(z) be
the matrix with eigenvectors

1
n = m(xl,rz) V2 = l_x—l(—mz; )

and associated eigenvalues
A1=]. ,\2=1—2p/log|:c|

These definitions are chosen so that d.(z) = 2 — 2p/log(|z|) and hence we can
take e(r) = p/log(r). Plugging into the integral

1/e 1/e 1/e
pdz \ dy /' dy
exp | — — = exp (plog|logy|) —
/o ( /y zlogZ> ¥y Jo (plog|logy) y

1/e d

v .

= —_— oo ifp>1
/0 y|log yl? P

Remark. The problem of whether or not diffusions can hit points ha.s.been
investigated in a different guise by Gilbarg and Serrin (1956), see page 315.



7 Diffusions as Markov Processes

In this chapter we will assume that the martingale problem MP(b,a) has a
unique solution and hence gives rise to a strong Markov process. As the title
says, we will be interested in diffusions as Markov processes, in particular, in
their asymptotic behavior as ¢t — oo.

7.1. Semigroups and Generators

The results in this section hold for any Markov process, X;. For any bounded
measurable f, and t > 0, let

T:f(z) = Bz f(X1)
The Markov property implies that
Ez(f(Xs42)|1Fs) = Ex, f(X2) = Ti f(Xs)
So taking expected values gives the semigroup property
(1.1) Toy2f(2) = To(T f)(=)

for s,t > 0. Introducing the norm ||f|| = sup |f(z)| and L= = {f : ||f]| < oo}
we see that T} is a contraction semigroup on L®, i.e.,

(12) ITA < NI

Following Dynkin (1965), but using slightly different notation, we will de-
fine the domain of T" to be

D(T) = {f € L® : |Tf — fI| 0 as t — 0}
As the next result shows, this is a reasonable choice.

(1.3) Theorem. D(T') is a vector space, i.e., if fi, fo € D(T) and ¢;,c3 € R,
cifi+caf2 € D(T). D(T) is closed. If f € D(T) then T, f € D(T) and s — T f
is continuous.
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Remark. Here and in what follows, limits are always taken in, and hence
continuity is defined for the uniform norm || - ||.

Proof Since Ti(c1f1 + cafe) = a1Tifi + caTi fa, the first conclusion follows
from the triangle inequality. To prove D(T') is closed, let f, € D(T) with
Ifa — fll = 0. Let € > 0. If we pick n large ||fn — fl| < €/3. fn € D(T) so
Tt fn — full < €/3 for t < tp. Using the triangle inequality and the contraction
property (1.2) now, it follows that for ¢ < to

NT2f = Fll K N1T2f = Tefull + 1T fa = Full + 11 fn = S
SWfF=Fall+€/3+€¢/3<e

To prove the last claim in the theorem we note that the semigroup and con-
traction properties, (1.1) and (1.2), imply that if s < ¢

IT:f = Tfll = IT(Te=s f = HI < | Ti-sf = S o

Remark. While D(T') is a reasonable choice it is certainly not the only one.
A common alternative is define the domain to be Cp, the continous functions
which converge to 0 at co equipped with the sup norm. When the semi-group
T; maps Cj into itself, it is called a Feller semi-group. We will not follow
this approach since this assumption does not hold, for example, in d = 1 when
oo is an entrance boundary.

The infinitesimal generator of a semigroup is defined by

o hif—=f
Af =lim =3

Its domain D(A) is the set of f for which the limit exists, that is, the f for
which there is a g so that

Thf~f
h

—gn-—ro as h—0

Before delving into properties of generators, we pause to identify some operators
that cannot be generators.

(1.4) Theorem. If f € D(A) and f(zo) > f(y) for all y then Af(zo) <O0.

Proof Since zg is a maximum, T3 f(zo) — f(zo) < 0 so Af(zo) <O0. O
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Example 1.1. The property in (1.4) looks innocent but it eliminates a number
of operators. For example, when k > 3 is an integer we cannot have Af = f(¥),
the kth derivative. To prove this, we begin by noting that gx(z) = 1 — 22 + zF
has a local maximum at 0. From this it follows that we can pick a small é > 0
and define a C* function fi > 0 that agrees with gz on (—6,6) and has a strict
global maximum there. Since Af;:(0) = k! > 0, this contradicts (1.4). O

- Returning to properties of actual generators, we have
(1.5) Theorem. D(A) is dense in D(T). If f € D(A) then Af € D(T),
Tif € D(A), and
d
i [1f = ALf =T Af

1
fnf—f=/0 T,Af ds

Remark. Here we are differentiating and integrating functions that take values
in a Banach space, i.e., that map s € [0,00) into L*. Most of the proofs from
calculus apply if you replace the absolute value by the norm. Readers who want
help justifying our computations can consult Dynkin (1965), Volume 1, pages
19~22, or Ethier and Kurtz (1986), pages 8-10.

Proof Let f € D(T) and g, = [; T,fds. To explain the motivation for the
last definition, we note that

9a 1 re
L_fl<; [ms-sids—o
a a Jy

as a — 0 since f € D(T). Now

a a+h h
Tuo= [ Tonfds=g+ [ Tfds— [ Topds
0 a 0
so0 we have

Thga — 4Ja _

1 at+h
o @i-n|<q [ Ins-Tofl

1 h
+7 [ Imf = fllds =0
0

This shows that g, € D(A) and Ag, = Tof — f. Since the first calculation
shows g,/a € D(T) and converges to f as a — 0 the first claim follows.
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The fact that Af € D(T) follows from (1.3) which implies (T, f — f)/h €
D(T) and D(T') is closed. To prove that T; f € D(A) we note that the contrac-
tion property and the fact that f € D(A) imply

LI =TS _ mf“ _ “T, (Thfh—f _Af) “

TWfi—-f
—-——h————Afﬂ—:»O

<

The last equality shows that AT; f = T;Af and that the right derivative of T3 f
is TyAf. To see that the left derivative exists and has the same value we note
that ’

AL did —T:Af“ < i‘n_h (

BL=L_ar+ 1 -masi — o

Twi—-f
h

- Af) “ + | Te-n(Af — Th AL

<

as h — 0 since f € D(A) and Af € D(T). The final equation in (1.5) is
obtained by integrating the one above it. O

To make the connection between generators and martingale problems we
will now prove

(1.6) Theorem. If f € D(A) then for any probability measure p

t
M = 1K) - £00) - [ Af(x)ds
0
is a P, martingale with respect to the filtration 7; generated by X;.

Proof Since f and Af are bounded, M,f is integrable for each t. Since M/ is
F, measurable
f-,)

E.(M{|F)) = M{ +E, (f(xt) — %) - [ AfCK)ar

By the Markov property the second term on the right-hand side is

- Ex. (f(Xt—-s) — f(Xo) - /Ot—s Af(X;) dr)
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But for any y, it follows from the definition of 7, and Fubini’s theorem that

By (10 = 100 = [ ATGR)dr)

1—3

=T f(y) — fl¥) - T Af(y)dr
0
which is 0 by (1.5) O
Our final topic is an important concept for some developments but will

play a minor role here. For each A > 0 define the resolvent operator for
bounded measurable f by

(o} (o}
Urf(z) = / e M Tyf(2)dt = B, / e MF(X,) dt
0 0
Clearly ||Usf|| < |Ifll/A. A more subtle fact is that
(1.7) Theorem. Uy maps D(T) 1-1 onto D(A). Its inverse is (A — A).

Proof Let Ayf = (Tsf—f)/h. Plugging in the definition of Uy and changing
variables s = t+ h and s =t we have

o0

1
AnUnf =+ e (Tognf — Tof) dt
k Jo

er 1

0 —As 1 B —As
=7 /h e Tj,fds—z/o e~ T, fds

To conclude that Uy f € D(A) and AUy f = AUxf — f we note that

o0 1 h
AUAf—f=A/ e—“T,fds——/ fds
1] h 1]

and compare the last two displays to conclude (using ||T¢f|| < ||f||) that

er —1

14 UNf = (AUAF = Il <

00 h
_,\l/ e”"||f||ds+A/ || f]] ds
h 0
1 [ 1 [*
+3 [[a=eNplds+ 5 [ 1Ts - fllds =0
1] 1]

as h — 0. The formula for AU, f implies that (A — A)Urf = f. Thus Uy is 1-1
and its inverse is A — A.



250 Chapter 7 Diflusions as Markov Processes

To prove that Uy is onto, let f € D(A) and note (1.5) implies
{e o]
DO - AN = [ eMTGs-Af)dt
Ooo {e o] d
= / ,\e—“:r,fdt—/ e M—_Tif dt
0 0 dt

Integrating by parts

o0 d . oo
/ e”“ET,fdtz (e Tf)|, +/ Ae™MT, fdt
0 0

Combining the last two displays shows Ux(Af — Af) = f and the proof is
complete. 0

7.2. Examples

In this section we will consider two families of Markov processes and compute
their generators.

Example 2.1. Pure jump Markov processes. Let (S,S) be a measurable
space and let Q(z,A) : S x & — [0, 00) be a transition kernel. That is,

(i) for each A € S, z — Q(z, A) is measurable

(ii) for each z € S, A — Q(z, A) is a finite measure

(iii) Q(z,{z}) =0
Intuitively Q(z, A) gives the rate at which our Markov chains makes jumps from
z into A and we exclude jumps from z to z since they are invisible.

To be able to construct a process X; with a minimum of fuss, we will
suppose that A = sup,¢s Q(z,S) < co. Define a transition probability P by

P(z,A) = ;Q(::,A) ifzg A
P(z,{z}) = ;(/\ —Q(z,8))

Let t1,t2,... be i.i.d. exponential with parameter A, that is, P(¢; > t) = e~ .
Let T, =t1 +---+1t, for n > 1 and let Typ = 0. Let Y,, be a Markov chain
with transition probability P(z,dy) (see e.g., Section 5.1 of Durrett (1995) for
a defintion), and let

X, =Y, forte [Tn,Tn+1)
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X; defines our pure jump Markov process. To compute its generator we
note that N; = sup{n : T,, <t} has a Poisson distribution with mean At so if f
is bounded and measurable

T.f(5) = Bof () = 1 (z) + Me™ [ Pla,dy)f(s) + O(®)

Doing a little arithmetic it follows that

z’g_(zc_)_t_:i(f_z Y / P(z,dy)(f(y) — f(2))

=t (e™M - 14+ M) f(2)
+ X =1) [ P i) +00)

Since t~}(e~* — 1+ At) —.0, e~** — 1, and P(z,dy) is a transition probability
it follows that

— 0

“ Tf (z) — f(=)
t

Y / P(z,dy)(f(v) — £())

as t — 0. Recalling the definition of P(z, dy) it follows that

(2.1) Theorem. D(A) =D(T) = L* and

Af(z) = / Qz, dy)(f () - f(z))

We are now ready for the main event.

Example 2.2. Diffusion processes. Suppose we have a family of measures
P; on (C, C) so that under F; the coordinate maps X;(w) = w(t) give the unique
solution to the MP(b, a) starting from z, and F; is the filtration generated by
the X;. Let C¥% be the C? functions with compact support.

(2.2) Theorem. Suppose a and b are continuous and MP(b, a) is well posed.
Then C% C D(A) and for all f € C%

Af() = 3 3 0y (2)Di () + 3 bz Dif(2)
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Proof If f € C? then Itd’s formula implies
t
f(X:) — f(Xo) = Z/ D; f(X,)b:(X,) ds + local mart.
i 0
1 14
+33 [ it as () ds

If we let T,, be a sequence of times that reduce the local martingale, stopping
at time t AT, and taking expected value gives

AT,
Eof(Xinr,) - f(z) = 3 Ea /0 D; (X, )b:(X.) ds
11 AT,
+3 ZEx /0 D f(X,)aij (X,) ds
t,3

If f € C% and the coefficients are continuous then the integrands are bounded
and the bounded convergence theorem implies

Ef(X)— f@) = Y /0 D; F(X)bi(X) ds
(2.3) + % ZEx/O Dij f(Xs)aij(X,) ds
= E, /tAf(X,)ds

To prove the conclusion now we have to show that

Ezf(X:) — f(=)
r —Af“ — 0

The first step is to bound the movement of the diffusion process.

(2.4) Lemma. Let » > 0, K C R? be compact, and K, = {y: |z —y| <
r for some £ € K}. Suppose [b(z)| < B and ) ;ai(z) < Aforall z € K. If
we let S, = inf{t: |X; — Xo| > r} then

sup P;(S, St)gt-Z(E-i--é)
zeK T -
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Proof Let h(y) =Y ;(y; — z:)%. Using It6’s formula we have

t
h(X:) — h(Xo) = E / 2(X: — z;)b:(X,) ds + local mart.
B 0

1 1
+§1Z/0 2a;:(X ) ds

Letting T, be a sequence of times that reduce the local martingale, stopping
at t A Sy A T, taking expected value, then letting n — co and invoking the
bounded convergence theoremn we have

E:h{X1rs,) = E; /“‘5' Z {Z(X; —z:)bh:i(X,) + a;;(X,)} ds < 2t(rB + A)

Since h > 0 and h(Xs,) = r? it follows that
r? Pp(S, < t) < 2t(rB + A)
which is the desired result. O

Proof of (2.2) Pick R so that H = {z : |z|] < R — 1} contains the support
of f and let K = {z : |z|] < R}. Since f € C%, and the coefficients are
continuous, Af is continuous and has compact support. This implies Af is
uniformly continuous, that is, given ¢ > 0 we can pick § € (0,1] so that if
|z — y| < 6 then |Af(z) — Af(y)] < €. If we let C =sup, |Af(z)| and use (2.3)
it follows that for ¢ € K

E-f(X1) — f(z)
t

1 14
_4 f(m)] < 7B [ 1AF(X) - Af@)]ds
0
< e+2C sup P(Ss < t)
zeK

Forz ¢ K, f(z) =0 and Af =0. So using (2.3) again gives that for z ¢ K

E-f(X:) — f(=) E-f(X:)
t

t

- 41(0)| =

<CP(Tyg <)

<C sup P(Si1 <)
yeEIK

where the second equation comes from using the strong Markov property at
time Tx. (2.4) shows that

sup Pr(S1 <t)<sup Pr(Ss<t)—0 ast—0
TEAK K
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Since € > 0 is arbitrary, the desired result follows. O

For general b and a it is a hopelessly difficult problem to compute D(A).
To make this point we will now use (1.7) to compute the exact domains of the
semi-group and of the generator for one dimensional Brownian motion. Let C,
be the functions f on R that are bounded and uniformly continuous. Let C2
be the functions f on R so that f, f/, f € Cy.

(2.5) Theorem. For Brownian motion in d = 1, D(T') = C,, D(4) = CZ, and
Af(z) = f"(z)/2 for all f € D(A). :

Remark. For Brownian motion in d > 1, D(A) is larger than C2 and consists
of the functions so that Af exists in the sense of distribution and lies in Cy
(see Revuz and Yor (1991), p. 226).

Proof If t > 0 and f is bounded then writing ps(z,2) for the Brownian
transition probability and using the triangle inequality we have

17ef(2) = Tef @) < A1 [ 1oute,2) = puto, )] d

The right-hand side only depends on |z — y| and converges to 0 as |z —y| — 0
so T f € Cy. If f € D(T) then ||Tzf — f|] — 0. We claim that this implies
f € Cy. To check this, pick € > 0, let t > 0 so that ||T:f — f|| < €/3 then pick é
so that if |z —y| < 6 then |T3f(z) — T:f(y)| < €/3. Using the triangle inequality
now it follows that if |z — y| < § then

1£(z) = fFW < |f(=) = Tef ()| + |Tef (z) — Tef ()| + | Tef (v) — F()l < €

To prove that D(A) = C2 we begin by observing that (3.10) in Chapter 3
implies

Urf(z) = (2A) /2 / e le= IV £ dy

Our first task is to show that if f € C, then Uy f € C2. Letting g(z) = Uxf(z)
we have

T

g(z) = (2X)1/? / - e~V £y dy 4 (22)1/2 / e~V £y dy

-0

Differentiating once with respect to z and noting that the terms from differen-
tiating the limits cancel, we have

d(z)= / ” eV f () dy — / ’ e~ CIVB f(y) dy

-0
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Differentiating again gives
(o} T
9@ =V [ 0Byt VIR [ I ay - 21 (e)
E -_—00

It is easy to use the dominated convergence theorem to justify differenti-
ating the integrals. From the formulas it is easy to see that g, ¢', ¢’ € Cy so
g'€C? and

g"(z) = 22g(=) — 2f(z)
Since Ag(z) = Ag(z) — f(z) by the proof of (1.7), it follows that Ag(z) =
g’ (z)/2.

To complete the proof now we need to show D(A) D C2. Let h € C? and

define a function f € Cy by

7(z) = Ah(z) - 3 h"(z)

The function y = h — U), f satisfies
Loy - A =0
Y (=) y(z)

All solutions of this differential equation have the form Ae?V2* 4 Be==V2,
Since h— U, f is bounded it follows that h = U f and the proof is complete. O

7.3. Transition Probabilities

In the last section we saw that if @ and b are continuous and MP(b, a) is well
posed then

d
Eth(x) = AT f(z)
for f € C%, or changing notation v(t,z) = T3f(z), we have

(3.1) % = Av(t, z)

where A acts in the z variable. In the previous discussion we have gone from the
process to the p.d.e. We will now turn around and go the other way. Consider

(a) v € C*? and u; = Lu in (0,00) x R?

(3-2) (b) u is continuous on [0,00) x R4 and u(0,z) = f(z)



256 Chapter 7 Diflusions as Markov Processes

Here we have returned to our old notation
1
L= -2- Za,-j(:c)D,-J-f(:c) + Z bi(:t:)Dif(:c)
ij i

To explain the dual notation note that (3.1) says that v(¢, -) € D(A) and satisfies
the equality, while (a) of (3.2) asks for u € C1:2. As for the boundary condition
(b) note that f € D(A) C D(T) implies that ||T3f — f|| — 0 as t — 0.

To prove the existence of solutions to (3.2) we turn to Friedman (1975),
Section 6.4.

(3.3) Theorem. Suppose a and b are bounded and Holder continuous. That
is, there are constants 0 < §,C < oo so that

(HC) lasj (z) — as; (W) < Cle —yl°  |bi(z) — bi(v)| < Clz —y)°

Suppose also that a is uniformly elliptic, that is, there is a constant A so that
for all 2,y

(UE) Zyiaij(m)yj > Aly?
i
Then there is a function p,(z,y) > 0 jointly continuous in ¢t > 0, z, y, and C?

as a function of £ which satisfies dp/dt = Lp (with L acting on the z variable)
and so_that if f is bounded and continuous

ut)= [nniw i
satisfies (3.2). The maximum principle implies |u(t,z)| < || f||.
To make the connection with the SDE we prove

(3.4) Theorem. Suppose X; is a nonexplosive solution of MP(b,a). If u is a
bounded solution of (3.2) then

u(t,z) = E- f(X4)
Proof Itd’s formula implies

*d
u(t—s,X‘,)—u(O,Xg)=/0 —-jt—l-(t—r,Xr)dr

+3 / Diu(X,)b:(X.) dr + local mart.
— Jo

1 3
+ 5;/0 D,-J-u(Xr)a,-J-(Xr)dr
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so (a) tells us that u(t — s, X,) is a bounded martingale on [0,t). (b) implies
that u(t — s, X;) — f(X:) as s — t, so the martingale convergence theorem
implies

u(t, z) = Bz f(X41) O

pi(z,y) is called a fundamental solution of the parabolic equation u; =
L since it can be used to produce solutions for any bounded continuous initial
data f. Its importance for us is that (3.4) implies that

Pr(X: eﬁ)=/lgp:(m,y)dy

i.e., pi(z,y) is the transition density for our diffusion process. Let D = {z :
|z| < R}. To obtain result for unbounded coefficients, we will consider

(2) u € C"? and du/dt = Lu in (0,00) X D
(3.5) (b) u is continuous on [0,00) x D with »(0,z) = f(z),
and u(t,y) =0 whent >0,y € 3D

To prove existence of solutions to (3.5) we turn to Dynkin (1965), Vol. II,
pages 230-231.

(3.6) Theorem. Let D = {z : |z| < R} and suppose that (HC) and (UE)
hold in D. Then there is a function pf(z,y) > 0 jointly continuous in ¢ > 0,
z,y € D, C? as a function of £ which satisfies dp®/dt = Lp (with L acting on
the z variable) and so that if f is bounded and continuous

u(t,z) = /pf(m,y)f(y) dy
satisfies (3.5).
To make the connection with the SDE we prove

(3.7) Theorem. Suppose X, is any solution of MP(b, a) and let 7 = inf{t :
X: ¢ D}. If u is any solution of (3.5) then

u(t,z) = Ez(f(Xe); 7 > t)
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Proof The fact that u is continuous in [0,2] x D implies it is bounded there.
1t6’s formula implies that for 0 <s < tAT

*d
u(t—s,X.,)—u(O,Xg)=/0 —-jt—l-(t—r,Xr)dr

+> / D;u(X,)bi(X,)dr + local mart.
; Jo
1 3

+ '2';/0 D,-J-u(X,)a,-J-(X,)dr

so (a) tells us that u(t — s, X,) is a bounded local martingale on [0, A 7). (b)
implies that u(t — s,X;) - 0ass 1 7 and u(t —5,X,) — f(X:)ass —ton
{7 > t}. Using (2.7) from Chapter 2 now, we have

u(t,z) = E-(f(Xy);7 > 1) 0

Combining (3.6) and (3.7) we see that
B> 0 = [ o)) dy
D

Lettiné R 1 00 and py(z,y) = limp—.c pf¥(z, y), which exists since (3.7) implies
R — pE(z,y) is increasing, we have

(3.8) Theorem. Suppose that the martingale problem for MP(b, a) is well
posed and that a and b satisfy (HC) and (UE) hold locally. That is, they
hold in {z : |z| < R} for any R < co. Then for each ¢ > 0 there is a lower
semicontinuous function p(t,z,y) > 0 so that if f is bounded and continuous
then

E:f(X:) = /pt(:v,y) dy

Remark. The energetic reader can probably show that p;(z, y) is continuous.
However, lower semicontinuity implies that p,(z, y) is bounded away from 0 on
compact sets and this will be enough for our results in Section 7.5.

7.4. Harris Chains

In this section we will give a quick treatment of the theory of Harris chains to
prepare for applications to diffusions in the next section. In this section and
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the next, we will assume that the reader is familiar with the basic theory of
Markov chains on a countable state space as explained for example in the first
five sections of Chapter 5 of Durrett (1995). This section is a close relative of
Section 5.6 there.

We will formulate the results here for a transition probability defined
on a measurable space (S,S). Intuitively, P(Xn41 € A|X, = z) = p(z, A).
Formally, it is a function p : § x § — [0,1] that satisfies

for fixed A € S, z — p(z, A) is measurable
for fixed z € S, A — p(z, A) is a probability measure

In our applications to diffusions we will take S = R4, and let

p(z,4) = /Apl(m, y)dy

where p;(z,y) is the transition probability introduced in the previous section.
By taking t = 1 we will be able to investigate the asymptotic behavior of X,
as n — oo through the integers but this and the Markov property will allow us
to get results for ¢t — oo through the real numbers.

We say that a Markov chain X,, with transition probability p is a Harris
chain if we can find sets A, B € S, a function ¢ with ¢(z,y) > e > 0for z € A4,
y € B, and a probability measure p concentrated on B so that:

(i) Ifry =inf{n >0: X, € A}, then P,(t4 <oo0)>0forallz€ S
(ii) If z € A and C C B then p(z,C) > [; a(z, y)p(dy)

In the diffusions we consider we can take A = B to be a ball with radiusr, p to be
a constant ¢ times Lebesgue measure restricted to B, and ¢(z,y) = pi(z,y)/c.
See (5.2) below. It is interesting to note that the new theory still contains most
of the old one as a special case.

Example 4.1. Countable State Space. Suppose X, is a Markov chain on
a countable state space S. In order for X, to be a Harris chain it is necessary
and sufficient that there be a state u with Pz(X, = u for some n > 0) > 0 for
alz € 8S.

Proof To prove sufficiency, pick v so that p(u,v) > 0. If we let A = {u} and
B = {v} then (i) and (ii) hold. To prove necessity, let {u} be a point with
p({u}) > 0 and note that for all z

. Po(X, = u for some n > 0) > Ez{q(X:,)p({u})} >0 O

The developments in this section are based on two simple ideas. (i) To
make the theory of Markov chains on a countable state space work, all we need
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is to have one point in the state space which is hit. (ii) In a Harris chain we can
manufacture such a point (called o below) which corresponds to “being in B
with distribution p.” The notation needed to carry out this plan is occasionally
obnoxious but we hope these words of wisdom will help the reader stay focused
on the simple ideas that underlie these developments. :

Given a Harris chain on (S, §), we will construct a Markov chain X, with
transition probability 5 on (S,S) where § = SU {a} and § = {B, BU {a} :
B € S§}. Thinking of « as corresponding to being on B with distribution p, we
define the modified transition probability as follows:

IfzeS—-A4, pz,C)=p,ClforCeS

IfzeA, Bz, {a}) =¢
#(z,C)=p(z,C)—ep(C)for C€ S
fz=oa, p(e, D) = [ p(dz)p(z,D) for D€ §

Here and in what follows, we will reserve A and B for the special sets that
occur in the definition and use C and D for generic elements of S. We will
often simplify notation by writing p(z, «) instead of p(z, {a}), p(a) instead of
u({a}), ete.

Our first step is to prove three technical lemmas that will help us carry out
the proofs below. Define a transition probability v by

v(z,{z})=1if z€ S
(@, C) = p(C)

In words, v leaves mass in S alone but returns the mass at « to S and distributes
it according to p.

(4.1) Lemma. (a) vp=pand (b) pv =p

Proof Before giving the proof we would like to remind the reader that mea-
sures multiply the transition probability on the left, i.e., in the first case we
want to show pvp = pp. If we first make a transition according to » and then
one according to P, this amounts to one transition according to p, since only
mass at « is affected by v and

5(e,0) = [ pld=)p(z, D).
The second equality also follows easily from the definition. In words, if p acts
first and then v, then this is the same as one transition according to p since v

returns the mass at « to where it came from. O

From (4.1) it follows easily that we have:
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(4.2) Lemma. Let Y, be an inhomogeneous Markov chain with py; = v and
P2k+1 = P. Then X,, = Y5, is a Markov chain with transition probability 7 and
Xn =Yan41 is a Markov chain with transition probability p.

(4.2) shows that there is an intimate relationship between the asymptotic
behavior of X, and of X,. To quantify this we need a definition. If f is a
bounded measurable function on S, let f = vf, i.e.,

f(z)=f(z) forzeS
Fl@)= [
(4.3) Lemma. If 4 is a probability measure on (S, S) then
Euf(Xa) = Euf(Xn)

Proof Observe that if X, and X, are constructed as in (4.2), and P(X'g €
S) = 1 then Xy = X, and X, is obtained from X,, by making a transition
according to v. _ 0

Before developing the theory we give one example to explain why some of
the statements to come will be messy.

Example 4.2. Perverted Brownian motion. For z that is not an integer
> 2, let p(z,-) be the transition probability of a one dimensional Brownian
motion. When z > 2 is an integer let

2

p(:t:, {:C + 1}) =1—-2z7"
p(z,C)y=z"%CN[0,1])| ifz+1¢C
p is the transition probability of a Harris chain (take A = B = (0,1), p =
Lebesgue measure on B) but

Py(X,=n+2foraln)>0

I can sympathize with the reader who thinks that such crazy chains will not
arise “in applications,” but it seems easier (and better) to adapt the theory to
include them than to modify the assumptions to exclude them.

a. Recurrence and transience

We begin with the dichotomy between recurrence and transience. Let

R =inf{n > 1: X, = a}. If P,(R < o0) = 1 then we call the chain
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recurrent, otherwise we call it transient. Let R; = R and for k > 2, let
Ry = 1nf{n > Ri_1: X = a} be the time of the kth return to «. The strong
Markov property 1rnphes Po(Rr < 00) = Po(R < o0)F s0 PQ(X,, =aio)=1
in the recurrent case and is 0 in the transient case. From this the next result
follows easily.

(4.4) Theorem. Let A(C) = )", 27"p"(e, C). In the recurrent case if A\(C) > 0
then P, (X, € Cio.)=1. For Aae. z, P,(R<o0)=1.

Remark. Here and in what follows p"(z,C) = Py(X, € C) is the nth iterate
of the transition probability defined inductively by ' = p and for n > 1

7+(z,C) = / B(z, dy)P"(y, C)

Proof The first conclusion follows from the following fact (see e.g., (2.3) in
Chapter 5 of Durrett (1995)). Let X, be a Markov chain and suppose

P(UZepi1{Xm € Bm}| Xa) 26  on {Xa € An}

Then P({X, € A, i.0}) — P({X, € B, i.0}) = 0. Taking A, = {a} and
B, = C gives the desired result. To prove the second conclusion, let D = {z :
P;(R < 00) < 1} and observe that if p"(«, D) > 0 for some n then

Po(Xm=aio) < /ﬁ"(a, dz)P;(R< 00)< 1 O

Remark. Example 4.2 shows that we cannot expect to have P-(R < o0) =1
for all z. To see that this can occur even when the state space is countable,
consider a branching process in which the offspring distribution has py = 0 and
S kpr > 1. If we take A = B = {0} this is a Harris chain by Example 4.1.
Since p*(0,0) = 1 it is recurrent.

b. Stationary measures
(4.5) Theorem. Let R=inf{n > 1: X,, = «}. In the recurrent case,

mC)= (Z 1z, ec}) Z-pa(x €C,R> n)

=0

defines a o-finite stationary measure for p, with i << A, the measure defined in
(4.4). p = v is a o-finite stationary measure for p.
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Proof If A(C) = 0 then the definition of A implies Po(X, € C) = 0, so
Py(X. € C,R > n) = 0 for all n, and z(C) =.0. We next check that j is
o-finite. Let Gy s = {z : p*(z,a) > 6}. Let Tp = 0 and let T, = inf{m >
To-1+k: Xm € Gr,5}. The definition of G, s implies

P(Tp < Ta|Tao1 < To) < (1 —6)

so-if we let N = inf{n : T, > Ty} then EN < 1/6. Since we can only have
Xm € Gi;s with R > m when T, < m < T;, + k for some 0 < n < N it
follows that fi(G,s) < k/6. Part (i) of the definition of a Harris chain implies
S C Uk,m>1Gk,1/m and o-finiteness follows.

Next we show that gp = fi.

CAsg 1. Let C be a set that does not contain a. Using the definition i and
Fubini’s theorem. :

[ 850, = Y [ Pu(Fn € dy, R > m)aty,)

=Y Pu(Xn41 €C,R>n+1) = §(C)

n=0
since @ € C and Po(Xo = a) = 1.

Cask 2. To complete the proof now it suffices to consider C = {a}.
i —
[ = 3 [ PulFn € dy R > m)ity,)
n=0

=) Po(R=n+1)=1=fa)

where in the last two equalities we have used recurrence and the fact that when
C = {«} only the n = 0 term contributes in the definition.

Turning to the properties of y, we note that g = fiv and fi(a) = 1so g is
o-finite. To check up = u, we note that (i) using the definition g = fiv and (b)
in (3.1), (ii) using (a) in (4.1), (iii) using ip = [, and (iv) using the definition
B = jv:

pp = (Bo)(pv) = ppv = v = p o

To investigate uniqueness of the stationary measure we begin with:
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(4.6) Lemma. If v is a o-finite stationary measure for p, then ¥(A) < oo and
U = vp is a o-finite stationary measure for p with #(a) < co.

Proof We will first show that v(A) < co. If ¥(A) = oo then part (ii) of the
definition of a Harris chain implies ¥(C') = oo for all sets C with p(C) > 0.
If B = U;B; with »(B;) < oo then p(B;) = 0 by the last observation and
p(B) = 0 by countable subadditivity, a contradiction. So v(A) < oo and
(o) = vp(a) = ev(A) < co. Using the fact that vp = v, we find

#(C) = vB(C) = ¥(C) — € (A)p(BNC)
the last subtraction being well defined since ¥(A) < co. From the last equality
it is clear that v is o-finite. Since ¥(a) = ev(A), it also follows that #v = v. To
check 7p = U, we observe that (a) of (4.1), the last result, and the definition of
7 imply
vp=vvp=vp="v O

(4.7) Theorem. Suppose p is recurrent. If v is a o-finite stationary measure
then » = (a)p where p is the measure constructed in the proof of (4.5).

Proof By (4.6) it suffices to prove that if ¥ is a o-finite stationary measure
for p with #(a) < oo then ¥ = (a)fi. Our first step is to observe that

(0) = @A O)+ [ #eptw,0)
Using the last identity to replace ©(dy) on the right-hand side we have
#(0) = H@p@C)+ [ o i)

+[ v [ Hedie0)
S—{a} S—{a}
= () Pa(X1 € C) + #(a)Pa(X1 # o, X2 € C)
+Pp(j(0 # CY,XI # CY,XQ € C)
Continuing in the obvious way we have
7(C) = () Y, Po(Xi # afor 1 <k < m,Xm € C)

m=1

+Pﬁ()zk¢afor0§k<n+1,)zn+1 EC)
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The last term is nonnegative, so letting n — co we have
¥(C) 2 (a)i(C)

To turn the > into an = we observe that
5@ = [ a2, 2 7(@) [ =) 2,0) = p(@ile) = (o)

since fi(a) = 1. Let S, = {z : §"(z,a) > 0}. By assumption U,S, = S. If
v(D) > p(a)f(D) for some D, then #(DNSyp) > v(a)z(DNS,) for some n and
it follows that 7(a) > P(«a), a contradiction. o

(4.5) and (4.7) show that a recurrent Harris chain has a o-finite stationary
measure that is unique up to constant multiples. The next result, which goes
in the other direction, will be useful in the proof of the convergence theorem
and in checking recurrence of concrete examples.

(4.8) Theorem. If there is a stationary probability distribution then the chain
is recurrent.

Proof Let # = #p, which is a stationary distribution by (4.6), and note that
part (i) of the definition of a Harris chain implies (o) > 0. Suppose that the
chain is transient, i.e., Po(R < 00) = ¢ < 1. If Ry is the time of the kth return
then Po(Rr < 00)=¢F soif z # «

ks (r; 1{;’(“:&}) = k};lpx(Rk < o0) < k};lq"’l = -l—i—q-
The last upper bound is also valid when z = « since
0 0 o 1
Eq (,; 1{]—“:&}) =1+ ;P,(Rk < 00) < l;q =1—

Integrating with respect to # and using the fact that 7 is a stationary distribu-
tion we have a contradiction that proves the result

o0

2 (S = e = c
n=0

n=0
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c. Convergence theorem

If I is a set of positive integers, we let g.c.d.(I) be the greatest common
divisor of the elements of I. We say that a recurrent Harris chain X, is aperi-
odic if g.c.d.({n > 1: p"(a,a) > 0}) = 1. This occurs, for example, if we can
take A = B in the definition for then p(a,a) > 0. A well known consequence of
aperiodicity is
(4.9) Lemma. There is an mg < oo so that §™(«, ) > 0 for m > mo.

For a proof see (5.4) of Chapter 5 in Durrett (1995). We are now ready to prove

(4.10) Theorem. Let X, be an aperiodic recurrent Harris chain with stationary
distribution #. If P;(R < c0) =1 then as n — oo,

llp™ (2, ) = =()ll = 0

Remark. Here ||-|| denotes the total variation distance between the measures.

(4.4) guarantees that A a.e. z satisfies the hypothesis, while (4.5), (4.7), and

(4.8) imply = is absolutely continuous with respect to A.

Proof In view of (4.3) and (4.6) it suffices to show that if # = #p then
17%(2,") = 7N — 0

Our second reduction is to note that if z # o then
Pi(z,) = ijl Po(R=m)p"""(e,")
so we have
176, )= 70 < 3 PR = ml (o) = 5O

and it suffices to prove the result when z = «.
Let S2 = S x S. Define a transition probability p on S x S by

P((z1,22),C1 x Cq) = p(z1, C1)p(22,C2)

That is, each coordinate moves independently. We will call this the “product
chain” (think of product measure) and denote it by Z,.
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_ We claim that the product chain is a Harris chain with A= {(a, @)} and
B = B x B. Clearly (ii) is satisfied. To check (i} we need to show that for all
(z1, z2) there is an N so that pV((z1, z2), (@, @)) > 0. To prove this let K and
L be such that p%(z1,a) > 0 and p*(z2,a) > 0, let M > my, the constant in
(4.9), and take N = K + L + M. From the deﬁnitions it follows that

FEHEM (21, 0) > 55 (21, )" M (@, @) > 0
PEHLAM (25 0) > pF (21, 0)P5 M (a,0) > 0
and hence 5™ ((z1, z2), (¢, @)) > 0.
The next step is show that the product chain is recurrent. To do this,

note that (4.6) implies 7 = wp is a stationary distribution for p, and the two
coordinates move independently, so

#(C1 x Cz) = 7#(C1)#(C2)

defines a stationary probability distribution for 5, and the desired conclusion
follows from (4.8).

To prove the convergence theorem now we will write Zn = (X,,,Y } and
consider Z, with initial distribution &, x #. That is X, = o with probability
1 and ¥; has the stationary distribution #. Let T' = inf{n : Z, = =(a,a)} = R.

(4.8), (4.7), and (4.5) imply 7 x ¥ < X so (4.4) implies
P&,_,xﬁ"(T < 00) =1

Dropping the subscript 8, x # from P and considering the time T,

P(X,€C,T<n)= Z P(T = m)p" ™(,C) = P(Y, €C,T < n)

m=1
since on {T'=m}, X, = ¥Yin = a. Now

P(X,e€C)=P(X,€C,T<n)+PX,€C,T>n)
=P, €C,T<n)+ P(X, €C,T>n)
< P(Y, €C)+P(T>n)

Interchanging the roles of X and Y we have
P(Y,€C)< P(X,€C)+P(T >n)

and it follows that
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15" (2, ) = 7| = |P(Xn € ) = P(¥ € ]|
= sup |P(X. €C)—P(Y, €C)|< P(T>n) =0

as n — 00. N

7.5. Convergence Theorems

In this section we will apply the theory of Harris chains developed in the previ-
ous section to diffusion processes. To be able to use that theory we will suppose
throughout this section that

(5.1) Assumption. MP(b, a) is well posed and the coefficients a and b satisfy
(HC) and (UE) locally.

(5.2) Theorem. If A = B = {z : |z| < 7} and p is Lebesgue measure on B
normalized to be a probability measure then X,, is an aperiodic Harris chain.

Proof By (3.8) there is a lower semicontinuous function p;(z,y) > 0 so that

P(X: € A) = /A p(z,y)dy

From this we see that P;(R = 1) > 0 for each z so (i) holds. Lower semi-
continuity implies pi(z,y) > € > 0 when z,y € A so (ii) holds and we have
pla,a) > 0. O

To finish checking the hypotheses of the convergence theorem (4.10), we
have to show that a stationary distribution m exists. Our approach will be to
show that E,R < 00, so the construction in (4.5) produces a stationary measure
with finite total mass. To check E,R < oo we will use a slight generalization
of Lemma 5.1 of Khasminskii (1960).

(5.3) Theorem. Suppose u > 0is C? and has Lu < —1 for all z ¢ K where K
is a compact set. Let Tx = inf{t > 0: X; € K}. Then u(z) > E;Tk.

Proof Itd’s formula implies that V; = u(X;)+1 is a local supermartingale on
[0, Tk). Letting T;, T Tk be a sequence of times that reduce V;, we have

u(z) > Ezu(n ATR) + Ex(n ATy) 2 Ex(nATy)
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Letting n — oo and using the monotone convergence theorem the desired result
follows. O

Taking u(z) = |z|?/e gives the following

(5.4) Corollary. Suppose tra(z)+ 2z -b(z) < —eforz € K¢ = {z : |z| > r}
then E;Tx < |z[*/e.

Though (5.4) was easy to prove, it is remarkably sharp.

Example 5.1. Consider d = 1. Suppose a(z) = 1 and b(z) = —c/z for |z| > 1
where ¢ > 0 and set K = [—1,1]. If ¢ > 1/2 then (5.4) holds with e = 2c—1. To
compute E; Tk, suppose ¢ # 1/2,let € = 2c— 1, and let u(z) = z%/e. Lu= -1
in (1,b) so u(X;)+1 is a local martingale until time 7, 3y = inf{t : X; ¢ (1,0)}.
Using the optional stopping theorem at time 7(; 5) At we have
2 E:X

Z _ 22l Tamht — Eo(ma 5 At)

€ €
Rearranging, then letting t — co and using the monotone and bounded conver-
gence theorems, we have

2
22 ExX-r(l,,,)
Eerany=————(—

To evaluate the right-hand side, we need the natural scale and doing this it is
convenient to let start from 1 rather than 0:

T y
o(z) = / exp (/ -2—cdz)
1 1 2
= C/ y2¢: dy - Cl(y20+l _ 1)
1

Using (3.2) in Chapter 6 with a = 1 it follows that

22 b2c+1 _ 2:2°+1 1 xzc-{-l -1 62

The second term on the right always converges to —1/e as b — oco. The third
term on the right converges to 0 when ¢ > 1/2 and to co when ¢ < 1/2 (recall
that € < 0 in this case).

Exercise 5.1. Use (4.8) in Chapter 6 to show that E;Tx = co when ¢ < 1/2.
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Exercise 5.2. Consider d = 1. Suppose a(z) = 1 and b(z) < —€/z° for z > 1
where ¢ > 0 and 0 < 6 < 1. Let T} = inf{¢ : X; = 1} and show that for £ > 1,
E:Ty < (2 = 1)/e.

Example 5.2. When d > 1 and a(z) = I the condition in (5.4) becomes
2 b(z) < —(d+9)/2

To see this is sharp, let Y; = | X;|, and use It&’s formula with f(z) = |z| which
has

Dif =zif|lz|  Duf =1/|z|— z}/|z|®

t X 1 ftd-1
Y, - Y, =/ s —/ ———ds
! ° 0 |X3| 2 0 |Xs|
We have written W here for a d dimensional Brownian motion, so that we can
let
t
Xs
B = / - dW,
T 1X]

be a one dimensional Brownian motion B (it is a local martingale with (B); = t)
and write

to get

-1
: 1%
If £ -b(z) = —(d — 1+ c)/2 this reduces to the previous example and shows that
the condition z - b(z) < —(d + €)/2 is sharp.

dy, = (X, b(Xe)+ 2 ) dt + dB,

The last detail is to make the transition from E;Tx < 00 to E,R < 0.

(5.5) Theorem. Let K = {z : |z| < r} and H = {z : |z|] < r+1}. If
supgeg ExTk < oo then E,R < oo.

Proof Let Uy = 0, and for m > 1 let V;, = inf{t > Un-1 : X; € K},
Up=inf{t > V,, : | Xs| ¢ Hort € Z}, and M = inf{m > 1:U,, € Z}. Since
X(Um) € A, R < Upn. To estimate E,R, we note that X (Ur,-1) € A so

E (Vi = Um-1 |Fu,._,) < Co=sup E:Tx
TEA

To estimate M, we observe that if 7x is the exit time from H then (3.6) implies
mf P4 >1) > |K| mf p"“(m,y) =€ >0
where pit! (z,y) is the transition probability for the process killed when it leaves

the ball of radius 7+ 1. From this it follows that P(M > m) < (1—¢€g)™. Since
Um — Vin < 1 we have EUps < (14 Co)/e€p and the proof is complete. O
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8.1. In Metric Spaces

We begin with a treatment of weak convergence on a general space § with a
metric p, i.e., a function with (i) p(z,z) = 0, (ii) p(z,y) = p(y,z), and (iii)
p(z,y)+p(y,z) > p(z,z). Open balls are defined by {y : p(z,y) < r} with7 > 0
and the Borel sets S are the o-field generated by the open balls. Throughout
this section we will suppose S is a metric space and S is the collection of Borel
sets, even though several results are true in much greater generality. For later
use, recall that S is said to be separable if there is a countable dense set, and
complete if every Cauchy sequence converges.

A sequence of probability measures p, on (S,S) is said to converge
weakly if for each bounded continuous function [ f(z)un(dz) — [ f(z)p(dz).
In this case we write g, => p. In many situations it will be convenient to deal
directly with random variables X, rather than with the associated distribu-
tions p,(A) = P(Xn € A). We say that X, converges weakly to X and
write X, => X if for any bounded continuous function f, Ef(X,) — Ef(X).

* Our first result, sometimes called the Portmanteau Theorem, gives five
equivalent definitions of weak convergence.

(1.1) Theorem. The following statements are equivalent.

(i) Ef(X,) — Ef(X) for any bounded continuous function f.

(ii) For all closed sets K, limsup,,_. P(X, € K) < P(X € K).

(iil) For all open sets G, liminf, ., P(Xn € G) > P(X € G).

(iv) For all sets A with P(X € 0A) =0, limsup,,_,, P(Xn € A) = P(X € A).

(v) Let Dy = the set of discontinuities of f. For all bounded functions with
P(X € Df) =0, Ef(Xs) — Ef(X).



272 Chapter 8 Weak Convergence

Remark. To help remember (ii) and (iii) think about what can happen when
P(X, =z,) =1, z, — z, and z lies on the boundary of the set. If K is closed
we can have z,, ¢ K for all n but z € K. If G is open we can have z, € G for
allnbut z ¢ G.

Proof We will go around the loop in roughly the order indicated. The last
step, (v) implies (i), is trivial so we have four things to show.

(i) implies (ii) Let p(z, K) = inf{p(z,y) : y € K}, ¥;(r) = (1 — jr)* where
z+ = max{z, 0} is the positive part, and let f;(z) = 9;(p(z, K)). f; is bounded,
continuous, and > 1k so

limsup P(X, € K) < lim Ef;(Xa) = Ef;(X)

n—oo
Now f; | 1x as j T oo, so letting j — oo gives (ii).

(ii) is equivalent to (iii) This follows immediately from (a) P(A)+P(A°) =
1, and (b) A is open if and only if A° is closed.

(ii) and (iii) imply (iv) Let K = A = the closure of A, G = A° = the
interior of A, and note thgt 0A = K — G, so our assumptions imply

P(X € K)=P(X € A)= P(X € G)
Using (ii) and (iii) now with the last equality we have
lirrfup P(X,€A)< linfolip P(Xn, € K)<X P(X€K)=P(X €A
Yiinr;ong(Xn € A)> ;inrging(Xn €EG)< P(XE€G)=P(X € A)
At this point we have shown

liminf P(X, € A) > P(X € A) > limsup P(X,, € A)
n— oo n—oo
which with the triviality liminf < limsup gives the desired result.

(iv) implies (v) Suppose |f(z)] < K and pick ap < a1 < ... < a with
ap < —K and oy > K sothat P(f(X)=a;)=0for0< i< fand oj—aj_1 <€
for 1 < j < £. This is always possible since {& : P(X = a) > 0} is a countable
set. Let A; = {z:a1-1 < f(z) < a;}, 0A; C {z: f(z) € {@i-1,:}} U Dy, s0
P(X € 8A;) = 0, and it follows from (iv) that

L L
> eiP(Xp € Ai) = Y oy P(X € A;)
=1 i=1
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The definition of the «; implies
¢
0< Y aP(X, € A)— Ef(Xp) < e

i=1
and this inequality holds with X in place of X,,. Combining our conclusions we
have

limsup |Ef (Xn) — EF(X)| < 2

n—oo

but € is arbitrary so the proof is complete. O
An important consequence of the (1.1} is

(1.2) Continuous mapping theorem. Suppose g, on (S, S) converge weakly
to u, and let ¢ : S — S’ have a discontinuity set D, with g(D,) = 0. Then
pnop ™t = popt.

Proof Let f: S’ — R be bounded and continuous. Since Dy, C Dy, it
follows from (v) in (1.1) that

/ a(d2) F(p(2)) — / (dz) (o))

Changing variables gives

[umoe @)~ [uopdn)(@)
Since this holds for any bounded continuous f, the desired result follows. O

In checking convergence in distribution the following lemma is sometimes
useful.

(1.3) Converging together lemma. Suppose X, = X and p(X,,Yy) — 0
in probability then Y, = X.

Proof Let K be a closed set and K5 = {y : p(y, K) < 6}, where p(y, K) =
inf{p(y,z) : z € K}. It is easy to see that z ¢ K if and only if thereisay > §
so that B(z,y) N K = @, so (Ks)° is open and Kjs is closed. With this little
detail out of the way the rest is easy.

P(Y, € K) < P(Xn € Ks) + P(p(Xn,Yn) > 6)
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Letting n — oo, noticing the second term on the right goes to 0 by assumption,
and using (ii) in (1.1) we have

limsup P(Y, € K) < hrnsup P(X, € Ks5) < P(X € Ks)

n—+ 00

Measure theory tells us that P(X € Ks5) | P(X € K) as § | 0so we have shown

limsup P(Y, € K) < P(X € K)

n—+oo

The desired conclusion now follows from (1.1). O

The next result, due to Skorokhod, is useful for proving results about
a sequence that converges weakly, because it converts weak convergence into
almost sure convergence.

(1.4) Skorokhod’s representation theorem. Suppose S is a complete sep-
arable metric space. If g, = poo then we can define random variables Y, on
[0,1] (equipped with the Borel sets and Lebesgue measure A) with distribution
Un so that Y,, — Y, almost surely.

Remark. When S = R this is easy. Let F,(z) = p,(—00, z] be the distribution
function, let
F7Y(y) = inf{z : Fy(z) > y}

let U(w) = w for w € [0,1] be a random variable that is uniform on (0, 1),
and let Y;, = F;}(U). Then Y, — Yo almost surely. (For a proof, see (2.1) of
Chapter 2 of Durrett (1995).) We invite the reader to contemplate the question:
“Is there an easy way to do this when S = R? (or even S = [0, 1]%)?” while we
give the general proof. The details are somewhat messy and not important for
the developments that follow, so if the reader finds herself asking “Who cares?”,
she can skip to the beginning of the next section.

Proof We will warm up for the real proof by treating the special case p, = p.

(1.5) Theorem. For each probability measure p there is a random variable Y
defined on [0,1] with P(Y € A) = p(4).

Proof For each k construct a decomposition Ay = {Ax,1, Ak,2,...} of S into
disjoint sets of diameter less than 1/k and so that Aj refines A1, i.e., each
set Ax_1; is a union of sets in A;. For each k construct a corresponding
decomposition Z; of the unit interval so that A(Jy ;) = p(Ax,;j) and arrange
things so that Ax_1; D Agj if and only if Ix_1; D It ;.
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Let zi,; be some point in Ay ; and let Xi j(w) = z1; for w € It,;. Since
Xk, Xk41, ... is contained in some element of Ay, which by definition has diam-
eter < 1/k, it is a Cauchy sequence. So X (w) = lim; X (w) exists and satisfies
p(Xk,X) < 1/k. To show that X has distribution yu we let K be a closed set,
let S(k,K) = {j : Ax; N K # 0}, and let K5 = {z : p(z, K) < 6} as in the
proof of (1.3). i

MXi € K) < M(Xi(w) € Ujes(r,x)Ak,5)
< D0 MXe(w) € Ary)

jES(k,K)
D0 Miy)= Y. w(Arg) < p(Eag)
JES(R,K) JES(KK)

Letting £ — oo and noting K/, | K it follows that
limsup M(X; € K) < p(K)
E

So (1.1) implies that X; => p and it follows that X has distribution . O

Proof of (1.4) Construct a decomposition Ay of the space S as in the pre-
ceding proof but this time require that each Ag; has pe(0Ar;) = 0. For
each n construct decompositions Z¢ ; of [0,1] so that A(I};) = pa(Ak,;). To
arrange the intervals in an appropriate way we introduce an ordering in which
[a,8] < [c,d] if b < ¢ and demand that I}; < I}; if and only if If% < If%. Let
zx,; € Ag j and define X7 (w) = 7 ; for w € If';. As before, X" = limg. oo X}
exists and has dlstnbutlon U
Since 37 poo(Ak,;) — Hn(Ar,j) =1—1=0, we have

DO = AIED = D oo Ak,i) — pa( A 3)
; ;
=2 (Hoo(Arj) = n(Ars))*
7

where y* = max{y, 0} is the positive part of y. Since the p, (8A; ;) = 0, (1.1)
implies pt,(Ax,;) — Hoo(Ak,;) and the dominated convergence theorem implies

(1.6) Z IMIE) = AIE)|— 0 asn— o0

Fix k and jy, let a,, be the left endpoint of I} ; , and let S(jo) = {j : Iy <Ii; ot
which by our construction does not depend on n. (1.6) implies that

cw= ), 5= lim, >, 1Ml = lim e

j€S(a) J€S(jo)
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Similarly if we let B, be the right endpoint of I}!; then B, — P as n — co.
Hence if w is in the interior of I it lies in the 1nter10r of It ; for large n, and
it follows from the definition of the X, that

limsup p(Xn, Xeo) <2/k
n— oo

Letting & — oo we see that if w is not one of the countable set of points that is
the end point of some If% we have X, — X, which proves (1.4). O

8.2. Prokhorov’s Theorems

Let IT be a family of probability measures on a metric space (S, p). We call I
relatively compact if every sequence p,, of elements of II contains a subse-
quence fy,, that converges weakly to a limit g, which may be ¢ II. We call I
tight if for each € > 0 there is a compact set K so that p(K) > 1 — ¢ for all
p € II. This section is devoted to the proofs of

(2.1) Theorem. If IT is tight then it is relatively compact.

(2.2) Theorem. Suppose S is complete and separable. If IT is relatively com-
pact, it is tight.

The first result is the one we want for applications, but the second one is
comforting since it says that, in nice spaces, the two notions are equivalent.

Proof of (2.1) We shall prove the result successively for R4, R®, a countable
union of compact sets, and finally, a general S. This approach is somewhat
lengthy but to inspire the reader for the effort, we note that the first two special
cases are important examples, and then the last two steps and the converse are
remarkably easy.

Before we begin we will prove a lemma that will be useful for the first two
examples.

(2.3) Lemma. Let A be a subclass of S that is closed under intersection, and
so that each open set is a countable union of elements of A. If p,(A) — p(4)
for all A € A then y, = u.

Proof The inclusion-exclusion formula says

P(UR lA)_ZP(A) D OP(AiNAj) + -+ (=)™ P(NTL A))

i=1 i<j
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Combining this with the fact that 4 is closed under intersection it is easy to see
that p, (U5, A;) — p(UE, A;). Given an open set G and an € > 0, choose sets
A1, ... Ag so that p(UE_, A;) > pu(G) — €. Using the convergence just proved it
follows that

Since € is arbitrary, (iii) in (1.1) follows and the proof is’complete. o

Proof for R? This is a fairly straightforward generalization of the argument
for d = 1. (See e.g., (2.5) in Chapter 2 of Durrett (1995).) In this case we can
rely on the distribution functions F(z) = pu({y < z}), where for two vectors y <
z means y; < z; for each i. Let Q¢ be the points in R? with rational coordinates.
By enumerating the points in Q9 and then using a diagonal argument, we can
find a subsequence Fy,, so that F,,, () converges for each ¢ € Q9. Call the limit
G(q) and define the proposed limiting distribution function by

F(:c) =inf{G(g) : ¢ € Q¢ and ¢ > z}

where ¢ > = means ¢; > z; for each i.
To check that F is a distribution function we note that it is an immediate
consequence of the definition that

(i) if £ < y then F(z) < F(y)
(if) limy = F(y) = F(z)

where y | £ means y; | z; for each i. The third condition for being a distribution
function is easier to prove than it is to state:

(iii) let A = (ay,b1] x - -- X (ag, bg) be a rectangle with vertices V' = {a1, b1} x
-+ x {ag, b4}, and let sgn(v) = (~1)*(**) where n(a,v) is the number of a’s
that appear in v. The inclusion-exclusion formula implies that the probability
of Ais 37, ¢y sgn(v)F(v) > 0.

The fact that (iii) holds for the F,’s implies that it holds for G and by taking
limits we see that it holds for F.

Conditions (i)-(iii) imply that F is the distribution function of a measure
on R4, which in our case will always have total mass < 1. Define the ith
marginal distribution function of F by Fi(z) = lim F(y) where the limit is
taken through vectors y with y; = = and the other coordinates y; — co. F!is
a one dimensional distribution function and hence its discontinuities D are a
countable set.

Call z a good point if z; ¢ D’ for each i. We claim that F is continuous at
good points. To see this, let w < £ < y, let z; be the vector which uses the first
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i components from y and the last d — i from w and note that the monotonicity
properties that come from the interpretation of F' as a measure imply

d d
F(y)— F(w) = ) F(z) — F(zi-1) < Y Fi(wi) — Fi(w)
i=1 i=1

The continuity of F' now follows from the monotonicity and the continuity of
the F;.

Our next claim is that for good z, Fy,(z) — F(z). To prove this pick
p,q,r€ Q¢ withp<g<z<rand

F(z)—e < F(p) < F(g) < F(2) < F(r) < F(z)+ €
Since u < v implies F(u) < G(v) < F(v) it follows that
F(z)—e<G(g) S F(2) <G(r) < F(z) + e

Using Fn(g) < Fu(z) < Fu(r) and the convergence F,, (q) — G(g) for ¢ € Q¢
the claim follows easily.

Up to this point we have not used the tightness assumption. It enters into
the proof only to guarantee that F' is the distribution function of a probability
measure. Given ¢ choose a compact set K so that F,(K) > 1 — ¢ for all n,
where Fp(K) is short for the probability of K under the measure associated
with the distribution function F,,. Now pick a good rectangle A, i.e., one with
a;,b; & D' for all 4, so that K C A. The formula in (iii) for the probability of
A and the previous claim about convergence at good points imply

F(4) = lim Fo,(A) > liminf Fo(K) > 1-¢

Finally, we have to prove that F,,, = F. For this we use the following
result which is of interest in its own right.

(2.4) Theorem. In R9 probability measure g, => p if and only if the associated
distribution functions have F,,(z)} — F(z) for all z that are good for F.

Proof 1If z is good for F, then A = {y : y < z} has p(84) = 0, so if
fn => p then (iv) of (1.1) implies Fn(z) — F(z). To prove the converse we
will apply (2.3) to the collection A of finite disjoint unions of good rectangles.
(i.e., rectangles, all of whose vertices are good). We have already observed
that p,(A) — p(A) for all A € A. To complete the proof we note that A is
closed under intersection, and any open set is a countable disjoint union of good
rectangles. O
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Proof for R® Let R™ be the collection of all sequences (z1, zy, ...) of real
numbers. To define a metric on R® we introduce the bounded metric p,(z,y) =
|z —y|/(14 |z — y|) on R and let

o
p(z, ) = D27 po(zs, 1)
i=1

It is easy to see that the induced topology is that of coordinatewise convergence,
(i.e., 2™ — z if and only if z} — z;) for each i and hence this metric makes
R®™ complete and separable. A countable dense set is the collection of points
with finitely many nonzero coordinates, all of which are rational numbers.

(2.5) Lemma. The Borel sets § = R*, the product o-field gnerated by the
finite dimensional sets {z : z; € A; for 1 <i < k}.

Proof To argue that & O R observe that if G; are open then {z : z; €
G; for 1 <i <k} is open. For the other inclusion note that

{y:p(z,y) <6} =g, {y 27 0o(%my Um) < 6} € Ro

m=1
so {y:p(z,y) <7} =Uily : pl(2,9) S v - 1/n} € R™. o
Let g : R® — R be the projection wa(z) = (21, ...,z4). Our first claim

is that if II is a tight family on (R®,R*) then {po#;' : p € I} is a tight
family on (R4, R9). This follows from the following general result.

(2.6) Lemma. If IT is a tight family on (S, S) and if A is a continuous map
from S to S’ then {goh~!: u € I} is a tight family on (S’,S").

Proof Given ¢, choosein S a compact set K so that y(K) > 1—eforall p € II.
If K' = h(K) then K’ is compact and h~}(K') D K so poh™}(K') > 1—¢ for
all p €1I. O

Using (2.6), the result for R?, and a diagonal argument we can, for a given
sequence f,, pick a subsequence pu,, so that for all d, y,, o 74 converges to a
limit v4. Since the measures v; obviously satisfy the consistency conditions of
Kolmogorov’s existence theorem, there is a probability measure » on (R®, R*)
so that von! = v,.

We now want to check that p,, = v. To do this we will apply (2.3)
with A = the finite dimensional sets A with ¥(9A) = 0. Convergence of finite
dimensional distributions and (1.1) imply that p,, (A) — v(A) for all A € A.
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The intersection of two finite dimensional sets is a finite dimensional set and
(AN B) C JAUJIB so A is closed under intersection.

To prove that any open set G is a countable union of sets in A, we observe
that if y € G there is a § > 0 so that B(y,8) = {z : p(z,y) < §} C G. Pick §
so large that B(y,26) NG # 0. (G = R™® € A so we can suppose G° # 0.) If
we pick N so that 27 < §/2 then it follows from the definition of the metric
that for r < 6/2 the finite dimensional set

Aly,r,NY={y:|z; —y| <rfor1<i<N}CB(y8cG

The boundaries of these sets are disjoint for different values of r so we can pick
r > 6/4 so that the boundary of A(y, r, N) has v measure 0.

As noted above R® is separable. Let y;,ya,... be an enumeration of the
members of the countable dense set that lie in G and let A; = A(y:, ri, Ni)
be the sets chosen in the last paragraph. To prove that U;A; = G suppose
z € G—U;A;, let v > 0 so that B(z,y) C G, and pick a point y; so that
B(z,y:) < v/9. We claim that £ € A;. To see this, note that the triangle
inequality implies B(y;,8v/9) C G, so § > 4v/9 and r > §/4 = v/9, which
completes the proof of u,, = v. O

Before passing to the next case we would like to observe that we have
shown

(2.7) Theorem. In R®, weak convergence is equivalent to convergence of finite
dimensional distributions.

Proof for the o-compact case We will prove the result in this case by
reducing it to the previous one. We start by observing

(2.8) Lemma. If S is o-compact then S is separable.

Proof Since a countable union of countable sets is countable, it suffices to
prove this if S is compact. To do this cover S by balls of radius 1/n, let z};,,
m < my, be the centers of the balls of a finite subcover, and check that the z},
are a countable dense set. O

(2.9) Lemma. If S is a separable metric space then it can be embedded home-
omorphically into R®.

Proof Let qi1,q3,... be asequence of points dense in S and define a mappifig
from S into R* by

h(z) = (p(z, q1), p(z,q2), - --)
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If the points z, — z in S then limp(z,, ¢;) = p(z, ¢;) and hence h(zn) — h(z).

Suppose z # z’ and let € = p(z,2'). If p(z, q;) < €/2, which must be true
for some i, then p(z’,q;) > €/2 or the triangle inequality would lead to the
contradiction € < p(z,z"). This shows that A is 1-1.

Our final task is to show that A~! is continuous. If z, does not converge
to z then limsup p(zn,z) = € > 0. If p(z,q:) < €/2 which must be true for
some g¢; then limsup p(z,, ¢;) > €/2, or again the triangle inequality would give
a-contradicition, and hence h(z,) does not converge to h(z). This shows that
if h(zp) — h(z) then z, — z so h~! is continuous. O

It follows from (2.6) that if I is tight on S then {goh~': p e} isa
tight family of measures on R®. Using the result for R® we see that if p, is a
sequence of measures in I and we let v, = p,, o b~} then there is a convergent
subsequence v,,. Applying the continuous mapping theorem, (1.2), now to the
function ¢ = h~! it follows that p,, = vs, o h converges weakly.

The general case Whatever S is, if II is tight, and we let K; be so that
u(K;) > 1 —1/i for all g € T then all the measures are supported on the
o-compact set Sp = U; K; and this case reduces to the previous one. O

Proof of (2.2) We begin by introducing the intermediate statement:

(H) For each ¢,6 > 0 there is a finite collection Ay, ..., A, of balls of radius é
so that u(Ui<nAi) >1—cforall p el

We will show that (i) if (H) holds then II is tight and (ii) if (H) fails then II is
not relativley compact. Combining (ii) and (i) gives (2.2).

Proof of (i) Fix € and choose for each k finitely many balls A%,..., AE of
radius 1/k so that p(Ui<n,AF) > 1 —¢/2 for all p € II. Let K be the closure
of N$2; Ui<n, AF. Clearly pu(K) > 1—e. K is totally bounded since if Bf is a
ball with the same center as A}‘ and radius 2/k then B}‘ , 1 < j <ng covers K.
Being a closed and totally bounded subset of a complete space, K is compact
and the proof is complete. 0O

Proof of (ii) Suppose (H) fails for some ¢ and §. Enumerate the members
of the countable dense set q1,¢z, ..., let A; = B(g;,6), and G, = U, A;. For
each n there is a measure y, € II so that p,(Gn) < 1 —e. We claim that p,
has no convergent subsequence. To prove this, suppose un, = v. (iii) of (1.1)
implies that for each m

V(Gm) < limsup /—‘nk(Gm)
k—+o0

<limsup pn, (Gn,) <1—¢
k—00
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However, G;, TS as m T 0o so we have ¥(S) < 1 —¢, a contradiction. O

8.3. The Space C

Let C = C([0,1],R?) be the space of continuous functions from [0,1] to R4
equipped with the norm

lloll = sup |w(2)]
<1

Let B be the collection of Borel subsets of C. Introduce the coordinate random
variables X;(w) = w(t) and define the finite dimensional sets by

{w: Xy, (w) € A; for 1 < i<k}
where 0 <t; <t < ...<t; <1and A; € RY, the Borel subsets of R9.

(3.1) Lemma. B is the same as the o-field C generated by the finite dimensional
sets.

Proof Observe that if € is a given continuous function

{willw—¢ll < e—1/n} =Ng {w : |w(g) — &(g)| S € — 1/n}

where the intersection is over all rationals ¢ € [0,1]. Letting n — co shows
{w:|lw—¢€|| < €} € C and B C C. To prove the reverse inclusion observe that if
the A; are open the finite dimensional set {w : w(t;) € A;} is open so the 7 — A
theorem implies C C B. 0

Let 0<t <t <...<t, <1land m:C — (RY)" be defined by

m(w) = (W(t1), - .., w(ts))

Given a measure p on (C,C), the measures y o x;t, which give the distribu-
tion of the vectors (Xy,,..., Xz,) under p, are called the finite dimensional
distributions or f.d.d.’s for short. On the basis of (3.1) one might hope that
convergence of the f.d.d.’s might be enough for weak convergence of the pu,.
However, a simple example shows this is false.

Example 3.1. Let a, =1/2—1/2n,b, =1/2—1/4n, and let p, be the point
mass on the function

0 ( TE llgo,an]]

n(z —an) <z € lan,bn
PO =1 i S Ey

0 z € [1/2,1]
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Asn — oo, fu(t) — foo = 0but not uniformly. To see that y,, does not converge
weakly to 1o, note that h(w) = supg<,<; w(t) is 2 continuous function but

[ n@) =1£0= [ )i (d)

(3.2) Theorem. Let u,,1 < n < oo be probability measures on C. If the finite
dimensional distributions of p, converge to those of yo, and if the p, are tight
then p, = peo.

Proof If u, is tight then by (2.1) it is relatively compact and hence each
subsequence p,, has a further subsequence p,: that converges to a limit v.
If f: RF — R is bounded and continuous then f(Xj,,...X3,) is bounded and
continuous from C to R and hence

[ XKoo, ) = [ £ X Yol

The last conclusion implies that pn: o my !' = yony!, so from the assumed
convergence of the f.d.d.’s we see that the f.d.d’s of v are determined and hence
there is only one subsequential limit.

To see that this implies that the whole sequence converges to v, we use the
following result, which as the proof shows, is valid for weak convergence on any
space. To prepare for the proof we ask the reader to do

Exercise 3.1. Let r, be a sequence of real numbers. If each subsequence of r,
has a further subsequence that converges to r then r, — r.

(3.3) Lemma. If each subsequence of y, has a further subsequence that con-
verges to v then p, = v.

Proof Note that if f is a bounded continuous function, the sequence of real
numbers [ f(w)pun(dw) have the property that every subsequence has a further
subsequence that converges to [ f(w)v(dw). Exercise 3.1 implies that the whole
sequence of real numbers converges to the indicated limit. Since this holds for
any bounded continuous f the desired result follows. O

As Example 3.1 suggests, p, will not be tight if it concentrates on paths

that oscillate too much. To find conditions that guarantee tightness, we intro-
duce the modulus of continuity

ws(w) = sup{ lw(s) — w(®)| : |s — ] < 6}
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(3.4) Theorem. The sequence py, is tight if and only if for each € > 0 there
are ng, M and § so that

(1) pn(Jw(0)| > M) <efor alln > ng
(ii) pn(ws > €) < eforalln > ng

Remark. Of course by increasing M and decreasing § we can always check the
condition with ng = 1 but the formulation in (3.4) eliminates the need for that
final adjustment. Also by taking € = 5 A ¢ it follows that if u, is tight then
there is a § and an ng so that u,(ws > 1) < ¢ for n > ng.

Proof We begin by recalling (see e.g., Royden (1988), page 169)

(3.5) The Arzela-Ascoli Theorem. A subset A of C has compact closure if
and only if sup ¢ 4 |w(0)| < oo and lims_,¢ sup,,¢ 4 ws(w) = 0.

To prove the necessity of (i) and (ii), we note that if u, is tight and € > 0
we can choose a compact set K so that u,(K) > 1— € for all n. By (3.5),
K ¢ {X(0) < M} for large M and if € > 0 then K C {ws < €} for small 6.

To prove the sufficiency of (i) and (ii), choose M so that p, (| X(0)] > M) <
€/2 for all n and choose & so that u,(ws, > 1/k) < /25! for all n. If we let
K be the closure of {X(0) < M,ws, < 1/k for all k} then (3.5) implies K is
compact and p,(K) > 1— e for all n. O

Condition (i) is usually easy to check. For example it is trivial when
Xn(0) = z, and z, — z as n — oco. The next result, (3.6), will be useful
in checking condition (ii). Here, we formulate the result in terms of random
variables X, taking values in C, that is, to say random processes {X,(¢),0 <
t < 1}. However, one can easily rewrite the result in terms of their distributions
tn(A) = P(X,, € A). Here, A€C.

(8.6) Theorem. Suppose for some a, > 0

E|Xn(t2) — Xa(t1)|P < Klta — t1|*+
then (ii) in (3.4) holds.
Remark. The condition should remind the reader of Kolmogorov’s continuity
criterion, (1.6) in Chapter 1. The key to our proof is the observation that the
proof of (1.6) gives quantitative estimates on the modulus of continuity. For a

much different approach to a slightly more general result, see Theorem 12.3 in
Billingsley (1968).
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Proof Let ¥ < /B, and pick 5 > 0 small enough so that
A=(1-n1+a-py)—1+n)>0

From (1.7) in Chapter 1 it follows that if A = 3-2(1=")7 /(1 — 2-7) then with
probability > 1 — K2-N*/(1 — 2~*) we have

|Xn(q) — Xn(r)| < Alg— |7 for q,7 € Q3N [0,1] with 2~ C-MN

Pick N so that K27V*/(1 —27*) < ¢ then § < 2~ (=MV 5o that A6 < € and
it follows that P(ws > ¢€) <e. ]

8.4. Skorokhod’s Existence Theorem for SDE

In this section, we will describe Skorokhod’s approach to constructing solutions
of stochastic differential equations. We will consider the special case

(*) dX: = o(X:)dB,

where ¢ is bounded and continuous, since we can introduce the term b(X;) d¢
by change of measure. The new feature here is that & is only assumed to be
continuous, not Lipschitz or even Hélder continuous. Examples at the end of
Section 5.3 show that we cannot hope to have uniqueness in this generality.

Skorokhod’s idea for solving stochastic differential equations was to dis-
cretize time to get an equation that is trivial to solve, and then pass to the
limit and extract subsequential limits to solve the original equation. For each
n, define X,,(t) by setting Xn(0) = z and, for m2™" <t < (m +1)27",

Xn(t) = Xn(m2™™) + 0(Xn(m2™"))(B, — B(m2™"))

Since X, is a stochastic integral with respect to Brownian motion, the formula
for covariance of stochastic integrals implies

(i) = Y [ (onaie) Kall2s)/27)ds
T Jo

=/0 ai;(Xa([2"s)/27))ds

where as usual a = 007, If we suppose that a;;(z) < M for all 4,j and z, it
follows that if s < ¢, then

(XE, X3 — (X5, X3)s| < M(t—s)
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so (5.1) in Chapter 3 implies

E sup |X}(u) = X5 ()PP < GoEKXG)e — (X3)slP/? < Cp{M(t — 5)}P/?

u€ls,t]
Taking p = 4, we see that

E sup |Xi(u)— Xi(s)|* < CM?(t—s)?
]

u€ls,t
Using (3.6) to check (ii) in (3.4) and then noting that X, (0) = z so (i) in
(3.4) is trivial, it follows that the sequence X, is tight. Invoking Prohorov’s
Theorem (2.1) now, we can conclude that there is a subsequence X, ) that

converges weakly to a limit X. We claim that X satisfies MP(0,a). To prove
this, we will show

(4.1) Lemma. If f € C? and Lf = § )_;; ai; Di; f then

t
F(X:) = f(Xo) — / Lf(X,)ds is alocal martingale
0
Once this is done the desired conclusion follows by applying the result to f(z) =
z; and f(z) = ziz;.

Proof It suffices to show that if f, D;f, and D;; f are bounded, then the
process above is a martingale. Itd’s formula implies that

4
FEa(®) = FXn() = 3 [ Def (X)X (r)
1’ t , |
455 [ Duf(a()ixs, X
G s
So it follows from the definition of X, that
(Xi, X}, = / i3 (Xa ([20]27 ™)) du
so if we let

Laf() = 3 3 ay(Xa(2"r}2 ") Dy (X7)

i

then f(Xn(t)) — f(Xn(s)) — f: L, f(r)dr is a local martingale.
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Skorokhod’s representation theorem, (1.4), implies that we can construct
processes Yz with the same distributions as the Xy, (z) on some probability space
in such a way that with probability 1 as ¥ — oo, Yi(t) converges to Y(t)

uniformly on [0,T] for any T' < c0. If s < tand g : C — R is a bounded
continuous function that is measurable with respect to F;, then

E(g(Y)- {f(Y:) - f(Y:) - [ Lf(Y,)dr})
=limE (g(Y")~ {f(Y:") - f(¥5) - [ Lnf(Y,k)dr}) =0

Since this holds for any continuous g, an application of the monotone class
theorem shows
2)=o

which proves (4.1). o

5 (1000 - 100 - [ LaCrar

8.5. Donsker’s Theorem

Let &,&,... beiid. with E& =0and E€? = 1. Let S, = & +---+ &, be the
nth partial sum. The most natural way to turn S,,,, 0 < m < n into a process
indexed by 0 < ¢ < 1 let BP = Siny)/v/n where [z] is the largest integer < z.
To have a continuous trajectory we will instead let

. Sm/\/'ﬁ ift=m/n
B = {linear ift € [m/n,(m+1)/n]

(5.1) Donsker’s Theorem. As n — 0o, B" = B, where B is a standard
Brownian motion.

Proof We will prove this result using (3.2). Thus there are two things to do:

Convergence of finite dimensional distributions. Since Siq is the
sum of [nt] independent random variables, it follows from the central limit
theorem that if 0 < ¢; < ...t;, <1 then

(B},BY —BY,...B} —B} )= (By,Bi,—Bi,,...B;,, —B;_,)

To extend the last conclusion from B™ to B", we begin by observing that if
rn = nt — [nt] then X
B} = B} 4 tn §nags1/Vn
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Since 0 < r < 1, we have r €41 /v/n — 0 in probability and the converging
together lemma, (1.3), implies that the individual random variables B} = B;.
To treat the vector we observe that

(By, — By,_,)— (B}, — By,_)= (B}, — By)—(B},_, — BL_)—0
in probability, so it follows from (1.3) that

(B:,B. —B}.,...,B} —Bp

Tme—1

):} (BfUsz - Biu--'aBim _Bfm—x)

Using the fact that (z1,z5,...,25) — (21,21 4+ zo,..., 21+ -+ z,,) s @
continuous mapping and invoking (1.2) it follows that the finite dimensional
distributions of B™ converge to those of B.

Tightness. The L? maximal inequality for martingales (see e.g., (4.3) in
Chapter 4 of Durrett (1995)) implies

2

E (max S,-) < 4ES}
ogji<t

Taking £ = n/m and using Chebyshev’s inequality it follows that

P ( max |S;| > e\/_ﬁ) < 4/me?

0<j<n/m

or writing things in terms of B}

P ( max |BP — B*| > e) < 4/mé?
s<t<s+1/m

Since we need m intervals of length 1/m to cover [0,1] the last estimate is not
good enough to prove tightness. To improve this, we will truncate and compute
fourth moments. To isolate these details we will formulate a general result.

(6.2) Lemma. Let £,&,... be i.id. with mean y. Let §_,- = &ilge<ar), let
Se =&+ +&, let o(M) = E(|&|% |&| > M), let fips = E&;, and iar = E(E7).
Then we have

(i) P& #&) < M2E(|&1% 1€ > M) = o(M)/M?
(il) |u— inm| < E(l&; 1€l > M) < oMY/ M
(iii) If M > 1 and (M) < 1 then

E(S: — tiip)? < C1EM? + Cof?
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where C; = 32 {ﬁ}iw + 17M} and Cy = 24 {ﬁﬁ,[ + 17M}-

Remark. We give the explicit values of C; and C, only to make it clear that
they only depend on jipr and Dyy.

Proof Only (iii) needs to be proved. Since E(; — fips) = 0 and the E-J are
independent

E(8, — tfipg)t = E(ij & — ﬁM)4

=1
= _ 4 £\ /4 = 9
= LB — )+, || ) B — Anm)’
If p is an even integer (we only care about p = 2,4) then
E(& — amY < 2°(E} + EE)
From this, (ii), and our assumptions it follows that
E(§ — Am)* < 43, + omr)
This gives the term C,£2. To estimate the fourth moment we notice that
— M —
BE)= [ 4°P(§1>2)ds
0
M —
< 2M2/ 2zP(|¢;| > z)dz = 2M 20y
0
So using our inequality for the pth power again, we have
E(§ — ar)* < 16(73; + 2M°0nr)

Since we have supposed M > 1, this gives the term Cj£M? and the proof is
complete. O

We will apply (5.2) with M = §/n. Part (i) implies
(5.3) R P O,

by the dominated convergence theorem. Since y = 0 part (ii) implies

(5.4 alir] < - S0 = o(/m)
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as n — 00. Using the L* maximal inequality for martingales (again see e.g.,
(4.3) in Chapter 4 of Durrett (1995)) and part (iii), it follows that if £ = n/m
and n is large then (here and in what follows C will change from line to line)

E sup |S; — kim|* < CE|S: — £am|*
0<E<L

2
SCUM?+iH<C (g_ + —1—) n?
m m

Using Chebyshev’s inequality now it follows that

m2

. 2
(5.5) - P ( sup |Sx — kiim| > e\/_ﬁ/g) < Ce™ (é— + 1 )
0<k<L m
Let B} = Sjny/vn and Iim = [k/m,(k + 1)/m]. Adding up m of the
probabilities in (5.5), it follows that

- .. 1
limsup P ( max max |B} — By,| > 5/9) < Ce* (62 + 7—71—)

n—00 0<k<m s€lx,m

To turn this into an estimate of the modulus of continuity, we note that

wyym(f) < 3 max max |£(s) — f(k/m)|

0<k<m s€lx,m
since for example if k/m <s < (k+1)/m <t < (k+2)/m

|78} — £() < 1f(@) = F((k+ 1)/m)|
+ [F((k + 1)/m) — f(k/m)| + | f(k/m) = f(s)]|
If we pick m and § so that Ce=%(62 4 1/m) < e it follows that

(5.6) limsup P(w;/n(B™) > €¢/3) < €

n-—o0
To convert this into an estimate the modulus of continuity of B we begin

by observing that (5.3) and (5.4) imply

P ( sup |B} — B?| > 5/3) —0
0<t<1

as n — oo so the triangle inequality implies

limsup P(wl/m(B") >e)<e
n—oo
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Now the maximum oscillation of B™ over [s,%] is smaller than the maximum
oscillation of B™ over [[ns]/n, ([nt] + 1)/n] so

(5.7) ws(B™) < wspo/a(B)
and it follows that
limsup P(w) jam(B") > €) <
n—oo

This verifies (ii) in (3.4) and completes the proof of Donsker’s theorem. O

The main motivation for proving Donsker’s theorem is that it gives as
corollaries a number of interesting facts about random walks. The key to the
vault is the continuous mapping theorem, (1.2), which with (5.1) implies:

(5.8) Theorem. If ¢ : C[0,1] — R has the property that it is continuous
Py-a.s. then ¥(By) = ¥(B).

Example 5.1. Let ¥(w) = max{w(t) : 0 < t < 1}. It is easy to see that
[¥(w) — ¥(€)] < |lw — || so ¥ : C[0,1] — R is continuous, and (5.8) implies

0znmaxn Sm/Vn= M = rélax B;

To complete the picture, we observe that by (3.8) in Chapter 1 the distribution
of the right-hand side is

Po(Ml > a) = Po(Ta < ].) = 2P0(B1 > a)

Example 5.2. Let ¥(w) = sup{t < 1 : w(t) = 0}. This time ¢ is not
continuous, for if we has we(0) = 0, w(1/3) = 1, w(2/3) = ¢, w(1) = 2, and
linear on each interval [7,(j + 1)/3] then ¢¥(wo) = 2/3 but ¥(we) = 0 for € > 0.
It is easy to see that if ¥(w) < 1 and w(t) has positive and negative values
in each interval (¢¥(w) — §,9¥(w)) then ¢ is continuous at w. By arguments in
Example 3.1 of Chapter 1, the last set has Py measure 1. (If the zero at ¥(w)
was isolated on the left, it would not be isolated on the right.) Using (5.8) now

sup{m<n:Sn_1-Sm <0}/n=L=sup{t <1:B;=0}
The distribution of L, given in (4.2) in Chapter 1, is an arcsine law.

Example 5.3. Let ¢(w) = |{t € [0,1] : w(t) > a}|. The point w = a shows
that ¢ is not continuous but it is easy to see that i is continuous at paths w
with |{t € [0,1] : w(¢) = a}| = 0. Fubini’s theorem implies that

Eol{t €[0,1]: B, = a}| = /01 Po(By=a)dt=0
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so 1 is continuous Pg-a.s. With a little work (5.8) implies
{m <n:8 >avn}|/n=|{t €[0,1]: B; > a}|

Before doing that work we would like to observe that (9.2) in Chapter 4 shows
that |{t € [0,1] : B; > 0}| has an arcsine law under P,.

Proof Application of (5.8) gives that for any a,
|{t €[0,1]) : B} > av/n}| = [{t € [0,1] : B; > a}|

To convert this into a result about [{m < n : S,, > a\/n}| we note that if e > 0
then
P(max|Xm| > ev/n) < nP(|Xm| > ev/n)
(5.9) m<n
L€ 2E(XE; | Xm| > ev/n) — 0

by dominated convergence, and on {maxm<n |Xm| < €/n}, we have

[t €0,1]: B > (a + VAN < —[{m < n: 5n > avi)
<|{tel0,1): B} > (a —€)vn}|

Combining this with the first conclusion of the proof and using the fact that
b— |{t €[0,1] : B; > b}| is continuous at b = a with probability one, we arrive
easily at the desired conclusion. O

Example 5.4. Let (w) = f[o l]w(t)kdt where £ > 0 is an integer. ¥ is
continuous so applying (5.8) gives

/01(19;'/\/‘72)’c dt:}/ol BFdt

To convert this into a result about the original sequence, we begin by observing
that if z < y with |z — y| < € and |z|,|y| < M then

y k41 M'k+l
k k |2| €
- < dz <

From this it follows that on

Gn(M) = {mgx |Xm| < M0+ /n, max | S, < M\/'ﬁ}
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we have

1
SGTOM

[ sy a—nm-or 3 st

For fixed M we have P(maxm<n |[Xm| < M~¢+2),/0) — 0 by (5.9) so using
Example 5.1, and (1.1) it follows that

lgﬁ{gf P(Gn.(M))> P (0?52‘1 |B:| < M)

The right-hand side is close to 1 if M is large so

1 n
/ (B [v/n)E dt — n~ 1 (E/2) Z Sk 0
1]

m=1

in probability and it follows from the converging together lemma (1.3) that

n 1
n~1=( /3" gk =>/ Bk dt
0

m=1

It is remarkable that the last result holds under the assumption that EX; = 0
and EX? =1, i.e., we do not need to assume that E|X}| < co.

8.6. The Space D

In the previous section, forming the piecewise linear approximation was an an-
noying bookkeeping detail. In the next section when we consider processes that
jump at random times, making them piecewise linear will be a genuine nui-
sance. To deal with that problem and to educate the reader, we will introduce
the space D([0, 1], R9) of functions from [0, 1] into R¥ that are right continuous
and have left limits. Since we only need two simple results, (6.4) and (6.5) be-
low, and one can find this material in Chapter 3 of Billingsley (1968), Chapter
3 of Ethier and Kurtz (1986}, or Chapter VI of Jacod and Shiryaev (1987), we
will content ourselves to simply state the results.

We begin by defining the Skorokhod topology on D. To motivate this
consider

Example 6.1. For 1 <n < oo let

{0 telo,(n+1)/2n
f"(t)_{l te[(n-l—l)/;n,l])
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where (n+1)/2n = 1/2 for n = co. We certainly want f, — foo but ||fa—foo|| =
1 for all n.

Let A be the class of strictly increasing continuous mappings of [0, 1] onto
itself. Such functions necessarily have A(0) = 0 and A(1) = 1. For f,g € D
define d(f,g) to be the infimum of those positive € for which there isa A € A
so that

supM(t) —t| S ¢ and sup|£(1) ~ gMB)] < ¢

It is easy to see that d is a metric. If we consider f = f,, and ¢ = f,,, in Example
6.1 then for € < 1 we must take A((n + 1)/2n) = (m+ 1)/2m so

1 1

2n  2m

n+1_m+1 _
n 2m |~

d(fm fm) =

When m = oo we have d(fy, foo) = 1/2n 50 f, — fo in the metric d.
We will see in (6.2) that d defines the correct topology on D). However, in
view of (2.2), it is unfortunate that the metric d is not complete.

Example 6.2. For 1 <n < oo let

0 te(0,1/2)
gn(t) = {1 t €[1/2,(n+1)/2n)
0 tel(n+1)/2n,1]

In order to have € < 1 in the definition of d(gy,, gm ) we must have A(1/2) = 1/2)
and A((n + 1)/2n) = (m + 1)/2m so

1 1

d(gn, gm) = |5~ S

The pointwise limit of g, is goo = 0 but d(gn, goo) = 1. We leave it to the reader
to show

Exercise 6.1. If h € D then liminf, .o d(gn, h) > 0.

To fix the problem with completeness we require that A be close to the
identity in a more stringent sense: the slopes of all of its chords are close to 1.

IfleAlet (,\(t) A ))l
log (=54 =5

lIAll = sup
s#L
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For f,g € D define do(z, y) to be the infimum of those positive e for which there
is a A € A so that

Ml < e and  sup|f(t) —g(MB)I < e
It is easy to see that dg is a metric. The functions g, in Example 6.2 have
do(gn, gm) = min{1, |log(n/m)|}
so they no longer form a Caucly sequence. In fact, there are no more problems.
(6.1) Theorem. The space D is complete under the metric dy.
For the reader who is curious why we discussed the simpler metric d we note:

(6.2) Theorem. The metrics d and dy are equivalent, i.e., they give rise to the
same topology on D.

Our first step in studying weak convergence in D is to characterize tight-
ness. Generalizing a definition from Section 7.3 we let

ws(f) = sup{|f(¢) — f(s)| : 5, € S}

for each S € [0,1]. For 0 < § < 1 put

wlli(f) = %?5 Org?<xr w[fi,ii-{-x)(f)

where the infimum extends over the finite sets {¢;} with
O=tpg<t1 <-+-<t, and -t >6for1<ir
The analogue of (3.4) in the current setting is

(6.3) Theorem. The sequence py, is tight if and only if for each € > 0 there
are ng, M, and 6 so that

(i) pn(lw(0)| > M) <efor alln > ng

(ii) pa(ws > €) < efor all n > ng

Note that the only difference from (3.4) is the / in (ii). If we remove the ' we
get the main result we need.
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(6.4) Theorem. If for each € > 0 there are ng, M, and § so that
(1) #a(Jw(0)] > M) <efor all n > ng
(ii) pu(ws > €} < efor alln > ng

then p, is tight and every subsequential limit p has y(C) = 1.

(6.1)~(6.4) are Theorems 14.2, 14.1, 15.2, and 15.5 in Billingsley (1968).
We will also need the following, which is a consequence of the proof of (3.3).

(6.5) Theorem. If each subsequence of y, has a further subsequence that
converges to p then pu, = p.

8.7. Convergence to Diffusions

In this section we will prove a result, due to Stroock and Varadhan, about
the convergence of Markov chains to diffusion processes. Qur treatment here
follows that in Chapter 11 of Stroock and Varadhan (1979) but we will discuss
both discrete and continuous time in parallel. Qur duplicity lengthens the proof
somewhat, but is preferable we believe to the usual (somewhat dangerous) cop-
out: “the same argument with minor changes handles the other case.”

In discrete time, the basic data is a sequence of transition probabilities
My (z,dy) for a Markov chain Y2, , m = 0,1,2,..., taking values in Sx C R,
ie.,

P(Y(},'n,{,l)h € AlY?, =2)=T,(z,A) forze Sy, AeR?

In this case we define X = Yhh[t /np» 1€, we make X! constant on intervals
[mh, (m + 1)h).

In continuous time, the basic data is a sequence of transition rates Qp (z, dy)
for a Markov chain X!, ¢ > 0, taking values in S, C RY, i.e.,

d
EZP(X{‘ € AlXE =z)=Qn(z,A) forze Sy, AecR? withzg A
Note that although z € A is excluded from the interpretation, we will allow
Q(z,{z}) > 0 in which case jumps from z to z (which are invisible) occur at a
positive rate. To have a well behaved Markov chain we will suppose
(B) For any compact set K, sup,ex @n(z, RY) < oo.
In words, our convergence theorem states that if the infinitesimal mean and

covariance of the Markov chain converge to those of a diffusion for which the
martingale problem is well posed, and we have a condition that rules out jumps
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in the limit then we have weak convergence. To make a precise statement we
need some notation. To incorporate both cases we introduce a kernel

v [, (z,dy)/h in discrete time
Kn(=,dy) = { Qn(z,dy) in continuous time

and define
afi(z) = / (i — z:)(y; — z;)Kn(z, dy)
ly—=1<1

hz) = i — ;) K (z
bi( ) /|y—:c|51(y' l)Ih( 1dy)

A}(z) = Ki(z, B(z,€)°)
where B(z,¢) = {y : [y — z| < €}. Suppose

(A) a7 and ¥ are continuous coefficients for which the martingale problem is
well posed, i.e., for each z there is a unique measure P; on (C, () so that the
coordinate maps X;(w) = w(t) satisfy Pz(Xo = z) = 1 and

14 14
X;‘—/ b;(X,)ds and X{X{-/ a;; (X,) ds
0 0
are local martingales.

(7.1) Theorem. Suppose in continuous time that (B) holds, and in either case
that (A) holds and for each 7, j, R < 00, and € > 0

(i) limp o sup)i<r lafj(z) — aij(2)| = 0
(ii) limp 1o SUP o< p |62 (z) — bi(z)] = 0
(lll) lil’l’lhlo supMSR A? (:C) =0

If X} = z4 — = then we have X} = X, the solution of the martingale problem
with Xy = =.

Remarks. Here => denotes convergence in D([0,1], R¢) but the result can be
trivially generalized to give convergence D([0, 7], R9) for all T' < co.

In (i), (ii), and (iii) the sup is taken only over points z € S;. Condition
(iii} cannot hold unless the points in S; are getting closer together. However,
there is no implicit assumption that Sy is becoming dense in all of R9.

Proof The rest of the section is devoted to the proof of this result. We will
first prove the result under the stronger assumptions that for all 7, j and € > 0
we have
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(i') limy o sup, |afy(z) — ai;(2)| = 0 (iv) supy , |afj(z)| < o0
(ii') limn o sup, |6} (z) — bi(z)| =0 (V) supy ; |B}(z)] < o0
(iii") limp o sup, AP (z) = 0 (vi) sup,, , Al (z) < o0

and in continuous time that (B’) sup, Q(z,R?) < .
a. Tightness

If f is bounded and measurable, let

}(2) = [ Ka(zdn)(f0) - £=))

As the notation may suggest, we expect this to converge to
1
Lf(z) = 5 D_aii(®)Dii f() + ) bi(2)Dif (=)
ij i

To explain the reason for this definition we note that if f is bounded and
measurable then

(7.22) In discrete time f(X},) — YfZg h L* f(XD,) is a martingale.

(7.2b) In continuous time f(X}) — [3 L* f(X!) is a martingale.

Proof (7.2a) follows easily from the definition of L* and induction. Since we
have (B’), (7.2b) follows from (2.1) and (1.6) in Chapter 7. O

The first step in the tightness proof is to see what happens when we apply
L* to f.u(z) = fe(z — y) where f.(z) = g(|z|*/€?), and

g(x)={61—22)(1—2)3 Efsl

The exact formula for g is not important. All we care about is that 0 < g(z) <1
forz >0, g(0) =1, g(z) =0 for z > 1, and g € C? (since ¢'(0) = ¢"(0) = 0).

(7.3) Lemma. There is a C, which only depends on € so that |L* f, (| < C..

Proof Applying Taylor’s theorem to the function h(f) = f(z + t(y — z)) for
0 <t <1 we have for some ¢; y € [0,1]

F(y) ~ (=) = h(1) = h(0) = '(0) + h"(cz,4)/2!
(7.4) = > — 20)Dif(2) + D _(ui — 2)(u; — 2)Dij f (22.1)

i,j
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where z;y = £+ ¢z y(y — z). Integrating with respect to Kj(z,dy) over the set
|y — z| < 1 and using the triangle inequality we have

L*f(z) <

vi@- [ -2 Kh(m,dy)]

ly-z|<

+

/I <1 D (i — =) (y; — =)Dy f (Zx,y)Kh(m,dy)l
<1 %

+ 2/ flleo Kn (2, B(2,1)%)
Let A = sup, |Vf(z)|, and B = sup, ||Di;j f(z)|| where

||| = sup {"Zu,—m,—juj " Hu| = 1}
Noticing that the Cauch&-Schwarz inequality implies
(7.5) N |3 wivi| < lullo
and the definition of ||m;;|| gives
(76) |3 — 29w = )Py £(2)| < ly = 2PIDg £
ij
it follows that

L*f(z) < A

/ (v — z) Kn (2, dy)
ly—=|<1

6[ | |y :t:l l‘h(m:dy) I 2”f”oolih(m,B(:c, ].)c)
y—z|<1
N_ow

(7.7) > di(z) = / ly — | Kn(z, dy)

1 ly—z|<1

so recalling the definitions of 5} and A%, then using (iv)-(vi) the desired result
follows. o

To estimate the oscillations of the sample paths, we will let 5 = 0,
Tn = inf{t > 1 1 : [XP — Xf.‘“‘l| > e/4}
N=inf{n>0:7, > 1}

g=min{rm ~m_1:1<n <N}
6 = max{|X*(t) - X*(t-)|:0<t < 1}
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To relate these definitions to tightness, we will now prove
(7.8) Lemma. If 0 > § and 8 < €/4 then ws(X"*) <e.

Proof To check this we note that if ¢ > 6§ and 0 < ¢ — s < § there are two
cases to consider

CaseE 1. 7 £5 <t < Ty
|£@) = F()] S 1F (@) = F(m)| + |f () — f(s)] < 2¢/4
CASE 2. h_1 £ 8 < Tq <t < Ty
|£@) = F() S 1F@) = f(ma)l + |f () — F(ma)
+1f (=) = f(ra-1)|+ |f(m-1) = f(s)| S € o

Tightness proof, discrete time. One of the probabilities in (7.8) is
trivial to estimate

(7.9a) A P,(0>¢/4) < % sup I (z, B(z,€/4)°) < Slip Aﬁ‘/‘i(m) —0

by (iii’). The first step in estimating P,(o > §) is to estimate P,(1 < 6). To
do this we begin by observing that (7.2a) and (7.3) imply

fueja(XP) + Cepakh, £=0,1,2,... is a submartingale

Using the optional stopping theorem at time T A 4 where & = [§/h]h < 6 and
noticing X ,; = Xras it follows that

E{fy,e/a(Xrns) + Cepa(r A8} > 1
or rearranging and using A6 < §
(7.10) Cejab 2 Ey{1~ fyea(Xrns)} 2 Py(m < 6)
Our next task is to estimate Py (N > k). To do this, we begin by observing

E,(e ™) < P (r < 6)+ e *Py(r > 6)
SCysb+e?(1-Cuysb)=r<1
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Iterating and using the strong Markov property it follows that E,(e~"») < A"
and

(7.11) Py(N > k)= Py(r; <1) < eEy(e™™) < eXF
Combining (7.10) and (7.11) we have

(7.12) Py(0 < 6) < ksup Po(r < 8)+ Py(N > k) < Cojak + e

If we pick k so that ed* < ¢/3 and then pick 6 so that Ccké < €/3 then (7.12),
(7.9a), and (7.8) imply that for small h, sup, P, (ws(X"*) > €) < e. This verifies
(ii) in (6.4). Since X} = z, (i) is trivial and the proof of tightness is complete
in discrete time. |

Tightness proof, continuous time. One of the probabilities in (7.8)
is trivial to estimate. Since jumps of size > €/4 occur at a rate smaller than
sup, I, (z, B(z,¢/4)°) and e™* > 1 — 2

(7.9)  Py(0 2 ¢/4) < 1~ exp(—sup Qu(2, B(z,/4)%)) < sup Afyy(z) — 0

by (iii’). The first step in estimating P,(o > §) is to estimate Py(my < 6). To
do this we begin by observing that (7.2b) and (7.3) imply

Fu.e/a(XF) + Cejat, t > 0 is a submartingale
Using the optional stopping theorem at time 7 A § it follows that
Ey{fy,e/a(Xrns) + Cepa(r AE)} 21
The remainder of the proof is identical to the one in discrete time. 0O

b. Convergence

Since we have assumed that the martingale problem has a unique solution,
it suffices by (6.5) to prove that the limit of any convergent subsequence solves
the martingale problem to conclude that the whole sequence converges. The
first step is to show

(7.13) Lemma. If f € C% then ||L*f — Lf||e — 0.
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Proof Using (7.4) then integrating with respect to Kj(z,dy) over the set
ly — z| £ 1 we have

L*f(z) = Zbé‘(r)D.-f(m)
(719 - 205 2000 = 23)D5 o) K 5,0
[ ) - 1@} Ka(e,dy)
ly—=|>1

Recalling the definition of A? and using (vi) it follows that the third term goes
to 0 uniformly in z. To treat the first term we note that (7.5) and (v) imply

IZ b} (2)D; f (=) — Z bi(z)D; f(z)

< sup |6} (z) — bj ()| Z |D:f(z)| — 0

uniformly in z.
Now the difference between the second term in (7.14) and };; ai; Di; f(z)
is smaller than

]Za.,(m)D.,f(x) IERLEC

(.15)

/ < Z(y» — z:)(y; — 25) {Dij f(2z,y) — Dij f(z)} Kn(z,dy)

By (7.5) the first term is smaller than
sup |aij () ~ alj(2)| D 1D f(=)|
i

which goes to 0 uniformly in z by (iv). To estimate the second term in (7.15)
we note that for any € the integral over {y : € < |y— z| < 1} goes to 0 uniformly
in z by (vi) and the fact that the integrand is uniformly bounded. Using (7.6),
the last piece

—zi)(yj — ;) {Dij f(20,9) — Dij f(z)} Kn(z, dy)

< T(e)

/l < ly — z|* K (2, dy)
y—z|<e
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where
L@ = sup |D:jf(z20) = Diif (2l
y—z|<e
Now z; , is on the line segment connecting z and y, D;; f is continuous and has
compact support, so I'(¢) — 0 as € — 0. Using (7.7) and (iv) now the quantity
in (7.16) converges to 0 and the proof of (7.13) is complete. O

Convergence proof, discrete time. Let h, — 0 so that X"~ converges
weakly to a limit X°. (7.2a) implies

k-1
FXi )= haLMf(Xir ), £=0,1,2,... is a martingale
j=0

To pass to the limit, we rewrite the martingale property by introducing a
bounded continuous function g : D — R which is measurable with respect
to F, and observe that if k, = [s/h,] + 1 and £, = [¢/h,] 4+ 1 the martingale
property implies

Ln—-1
E (g(x"") {f(xj‘:h“) — fXEn )= D0 hnL""f(X}‘h"n)}) =0

J=kn

Let hoo = 0. Skorokhod’s representation theorem (1.4) implies that we can
construct processes Y™, 1 < n < oo with the same distribution as the X"*»
so that Y™ — Y% almost surely. Combining this with (7.13) and using the
bounded convergence theorem it follows that if f € C% then

E (g(X") {f(xf) - F(X) - / t LX) dr}) =0

Since this holds for all continuous g : C — R measurable with respect to F, it
follows that if f € C% then

t
fxH - / Lf(X?%)ds is a martingale
0

Applying the last result to smoothly truncated versions of f(z) = z; and f(z) =
z;z; it follows that X° is a solution of the martingale problem. Since the
martingale problem has a unique solution, the desired conclusion now follows
from (6.5). O
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Convergence proof, continuous time. Let h, — 0 so that X"~ con-
verges weakly to a limit X%, (7.2b) implies

14
FOXhY — / L f(X")ds t > 0... is a martingale
1]

and repeating the discrete time proof shows that X° is a solution of the mar-
tingale problem and the desired result follows. O

¢. Localization

To extend the result to the original assumptions, we let ¢; be a C* func-
tion that is 1 on B(0,k) and 0 on B(0,k + 1) and define

Ky ik (z,dy) = pr(z)Kn (2, dy) + (1 — pr(z))b=(dy)

where 6, is a point mass at z. It is easy to see that if K, satisfies (1)-(iii) then
K}, ;. satisfies (i')-(iii’) and (iv)-(vi). From the first two parts of the proof it
follows that for each k, X®* is tight, and any subsequential limit solves the
martingale problem with coefficients

a*(z) = pr(e)a(z)  b*(z) = pr(2)b(z)

We have supposed that the martingale problem for a and 5 has a unique
nonexploswe solution X, In view of (3.3), to prove (6.1) it suffices to show that
given any sequence h, — 0 there is a subsequence hf so that X"» ha = X0 To
prove this we note that since each sequence X%~ ¥ is tlght a diagonal argument
shows that we can select a subsequence A/, so that for each k, Xn'k = X0k,

Let Gr = {w : w(t) € B(0,k),0 <t < 1}. Gy is an open set so 1f
X"k = X0k and H C C is open then (2.1) implies that

1imi£fp(xh’~k €EG:NH)>PX* eGynH)=P(X"€ G, NH)

since up until the exit from B(0, k), X ®F is a solution of the martingale problem
for b and a and hence its ,distribution agrees with that of X% Now up to the
first exit from B(0,k) X"~ has the same distribution as that of X*»* so we
have

liminf P(X*» € H) > liminf P(X"» € G+ N H) > P(X° € G N H)

Since there is no explosion the right-hand side increases to P(X® € H) ask T oo
and the proof is complete.
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8.8. Examples

In this section we will give applications of (7.1) beginning with the following
very simple situation.

Example 8.1. Ehrenfest Chain. Here, the physical system is a box filled
with air and divided in half by a plane with a small hole in it. We model this
mathematically by two urns that contain a total of 2n balls, which we think of
as the air molecules. At each time we pick a ball from the 2n in the two urns
at random and move it to the other urn, which we think of as a molecule going
through the hole. We expect the number of balls in the left urn to be about
n+ Cv/n, so we let Z" be the number of balls at time m in the left urn minus

n, and let Ynlx//: = Z7%/V/n. The state space Sy, = {k/v/n: —n < k < n}
while the transition probability is

(e e+ = B2V 1y o g ot/ = BEEYR

When € > n=1/2, AY™(z} = 0 for all z so (iii) holds. To check conditions (i)
and (ii} we note that

bl/"(m)zn{.—l_._—_n_m n_-l—-———n_m n}:—:c

al/n(x)zn{%.ﬁlmrl.ﬁlfz}:l

2n n 2n

The limiting coefficients b(z) = —z and a(z) = 1 are Lipschitz continuous, so
the martingale problem is well posed and (A) holds. Letting X; n — Y[rll{]"/n
and applying (7.1) now it follows that

(8.1) Theorem. As n — oo, th/ " converges weakly to an Ornstein-Uhlenbeck
process X3, i.e., the solution of

dX; = —-X;dt +dB;

Next we state a lemma that will help us check the hypotheses in the next
two examples. The point here is to replace the truncated moments by ordinary
moments that are easier to compute.

aly(e) = [ = 20 — 23 Ki(z, o)
b(z) = / (w5 — 20) K (2, dy)

B@ = [l 2P Ki(z,dy)
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(8.2) Lemma. If p > 2 and for all R < co we have
(a) limp o sup|zi<r |8%(z) — asj(z)| = 0
(b) lima o sup|z < |6 (z) — bi(z)| = 0
(c) limp o SUP|zi<r 7}3 (z)=0

then (i), (ii), and (iii) of (7.1) hold.

Proof Taking the conditions in reverse order, we note A?(z) < e‘P'y;‘ (z)

B (z) — b2 (2
1B (<) ,()|s/I

y—z|>

. ly — z| Kn(z, dy) < 72 (x)
Using the Cauchy-Schwarz inequality with the triviality (yx — z£)? < |y — z|?

()~ (o) < [

y—z|>

< / lv — 2K (2, dy) < 72 (2)
ly—=|>1

. (g — z:)(yj — ;)| Kn(z, dy)

The desired conclusion follows easily from the last three observations. 0

Our first two examples are the last two in Section 5.1, and date back to
the beginnings of the subject, see Feller (1951).

Example 8.2. Branching Processes. Consider a sequence of branching
processes {Z%,m > 0} in which the probability of k children p} has mean
14 (Bn/n) and variance 2. Suppose that

(A1) Bn — B € (—00, ),
(A2) g, — o € (0, 0),
(A3) for any § > 0, Y py s, k2PE — 0
Following the motivation in Example 1.6 of Chapter 5, we let X}/™ = Zpan.

Our goal is to show

(8.3) Theorem. If (A1), (A2), and (A3) hold then X; /" converges weakly to
Feller’s branching diffusion X;, i.e., the solution of

dXt = ﬁXt dt + o/ Xt dBt
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References. For a classical generating function approach and the history of
the result, see Sections 3.3-3.4 of Jagers (1975). For an approach based on
semigroups and generators see Section 9.1 of Ethier and Kurtz (1986).

Proof We first prove the result under the assumption

(A8') for any 6 > 0, 3" 5, k?p} = 0 for large n

Then we will argue that if n is large then with high probability we never see
any families of size larger than né.

The limiting coefficients satisfy (3.3) in Chapter 5, so using (4.1) there, we
see that the martingale problem is well posed. Calculations in Example 1.6 of
Chapter 5 show that (a) and (b) hold. To check (c¢) with p = 4, we begin by
noting that when Z§ = £, Z] is the sum of £ independent random variables &}
with mean 1+ 8, /n > 0 and variance 02. Let § > 0. Under (A3') we have in
addition |€7| < né for large n. Using (a + b)* < 2%a* 4 2%* we have

Y™ (2) = nE(n~{Z} — nz}Y 28 = nz)
<1607 3(zB,)t + 160 2E({Z} — nz(1 + Bn/n)}} 25 = nz)
To bound the second term we note that
E({Z] — nz(1 4 Ba/n)}*|Z5 = nz) = nzE(E] — (1+ Ba/n)*
+6("y ) Bler = 1+ o))

To bound E(€F — (1 + Bn/n))?, we note that if 14 8, /n < né
B(E — (1+pn/m) = | " 42 P& — (1 4+ u/m)| > 2) s

< 2(né)? /0 " 2z P(|€F — (1 + Ba/n)| > z) dz < 26%0 70

Combining the last three estimates we see that if || < R then

vi/™(z) < 326262 R+ 9602 R?n " + 16(2fa/n)*

Since § > 0 is arbitrary we have established (c¢) and the desired conclusion
follows from (8.2) and (7.1).

To replace (A3’) by (A3) now, we observe that the convergence for the
special case and use of the continuous mapping theorem as in Example 5.4
imply

n—1

—2Zz"=>/de
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(A3) implies that the probability of a family of size larger than né is o(n™2).
Thus if we truncate the original sequence by not allowing more than é,,n children
where 6, — 0 slowly, then (Al), (A2) and (A3’) will hold and the probability
of a difference between the two systems will converge to 0. O

Example 8.3. Wright Fisher Diffusion. Recall the setup of Example 1.7
in Chapter 5. We have an urn with n letters in it which may be A or a. To
build up the urn at time m 4 1 we sample with replacement from the urn at
time n but with probability «/n we ignore the draw and place an a in, and with
probability B8 /n we ignore the draw and place an A in. Let Z% be the number

of A’s in the urn at time n, and let X,l/ = Ziy /n. Our goal is to show

(8.4) Theorem. As n — oo, X,l/ " converges weakly to the Wright-Fisher
diffusion Xj, i.e., the solution of

dXt = (—aXt-I—ﬂ(l—Xt)) dt+ Xt(l—Xt) dBt

References. Again the first results are due to Feller (1951). Chapter 10 of
Ethier and Kurtz (1986) treats this problem and generalizations allowing more
than 2 alleles.

Proof The limiting coefficients satisfy (3.3) in Chapter 5 so using (4.1) there
we see that the martingale problem is well posed. Calculations in Example 1.7
in Chapter 5 show that (a) and (b) hold. To check condition (¢} with p = 4
now, we note that if Z§ = nz then the distribution of Z} is the same as that
of S, = & + --- + &, where &1,...,& € {0,1} are i.id. with P(§; = 1) =
z(l~a/n)+ (1~ z)B/n.

E(S, —np)* = E(:;EJ —p)4

=nE(& —p)* + 6(;) E(& —p)® < Cn?

since E(§; — p)™ < 1 for all m > 0. From this and the inequality (a + b)* <
2%a* 4 21 it follows that

nE({Z} /n — 2}4|Z8 = z) < n(—az + B(1 — z))/n* + nCn?/n* — 0
uniformly for z € [0,1] and the proof is complete. o

Our final example has a deterministic limit. In such situations the following
lemma is useful.
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(8.5) Lemma. If for all R < co we have
(a) limp yo supy < g |8 ()| = 0

(b) lim o supjoi< |8 () — bi(z)] = 0
then (i), (ii), and (iii) of (7.1) hold with as;(z) = 0.

Proof The new (a) and (b) imply the ones in (8.2). To check (c) of (8.2) with
p = 2 we note that

I ah(z) = / ly — 2K (2, dy) = 72 (=) o

1

Example 8.4. Epidemics. Consider a population with a fixed size of n
individuals and think of a disease like measles so that recovered individuals are
immune to further infection. Let S} and I* be the number of susceptible and
infected individuals at time n, so that n — (S + I}*) is the number of recovered
individuals. We suppose that (S}, I’} makes transitions at the following rates:

(5,7) = (s+ 1,9) a(n—s—1)
(s,8) = (s —1,i+ 1) Bsifn
(s,2) = (5,1 —1) )

In words, each immune individual dies at rate « and is replaced by a new
susceptible. Each susceptible individual becomes infected at rate S times the
fraction of the population that is infected, /n. Finally, each infected individual
recovers at rate vy and enters the immune class,

Let X}/" = (S#*/n, I /n). To check (2) in (8.5) we note that

1

a{"(e1,22) = =5 - {an(l — 21 — 22) + Bna1 22}
1

014"(21,22) =2 - pnzizy
1

a3y"(21,22) = = - {Bnmiz2 + 72122

and all three terms converge to 0 uniformly in I' = {(z;,z2) : 1,22 > 0,2, +
z9 < 1}. To check (b) in (8.5) we observe

1 1

bi/"(xh z9) = an(l — z;.— z2) - n - pnzizy - oy
= a(l —z) — z3) — fz1Z2 = bi(2)

1 1

b;/"(:cl, z2) = fnz z2 - e £ R

= Bz1T2 — Yo = ba(x)



310 Chapter 8 Weak Convergence

The limiting coefficients are Lipschitz continuous on I'. Their values outside T’
are irrelevant so we extend them to be Lipschitz continuous. It follows that the
martingale problem is well posed and we have

(8.6) Theorem. As n — o0, X, I converges weakly to X, the solution of the
ordinary differential equation

dX: = b(X:)dt

Remark. If weset o = 0 then our epidemic model reduces to one considered in
Sections 11.1-11.3 of Ethier and Kurtz (1986). In addition to (8.6) they prove
a central limit theorem for \/H(X,I/ "~ Xy).



Solutions to Exercises

Chapter 1

1.1. Let A= {A = {w: (w(t1),w(t2),...) € B} : B € R{L:2}}. Clearly, any
A € Ais in the o-field generated by the finite dimensional sets. To complete
the proof, we only have to check that A is a o-field. The first and easier step is
to note if A = {w : (w(t1),w(t2),...) € B} then A° = {w : (w(t1),w(t2),...) €
B°} € A. To check that A is closed under countable unions, let A, = {w :
(WD), w(t%),...) € Bn}, let t1,is,... be an ordering of {t, : n,m > 1} and
note that we can write A, = {w : (w({1),w(t2),...) € En} so U4, = {w:
(w(tl),w(tg), . ) c UnEn} € A

1.2. Let A, = {w : there is an s € [0, 1] so that |B; — Bs| < C|t — s|” when
[t —s| <k/n}. Forl1<i<n-—k+1let

Yi,n=rnax{‘B (3-il) —B(fi-?-‘—l) :j=0,1,...k—1}
n n

By, = { at least one ¥; » is < (2k - 1)C/n"}
Again A, C By, but this time if ¥ > 1/2+ 1/k, i.e., k(1/2 — v) < —1, then
P(B,) < nP(|B(1/n)| < (2k = 1)C/n")*
< aP(|B()| < (2k — 1)Ct/? M)
< C'*/2=M+

1.3. The first step is to observe that the scaling relationship (1.3) implies

(*) Amn 227727,

while the definition of Brownian motion shows EAf ; = ¢, and E(AZ,-1)? =
C < oo. Using () and the definition of Brownian motion, it follows that if
k # mthen A7  —127" and A}, , —t27" are independent and have mean 0 so

2
E( > (Afn’"—tz"")) = Y E(A%, —t27) =2"Co~?"

1<m<2" 1<m<2»
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where in the last equality we have used (x) again. The last result and Cheby-
shev’s inequality imply

Pl| > AL.-t|>1/n] <n?.C2™"
1<m<2"

The right-hand side is summable so the Borel-Cantelli lemma implies

P Z Afn,n —t| > 1/n infinitely often | =0
m<2n
2.1. Take Y(w) = f(wi—s).

2.2. When f(z) = zi, 2.1 becomes E.(Bi|F,) = E’B(,)B;'_, = B! since under
P, B;_, is normal with mean z;. When f(z) = z;z; with i # j 2.1 becomes

E.(B}B]|F.) = Ep,(B]_,B]_,) = BiB}
since under Py, Bi_, and BI_, are independent normals with means z; and z;.

2.3. Let Y = I(7,5¢) and note that Tpo 6y = R—1s0 Y 061 = I(ry141). Using
the Markov property gives

P;(R>1+t|F)= Pp,(To >t)

Taking expected value now and recalling P;(B1 = y) = pi(z,y) gives

P;;(R >1 +t) = /pl(x,y)Py(Tg > t) dy

2.4. Let Y = l(1,51-4) and note that Y o §; = 1(p<;). Using the Markov
property gives
Po(L <t|F) = Pp,(To >1-1)

Taking expected value now and recalling Po(B; = y) = p:(0,y) gives

Py(L<Lt)= /pt(O,y)Py(To >1—t)dy

2.5. We will prove the result by induction on n. By assumption it holds for
n = 1. Suppose now it is true for n. Let Y(w) = 1(r51w,ek). Applying the
Markov property at time n gives

E+(Y 06,|Fs) = P, (T >1,B, € K)
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Integrating both sides over A, = {T' > n, B, € K}, recalling the definition of
conditional expectation, and using our assumption shows

E(Yob,;A,) >aP(A,)
The right-hand side is smaller than P(A, ;1) and the desired result follows.

2.6. Since [ h(r, B,)dr € F,, we have

E; (/Ot h(r, B,)dr .’F,) = /0-* h(r, B,)dr

t
+ E: (/ h(r,B,)dr

f-,)

To evaluate the second term we let Y (w) = f;_’ h(s + u,wy) du and note

1—3
Yot9,=/ h(s +u, Bs4.y) du
0

so the Markov property implies

E, (/t h(r, B,) dr f,) = Ep, (/0:_, h(s+u,B,,)du)

2.7. Since f; c(B,)dr € F,, we have

B2 (B exp(e0| 7) = exp(en) B (f(B)esn ([ ' (B ar)

3

%)

To evaluate the second term we let Y (w) = f(B:—s) exp( ;_’ c(w, ) du) and
note Y o 8, = f(By) exp(f(:_J ¢(Bs+4u ) du) so the Markov property implies

E. (f(B:) exp( / ' o(B,)dr)

%.) = Bay (7B e | " o) t))

2.8. (2.8), (2.9), and the Markov property imply that with probability one
there are times 57 > t; > s9 > {5... that converge to a so that B(s,) = B(a)
and B(t,) > B(a). In each interval (s,41,5,) there is a local maximum.

2.9. Z = limsup,o B(t)/f(t) € F& so (2.7) implies Py(Z > c) € {0,1} for
each ¢, which implies that Z is constant almost surely.
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2.10. Let C < o0, tq | 0, AN = {B(ts) > C/t, for some n > N} and
A =NyAnN. A trivial inequality and the scaling relation (1.3) imply

Po(AN) 2 Po(B(tn) 2 Cvin) = Po(B(1) 2 C) > 0

Letting N — oo and noting Ay | A we have Py(A) > Py(B1 > C) > 0. Since
A € F§ it follows from (2.7) that Py(A) = 1, that is, limsup,_, B(t)/vZ > C
with probability one. Since C is arbitrary the proof is complete.

2.11. Since coordinates are independent it suffices to prove the result in one
dimension. Continuity implies that if § is small

Py ( sup |B;| <e/2) =2a>0
0<s<

so it follows from symmetry that

Py ( sup |Bs| <¢€/2,Bs < 0)
0<s<$

=P0(sup |Bs| < €/2, Bs >0) =a>0
0<s<6

Using the top result for z > 0 and the bottom one for z < 0 shows that if
z €[—€/2,¢/2]

P ( sup |B;| <¢€,Bs € [—6/2,6/2]) >a>0
0<t<6

Iterating and using Exercise 2.5 gives that if z € [—€/2,¢/2]

P ( sup |Bi| <€, Bns € [—5/2,5/2]) >a" >0
0<t<né

3.1. Suppose A = U3, K, where K, are closed. Let H, = U} _ Kp,. Hn
is closed so (3.4) implies T;, = inf{t : B; € H,} is a stopping time. In view
of (3.2) we can complete the proof now by showing that 7T,, | T4 as n | oo.
Clearly, Ty < limT;, for all n. To see that < cannot hold let ¢ be a time at
which B; € A. Then B; € K,, for some n and hence lim7;,, <t. Taking the inf
over t with B; € A we havelimT,, < Tjy.

3.2. If m2 " <t < (m+1)27" then {S, <t} = {S <m2™"} € F,i9-» C F1.
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3.3. Since constant times are stopping times the last three statements follow
from the first three.

{SAT <t} ={S<i}U{T <t} € A
(SVT<={S<On{T<t}ex
{S+T <t} =Ugreqtr<t{S <} N{T <r} €A

3.4. Define R, by Ry = T1, R, = Ru_-1 VT,. Repeated use of Exercise 3.3
shows that R, is a stopping time, Asn T oo R, T sup,, Ty so the first conclusion
follows from (3.3). Define S, by 81 = 71, Sn = Sp—-1 A T,,. Repeated use of
Exercise 3.3 shows that S, is a stopping time. As n T o0, S, | inf,, T}, so the
second conclusion follows from (3.2). The last two conclusions follow from the
first two since

limsup T, = inf sup T;, and liminfT7; = sup inf Tp,
n " m>n n n m>n

3.5. First if A € Fs then
An{S<i}=U,(AN{S<t—-1/n})e R

On the other hand if AN {S <t} € F; and the filtration is right continuous
then AN{S <t} =N (AN{S <t+1/n}) € Nn Frs1/n = Fr.

3.6. {R<t}={S<t}NAE€F; since A€ Fs
3.7. (i) Let r = s AL

{§<t}n{S<s}={S<rleF CF
{s<iin{S<st={S<rteF CF

This shows {S <t} and {S <t} are in Fs. Taking complements and intersec-
tions we get {S > t}, {S > ¢}, and {S =t} are in Fs.

@) {S<TIN{S <t} =Ugct {S < g} N{T > q} € F1 by (i), s0 {S < T} € Fs.
{S<TIN{T <t} =Ugt{S < g} N{qg < T <t} € F; by (i), s0 {S < T} € Fr.
Here the unions were taken over rational ¢. Interchanging the roles of S and
T we have {S > T} in Fs N Fr. Taking complements and intersections we get
{S>T}, {S LT} and {S =T} are in Fs N Fr.

3.8. If A € R then

(B(Sk) € A} N {Sn <t} = Upgmeant {Sn = m/2"} N {B(m/2") € A} €
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by (i) in Exercise 3.7. This shows {B(S,) € A} € Fs, so B(S,) € Fs,. Letting
n — oo we have Bg = lim,, B(S,) € N, Fs, = Fs.

3.9. (3.5) implies Fsar, C Fs. To argue the other inclusion let A € Fs. Since
A=Un(AN{T» > S})
it suffices to show that AN {7, > S} € Fsar,. To do this we observe

AN{T, > SIN{TaAS <t} =An{T, > S}n{S <t}
=Upct(AN{S<gHN{Tn > g} eF

since A € Fs implies AN{S < ¢} € F; and the fact that T, is a stopping time
implies {Ty, > q} € F,.

3.10. Since f: g(Bs)ds € Fs we have

E: (/OS 9(B,) ds .‘Fs> = /OS 9(B,)ds
| T
+ E; (/S 9(Bs) ds

Applying the strong Markov property to Y (w) = [; T()

1]
T
E, (/S 9(B;)ds

3.11. Let Yi(w) =1if s <t and u < w(t — s) < v, 0 otherwise. Let

)

g(ws) ds we have

.'F5> = u(Bs)

7 1 ifs<t,2a—v<w(t—s)<2a—u
Y. = !
+() 0 otherwise

Symmetry of the normal distribution implies E,Y; = E,Y;, so if we let S =
inf{s <t : B, = a} and apply the strong Markov property then on {S < oo}

E;(Ys 00s|Fs) = EoYs = E;¥s = Ex(Vs 0 05| Fs)

Taking expected values now gives the desired result.
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4.1. We begin by noting symmetry and (2.5) imply

[o 14
PARS1+0 =2 [ 20) [ P(To=9)dsdy
0 0

! t 0 t
= [2[ mow [ P =s)dyds
0 0 0

by Fubini’s theorem, so the integrand gives the density Py(R = 1+ ¢). Since
Py (Tg = t) = P()(Ty = t), (41) glves

=1 e—vi2_L ye~V 12t gy
0 \/271' 27l't3

_ ]. /oo e_y2(1+t)/2td _ ]. t
= omdl2 fy, Y V= omdlz T+ 1)

P(R=1+1t)=2

4.2. Translation invariance implies that if r < s then

E(z,r)f(Br, — Bo) = E(0,0)f(Br,_.)

Applying the strong Markov property to Y (w) = f(w(7;) — wp) at time 7., and
using the last identity we have

E(O,O)(f(Br. - B )| F:,) = E(O,O)f(BT.-r)
The rest of the argument is identical to that for (4.4).

4.3. As s — 0, p(s) — 1, so for some 6§ > 0 we have py(s) > 0 for all s < 6.
Using the equation ¢(s)p(f) = ¢(s+t) we can now conclude by induction that
for all n, p(s) > 0 for s < né, and we can take logarithms without feeling guilty.
The rest is easy: $(27") + ¥(2~") = $%(2-"=1) and induction tells us that
$(27™) = 27"¢(1), while ¥((m — 1)27") + ¥(2") = ¥(m2~") and induction
implies ¥(m2~") = m2-"y(1). Since ¢(s) is continuous and does not vanish,
1P(s) = @(s) is continuous and the desired result follows.

4.4. Let py(a) = Eg(exp(—ATz)). (4.4) and (4.5) imply

pa(a)pa(b) = pala+d)  pa(a) = paaz(l)

As before the first equation implies p)(a) = exp(cxa) while the second with
A=1landa=b gives ¢ = Vbey and this implies ¢) = —xVA.

4.5. Let My = maxg<s;<) B,;. Exercise 3.10 implies that with probability 1,
M, > B; and hence a — Ty is discontinuous at a = M;. This shows Py(a — Tq
is discontinuous in [0,n]) — 1 as n — co and the result follows from the hint.



318 Solutions to Exercises

4.6. Let M; = maxo<s<1 B? and T = inf{t > 1 : B? > M;}. Since
B < M; the strong Markov property and (4.3) imply that with probability
one BZ # B}’m so s — C, is discontinuous at s = M. This shows Py(s — C,

is discontinuous in [0,n]) — 1 as n — co and the result follows from the hint.

4.7. If we let f(z) = f(Z), then it follows from the strong Markov property
and symmetry of Brownian motion that

Ex(f(Bu);T 1) = Eo[Eof (Bi—r); <1]
= Ex[Eof(Bt—T)§T < t]
= E-[f(B); T < 1] = E-(f(By))

The last équality holds since f(y) = 0 when ya > 0, and the desired formula
follows as in (4.8).

Chapter 2

1.1. If A € ¥, and a < b then Hu(5,w) = la41/n,b41/n)la is optional and
converges to 1(4 #(s)1a(w) as n — co.

2.1. The martingale propefty w.r.t. a filtration G, is that
E(X$;A) = E(X5; A)
for all A € G,. (3.5) in Chapter 1 implies that Fsas C Fs so if X7 is a
martingale with respect to F, it is a martingale with respect to Fsa,. To argue
the other direction let A € F,. We claim that AN {S > s} € Fsas. To prove
this we have to check that for all r
(AN{S>s}N{SAs<r} €F

but this is @ for r < s and true for r > s. If X7 is a martingale with respect to
Fsas it follows that if A € F, then

E(X5;40{S > s}) = E(X5;AN{S > s})
On the other hand
E(X,S;AH{S <sh = E(X51(5>0);An {S§<sh= E(Xf;An{S <s})

Adding the last two equations gives the desired conclusion.
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2.2, To check integrability we note that
Bl = [ (emty eI loglylP dy < oo

since |log |y|| is integrable near 0 and e~1v==1*/2t takes care of the behavior for
large y. To show that E,X; — co we observe that for any R < oo

E X, > (2mt)~9/2 /

log |y| dy + (log R)P:(|B:| > R)
lyl<1

The integral is convergent and as we showed in Example 2.1, P.(|B;| > R) — 1
as t — oo so the desired result follows from the fact that R is arbitrary.

2.3. Let T, = inf{¢ : |X;| > n}. By (2.3) this sequence will reduce X;. Note
that X7~ < n. Jensen’s inequality for conditional expectation (see e.g., (1.1.d)
in Chapter 4 of Durrett (1995)) implies

E(p(X: ™) Frans) 2 9(E(XT | Frons)) = o(XT")

2.4. Let T, < n be a sequence which reduces X, and S, = (T, — R)*t. If s < ¢
then definitions involved (note S, = T, — R on {S, > 0} = {T, > R}), the
optional stopping theorem, and the fact 1(,5r) € Fr C Fr4s imply

E(Yias, 1(5,>0)|Gs) = E(X(r4)AT. 1(To>R) | FR+s)
= 11> R E (X (R40)aT, | FR45)
= X(R4)ATo L(Tw>R) = Ysns, 1(5.5>0)
2.5. Let T;, be a sequence that reduces X. The martingale property shows that

if A € Fp then
' E(Xiar. 11,500 A) = E(Xol(T,50); A)
Letting n — co and using Fatou’s lemma and the dominated convergence the-

orem gives
E(X;A) < linrn ng(X,AT“ Lr.>0)4)

S lim E(XQI(T“>0); A) = E(XQ,A)
n— 0o

Taking A = Q we see that FX; < EXy < 0o. Since this holds for all A € F, we
get E(X:|Fo) < Xo. To replace 0 by s apply the last conclusion to Y; = X4+,
which by Exercise 2.4 is a local martingale.

3.1. Since t — V; is increasing, we only have to rule out jump discontinuities.
Suppose there is a ¢ and an € > 0 so that s <t < u then V(u) — V(s) > 3¢ for
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all n. It is easy to see that V(u) — V(s) is the variation of X over [s,u]. Let
sp <t < up. We will now derive a contradiction that the variation over [sg, ug)
is infinite. Pick § > 0 so that if |r—¢| < § then | X; — X;| < e. Assuming s, and
uy, have been defined, pick a partition of [s,, us] not containing ¢ with mesh < §
and variation > 2¢. Let s,41 be the largest point in the partition < ¢ and #n41
be the smallest point in the partition > ¢. Our construction shows that the
variation of X over [s,, un] — [Sn41,8n41] is always > €, so the total variation
over [sp,ug] is infinite, a contradiction which implies ¢ — V; is continuous.

3.2, (X+Y):Z:—(X,Z) — (Y, Z); is a local martingale.

3.3. —XoZ,; is a local martingale, so if ¥; = —Xj then (Y, Z); = 0 and the
desired result follows from Exercise 3.2.

3.4. (aX:)(bY:) — ab(X,Y); = ab(X:Y: — (X,Y):) is a local martingale.
3.5. If T is such that X7 is a bounded martingale it follows from (3.7) and
the definition of (X) that (XT) = (X)T. For a general stopping time T, let
T, = inf{t : |X;| > n}, note that the last result implies (XTATn) = (X)TAT=
and then let n — oo. The result for the covariance process follows immediately
from the definition and the result for the variance process.
3.6. Since X? — (X): is a martingale and |X:| < M for all ¢

E(X), = EX?-EX} < M?

so letting ¢ — oo we have E(X)o < M2. This shows that X2 — (X); is
dominated by an integrable random variable and hence is uniformly integrable.

3.7. The optional stopping theorem implies
E(Xs+t |-'Fs+a) = XS-{-—:
and Xs € Fs C Fs4s 50
E(Xs4t — X5|Fsts) = Xsys — Xs

i.e., Y, is a martingale. To prepare for the proof of the second result we note
that imitating the proof of (2.4)

B((Xs4t — X5)?|Fsgs) = E(Xs4t — X545)? Fsts) + (Xsps — Xs)?
= E(X§+t - X§+,|f5+a) + (Xs4s — Xs5)?
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Let Z; = (X541 — Xs5)? — {{X)s4: — (X)s}. Using the last equality we get

E(Zt|f5+a) = E(X§+t - X.%-{-—a - {(X)S+t - (X)5}|fs+a) + (XS-{-a - Xa)2
= B(X341 — (X)s4t)Fsts) — Xips + (X)s + (Xs4s — X, )
= _(X)S-i-a + (X)S + (XS-{-a - Xa)2 =7,

where the last equality follows from the optional stopping theorem and Exercise
3.6. This shows that Z; is a martingale, so (Y); = (X)s4: — (X)s.

3.8. By stopping at T, = inf{¢ : | X:| > n} and using Exercise 3.5 it suffices to
prove the result when X is a bounded martingale. Using Exercise 3.7, we can
suppose without loss of generality that S = 0. Using the L? maximal inequality
on the martingale X; 7, and the optional stopping theorem on the martingale
X2 — (X): it follows that

E (Sl(lp X&:r) <A4B(X3pn) = E((X)tar =0
i<n

Letting n — oo now gives the desired conclusion.
3.9. This is an immediate consequence of (3.8).

4,1. Tt is simply a matter of patiently checking all the cases.
1. s<t§a. }’;:YQG.‘FQSO

]
EW|F) = E(Y|F) =Y =Y,
2.s<a<tLb

E(Ytlfa) = E(E(Ytlfa)fa) = E(Yalfa)
=EW|F)=Y=Y,

3.5<b,t>b. Y; =Y, so this reduces to case 2 if s < a or to our assumption
fa<s<b 4. b<s<t. E(Yi|F)=EM|F)=Y=Y,.

4.2, If we fix w then ¢t — (X); defines a measure. The triangle inequality for
L2 of that measure implies

( / i d()(),)ll2 + ( / K2 d()(),)ll2 < ( / (H, + K.)? d()(),)ll2

Now take expected value.
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4.3. X € M? implies Esup, X? < co and hence EX? < co. To check the other
condition let T}, be a sequence of stopping times T co so that XT» is bounded
and (X)7, < n. The optional stopping theorem implies

E (X7, —(X)1.) Yz,>0) = EX3 (T, 50)

Letting n — co it follows that E(X2 — (X)w = EXZ. To prove the converse
rearrange the displayed equation to conclude

E (X1,1(1.>0) < EX{ + B{X)eo
so X is L? bounded.
4.4. The triangle inequality implies ||z|| < ||za|| + ||z — za|| sO
llz| < liminf ||z,||
For the other inequality note that ||z,|| < ||z|| + ||zn — || so
llz|| 2 limsup ||z,||

4.5. Let H™ € bl with ||H" — H||x — 0. Since ||(H" - X)— (H - X)||2 — 0,
using Exercise 4.4, the isometry property for bIl;, and Exercise 4.4 again

1 - X ||z = lim||H™ - X ||2 = lim ||H"||x = || H]|x
5.1. If L, L' € M? have the desired properties then taking N = L — L’ we have
(L,L—-L"Y = (L',L — L') so (L— L) = 0. Using Exercise 3.8 now it follows

that L — L’ is constant and hence must be = 0.

5.2. If welet H, =1and K, = 1i,cr) then X = H-X and YT = K .Y. (It is
for this reason we have assumed Xy = Yy = 0.) Using (5.4) now it follows that

1
(X, YTy, = / 1<y dX,Y)s = (X, V)T
0
5.3, If welet H, = l(;<ryand K, = 1oy then XT = H-X and Y - YT =

K -Y. Using (5.4) now it follows that (XT,Y — Y7T); = 0 so the desired result
follows from (3.11).

6.1. Write H, = H} 4+ H? and K, = K! 4+ K2 where

H} = K} = H,1(s<s<1) = Ks1(s<s<T)
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Clearly, (H - X); = (K'-Y); for all ¢. Since H2 = K2 =0for S<s< T,
(5.4) implies
(H* X)s =(K?-X)s=0 forS<s<T

and it follows from Exercise 3.8 that (H2 - X); and (K? - X), are constant on
[S,T]. Combining this with the first result and using (4.3.b) gives the desired
conclusion.

6.2. Stop X at T, = inf{t : |X;| > nor fot H2d(X),} to get a bounded
martingale and an integrand in I5(X). Exercise 4.5 implies

Tn
|- X =B [ " HEax),
0
Using the L? maximal inequality it follows that

Tn
E (sup(H-X)f) §4E’/ HZd(X),
t<Tn 0

Letting n — oo now we can conclude
E (sup(H~X)f) < 00
t
With this in hand we can start with
Tn
B(H X0}, =B [ B} 40
0

and let n — oo to get the desired result.

6.3. By stopping we can reduce to the case in which X is a bounded continuous
martingale and (X); < N for all ¢, which implies H € II5(X). If we replace S
and T by S, and T, which stop at the next dyadic rational and let H} =
for S, < s < T, then HY € II; and it follows easily from the definition of the
integral in Step 2 in Section 2.4 that

/ H™dX, = C(Xr, — Xs,)

-

To complete the proof now we observe that if |C(w)| < K then

|Hn - H||x < K{E(X)r, — (X)) + E({X)s, — (X)s)} =0
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as n — oo by the bounded convergence theorem. Using Exercise 4.4 and (4.3.b)
it follows that ||(H, - X) — (H - X)|l2 — 0 and hence [H!dX, — [ H,dX,.
Clearly, C(Xt, — Xs,) — C(X1 — Xs) and the desired result follows.

6.4. X2— XO_ZX"’(t,+1) X217
—Z{X(t.+1) X(t")}2+Z2X(t"){X(t.+1) X(t)}

(3.8) implies that the first term converges in probability to (X );. The previous
exercise shows the second term converges in probability to fot 2X,dX;.

6.5. The difference between evaluating at the right and the left end points is
23 (X () = X ()} — 22X

6.6. Let Cp,, = B((k + 1/2)2="t) — B(k27"t) and Dy, = B((k + 1)27"t) —
B((k +1/2)27"t). In view of (6.7) it suffices to show that as n — co

Sn = Z Ck,n(Ck,n + Dk,n) - t/z
.k

in probability. E’C"’ =27"t/2 and ECk,nDi n = 0s0 ES, = t/2. To complete
the proof now we note that the terms in the sum are independent so

2
E(S,—-t/2)’=E (Z Ci.—27"t/2+ Ck,nDk’n>
k
=E) (Cin—27"t/2)" +C} oD}, <2°Ct27%" =0
k

-and then use Chebyshev’s inequality.

6.7. (6.7) implies that if t? is a sequence of partitions of [0,t] with mesh — 0
as n — 0o we have

:
S his(Bis,, — Bip) — / h, dB,
7 i b1 i i
in probability. The left-hand side has a normal distribution with mean 0 and

variance .
>t — ) — [ Hds
s * 0
7 .
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as n — oo by the convergence of the Riemann approximating sums for the
integral. Convergence of the means and variances for a sequence of normal
random variables is sufficent for them to converge in distribution (consider the
characteristic functions) and the desired result follows.

7.1. sup, |((K™ — K) - A)| < M sup, |K} — K;| —» 0
7.2. By stopping it suffices to prove the result when |A|: < M. If we let
G¢ = f'(c(As;, Aryy,)) then as in (7.4) we get

F(Ad) — f(Ag) = / G da,

As 6§ — 0, G! — f'(A,) uniformly on [0,#] so the desired conclusion from
Exercise 7.1.

8.1. Clearly M; + M} is a continuous local martingale and A; + A} is continuous
adapted, locally of bounded variation and has Ay + Af = 0.

Chapter 3

1.1. The optional stopping theorem implies that
z = E;Br = aP;(Br = a) + b(1 — P;(Br = a))
Solving gives P,(Br = a) = (b—z)/(b—a).

1.2. From (1.6) it follows that for any s and n P(sup;», B: > n) = 1. This
implies P(sup;y, B: = co) = 1 for all s and hence limsup,_,,, Bs = o0 a.s.

1.3. If S, (w) T t(w) which is < co with positive probability then By(.)(w) =0
and we have a contradiction.

3.1. Using the optional stopping theorem at time T'At we have EyB2,, =
Eo(T At). Letting t — oo and using the bounded and monotone convergence
theorems with (1.4) we have

b , a

EoT = EyB2 = a?- +b

b+a 'b+a=ab

3.2. Let f(z,t) = 25 — az?t 4 bz*t? — ct3. Differentiating gives

D, f = —az* 4+ 2bz% — 3ct?
(1/2)Dz=f = 15z% — 6az?t + b2
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Setting a = 15, 2b = 6a, and b = 3¢, that is a = 15, b = 45, ¢ = 15, we have
D:f + (1/2)D.-f = 0, so f(B;,t) is a local martingale. Using the optional
stopping theorem at time 7, At we have

Eo{BE py — 15BE o, (1a At) +45B2 5, (1a At)?} = 15Eq(1s At)?

Letting ¢ — oo and using the bounded and monotone convergence theorems
with the results in (3.3) we have

15E473 = a® — 15a*E7, 4+ 45¢*E72 = a5(1 — 15 4 75)
so Eot3 = 61/15.
3.3. Using the optional stopping theorem at time T_, A n we have

1=F, exp(—(2u/0'2)ZT_.,An)

Letting n — oo and noting that on {7, = oo} we have Z;/t = o B/t + 1 — p
almost surely and hence Z; — oo a.s., the desired result follows.

4.1. Let 6 : [0,00) — R be piecewise constant and have |6,| = 1 for all 5. Let
i=%; f; 6} dX:. The formula for the covariance of stochastic integrals shows
Y; is a local martingale with (Y); = t, so (4.1) implies that ¥; is a Brownian
motion. Letting 0 = ¢y < ;' < ... < t, and taking 6, = v; for s € (¢;-1,¢;] for
1 < j € nshows that Xy, — X3,,...,Xs, — Xt,._, are independent multivariate
normals with mean 0 and covariance matrices (t1 —tg)l,..., (tn — tn—1)I, and
it follows that X; is a d-dimensional Brownian motion.

4.2. X, is a local martingale with (X), = f; h2dr. By modifying h, after
time ¢ we can suppose without loss of generality that (X)e = co. Using (4.4)
now we see that if y(u) = inf{s : (X), > u} then X, is a Brownian motion.
Since (X ), and hence the time change y(u) are deterministic, the desired result
follows.

Chapter 4

4.1. Let r=inf{t > 0: B; ¢ G}, let y € 8G, and let T, = inf{t > 0: B; = y}.
(2.9) in Chapter 1 implies P,(Ty, = 0) = 1. Since 7 < Ty, it follows that y is
regular.

4.2. P,(7 = 0) < 1 and Blumenthal’s 0-1 law imply Py( = 0) = 0. Since we
are in d > 2, it follows that P,(B, = y) = 0 and hence e = 1— E, f(B,) > 0.
Let 0, =inf{t > 0: B; ¢ D(y,1/n)}. 0, | 0 asn T 00 s0 Py(on < 7) — 1.

1—e=Eyf(Br) = Ey(f(Br);7 < 0n) + Ey(v(Bo,); 7 > 0n)
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As n — oo the first term on the right — 0, so
By(o(Bo, )7 > 0n) — 1— ¢
and it follows that for large n, infzeap(y,1/n) v(z) < 1— 5.

4.3. Let y € G and consider U = V(y, Vg(y), 1). Calculus gives us

1
9(z) —g(y) = /0 Vy(y+0(z—y))-0(z —y) df

Continuity of Vg implies that if |z — y| < r and z € U then Vg(y + 6(z —
y)) -0(z — y) > 0 so g(z) > 0. This shows that for small r the truncated cone
UnN D(y, r) C G° so the regularity of y follows from (4.5¢).

4.4, Let 7 = inf{t > 0: B; € V(y,v,a)}. By translation and rotation we can
suppose y = 0, v = (1,0,...,0), and the d—1 dimensional hyperplane is zz = 0.
Let Tp = inf{¢ > 0 : Bf = 0}. (2.9) in Chapter 1 implies that Py(To = 0) = 1.
If a > 0 then for some k < oo the hyperplane can be covered by k rotations of
V so Py(T = 0) > 1/k and it follows from the 0-1 law that Py(r = 0) = 1.

7.1. (a) Ignoring C; and differentiating gives

__¢d 2(z: — 0:)y

D hy = T2 (7= 0] + y2) @+
Y d(d +2)(z; — 6)%y
Doz hg=—d-

iTi (|2—0|2+y2)(d+2)/2 (|2—‘9|2+y2)(d+4)/2

_ 1 2
Dyhg = (|:c — 0|2 + yz)dlz d (|m _ 0|2 +y2)(d+2)/2

d 243

Dyyhs = —d y+2y (d+ )y

' (|lz—90]2+ y?)d+2)/2 (Jz — 02+ y2)(d+4)/2
Adding up we see that

d-1

{(=d)d = 1)+ (~d) -3}y
;D:c;:c;ho + Dyyh9 = (lm _ 0'2 + y2)(d+2)/2

d(d+2y(z— 0P +7) _,
(Jz — 0] + y2)[d+a/2 =

The fact that Au(z) = 0 follows from (1.7) as in the proof of (7.1).
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(b) Clearly [ df he(z,y) is independent of z. To show that it is independent of
¥, let z = 0 and change variables 6; = yp; for 1 <i < d—1 to get

Cay d—l
/d0 he(0,9) = /(y"’ltpl"’ + g )d/2 dp = /d(ph‘p(o,l) =1

(c) Changing variables 6; = z; + r;y and using dominated convergence

/ df he(z,y) = / drh,.(0,1) =0
D(z,€)c D(0,¢/y)

(d) Since Pr(t < o0) =1 for all z € H, this follows from (4.3).

1. ¢(z) = =B < 0 so w(z) = Eze=P" < 1 and it follows from (6.3) that
v(z) = Eze~P7 is the unique solution of

iu" —PBu=0 uy(—a)=u(a)=1

Guessing u(z) = B cosh(bz) with b > 0 we find

.;.u" —Bu= (E_b_ _ ﬂB) cosh(bz) = 0

if b = 1/2B. Then we take B = 1/ cosh(a+/2p) to satisfy the boundary condition.

Chapter 5

3.1. We first prove that h is Lipschitz continuous with constant Cy = 2C; +
R~YA(0)| on D, = {R < |z| £ 2R}. Let f(z) = (2R — |z|)/R and g(z) =
h(Rz/|z|). If z,y € Dy then

Irll

@) — fyl = =l Ly

RI

Since h is Lipschitz continuous on Dy = {|z| < R}, and Rz/|z| is the projection
of z onto D, we have

lg(z) —9(¥)| = Ih(Rm/Irl) - h(Ry/IyI)I

SQEE
|| ||

< Cll:t: |
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Combining the last two results, introducing ||||co,; = sup{|k(z)| : z € D;}, and
using the triangle inequality:

|h(2) = h(y)] < [ flleo,2l9(z) — g(W)] + | (=) = f(W)lllglleo,2
1
<1-Cle =yl + Hlltllo,s
< (2C1 + Ih(O)I/R)Im —y| =Colz —y|

since for £ € Dy, |h(z)| < |h(0)] + C1R.

To extend the last result to Lipschitz continuity on R¢ we begin by ob-

serving that if £ € D,, y € D», and z is the point of §D; on the line segment
between z and y then

|h(2) — h(y)| < [h(z) — h(z)| + |A(2) — R(¥)]
< Cilz —z|+ Cal|z —y| < Ca|z — 3|
since C1 £ C and |z — z| + |z — y| = |z — y|. This shows that h is Lipschitz

continuous with constant C, on |z| < 2R. Repeating the last argument taking
|z| < 2R and y > 2R completes the proof.

3.2. (a) Differentiating we have

k(z) = —Czlogz

K'(z) = —Clogz—C >0 if0<z<e™?
£'(z)=-C/z <0 ifz>0

so k is strictly increasing and concave on [0,e~2]. Since x(e~2) = 2Ce~2 and
k'(e=2) = C, & is strictly increasing and concave on [0,00). When e < e~

— P ¢ _
A C:clog:cdm_ C loglogm[0 o0

(b) If g(t) = exp(—1/tP) with p > 0 then
gt)= p+1 1 exp(—1/tF) = Py(t){log(1/y(t))}(”+1)/”
5.1. Under @ the coordinate maps X;(w) satisfy MP(8+ b, 7). Let
X=X - /Ot B(X,) + b(X,s) ds

3
= Xt - / b(X,)dS
0
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Since we are interested in adding drift —b we let ¢ = a~'b as before, but let
1
Y, =—/ o(X,) - dX,
0
t
==Y+ / c(Xs) - b(Xs) ds
0
1
=-Y +/ ba~1b(X,) ds"
0
Since Y; and f/, differ by a process of bounded variation we have
t
(Y= (Y)= / ba='b(X,) ds
0
The change of measure in this case is given by
. 5 1 -
&y = exp (Yt - E(Y),)
1
= exp (—Yt + E(Y)t) =1/
6.1. It suffices to show that Py a.s.

Ty
limsup/ |B,|_11(|3_|52—n)ds >0
0

n— 03

To prove the last result, let Rg = 0, Sy, = inf{t > R, : |By| = 27"}, Rpy1 =
inf{t > S, : B; =0} for . > 0, and N = sup{n : R, < T1}. Now

T N
/0 |B:| " 1¢,1<2-my d5 2 D 2*(Sm — Rom)

m=0

where the number of terms, N+1, has a geometric distribution with E(N+1) =
2", and the S,, — R,, are i.i.d. with E(S;, — Rn) = 22" and E(S;, — Rp)? =
(5/3)2*". Using the formula for the variance of a random sum or noticing that
P(N > 2™) — e~! as n — oo one concludes easily that limsup > C > 0 as.

Chapter 6

3.1. (i) If b(z) < 0 then

exp (- /0  9b(z)/a(2) dz) > 1
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so p(z) > z, p(00) = co and recurrence follows from (3.3).

(ii) If b(z)/a(z) > € then

y
exp (—/ 2b(z)/a(z) dz) <e 2w
0
50 ¢(00) < oo and transience follows from (3.3).

3.2. The condition is [, —2b(y)/a(y)dy = 0. Let I = [} —2b(y)/a(y)dy.
P'(n+y)=e™p'(y)soif I >0 p(—00) > —oo and if I < 0 then p(o0) < co.
If I = 0 then ¢'(y) is periodic so 0 < ¢ < ¢'(y) < C < oo, and it follows that
¢(00) = 0o and p(—00) = —c0.

5.1. (a) If 8= 0 then p(z) = = and m(z) = 1/o%z so

on 1
' / m(z)(p(z) — (0)) dz = / 07 %dzr < ©
0 0

M(0) = —o0 so J = oo and it follows that 0 is absorbing. To deal with co note
that p(c0) = M(c0) =00 so I =J = 0.

(b) When 8 < 0, ¢'(z) = efl#/o* 5o
2
= 7 (281=/0* _
)= 3 ( Y
m(z) = =21/ [ 525

To evaluate I for the boundary at 0, we note

[ me)ote) - sy ae= [

m(z z)— T = e A < OO

0 i # 0 2|B|=

since the integrand converges to 1/0% as £ — 0. Again M(0) = —c0 so J = oo

and it follows that 0 is absorbing. To deal with co we note that ¢(c0) = oo so
I = . To evaluate J we begin by noting that

(o] 2
/ =Bl gy = T -2pl=/o?
2|4

E

Since most of the integral comes from z < y < z ++/z it follows easily that

02 head E 02
M(oc0) — M(z) ~ We 2Bl=/
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Since ¢'(z) = e~ API=/ * it follows that J = co and o is a natural boundary.

5.2. The computations in Example 5.3 show that (a) I < oo when v < 1 and
(b) for v < —1 we have M(0) = —oo and hence J = co. Consulting the table
of definitions we see that 0 is an absorbing boundary for v < —1.

5.3. (a) H; < Tp < o0.

(b) (2.9) in Chapter 3 implies

1
E\Hs = / 2y~ 2 dy < 0
0

since § < 1 implies 1 —26 > —1.

(c) If & > 1 then Hs > H; so it suffices to prove the result when § = 1. To do
this, we note that if By = z then £~ ! B,;2 is a Brownian motion starting at 1,
so the distribution of

T:/ZATZ:
/ B 2ds under P
0

does not depend on z. Letting Sz = (Tz/2 A Taz) o O, and using the strong
Markov property it follows that the distribution of

Sx
I = B;z ds under P,
Tx

does not depend on z. Pick § > 0 so that Py(I; > §) > 0. The Is-» are inde-
pendent so the second Borel-Cantelli lemma implies that Py(I5-» > § i.0.)=1
but this is inconsistent with P,(H; < co0) > 0.

5.4. p(z) = z s0 p(c0) = 0o and I = co. When § < 1/2, M(c0) = oo and
hence J = co. When 6§ > 1/2

o A1 [<eo ifE>1
L 2-1 =00 if6<1
Combining the results for I and J and consulting the table we have the indicated

result.

5.5. When a=0
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Here and in what follows C is a constant which will change from line to line. If
B> 1/2 then ¢(0) = —co and I = co. If B < 1/2 then p(z) — (0) = Cz1~28
and

1 C

m() = o (Waly) ~ v -y(1-y)

as y — 0. From this we see that I < oo if # < 1/2. When g =0, M(0) = —o0
so J = co. When > 0, M(z) — M(0) ~Cz?$ as z - 0so J < 00 if 8 > 0.
Comparing the possibilities for I and J gives the desired result.

~ Cy?.ﬁ—l

Chapter 7

5.1. Letting b — oo in (4.7) of Chapter 6 we have

B nf = 2p(2) — #(0) [ " m(z) dz +2 / " (0(2) = (1)) m(z) dz

The result now follows from m(z) = 1/¢'(2)a(z) = z72.
5.2. We apply (5.3) to v(z) = z'+% — 1 and note that

&—~1 )
Lu= Q—;—Qﬁ : 3—£———+b(x)(1+5)”? <-1

since b(z) < —¢/z%, (14 6)/2<1,and z%-1 < 1.

Chapter 8

3.1. Suppose rn # 7. Then there is an ¢ > 0 and a subsequence r,, so that
|rn, — r| > € for all k. However it is impossible for a subsequence of ry,, , s0 we
have a contradiction which proves r, — r. -

6.1. If d(g,, h) — 0 then h can only take the values 0 and 1. In Example 6.2 we
showed that A cannot be = 0 so it must take the value 1 at some point a. Since
h is right continuous at a there must be some point & # 1/2 where hA(b) = 1 but
in this case it is impossible for d(gn, ) — 0.
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